Henrique von Gersdorff, Ph.D.

Henrique von Gersdorff, PhD

Senior Scientist, Vollum Institute


Henrique von Gersdorff earned a Ph.D. in Physics from the University of Minnesota and a Ph.D. in Neurobiology from Stony Brook University in New York. He received his B.S. in Physics from the Federal University of Rio de Janeiro, Brazil. He was a research scientist in high-energy physics at Brookhaven National Laboratory, and had postdoctoral fellowships at Stony Brook University and the Max-Planck Institute for Biophysical Chemistry, Department of Membrane Biophysics, Göttingen. In 1998 he was appointed assistant scientist in the Vollum Institute and was promoted to scientist in 2004 and senior scientist in 2009. von Gersdorff also holds a faculty appointment in the Department of Physiology and Pharmacology in the School of Medicine at OHSU.

Summary of current research

Sensory information is conveyed by neurons and synapses specialized to faithfully transmit large amounts of information at high rates. A key event in synaptic transmission is the release of neurotransmitter via vesicle fusion at synaptic terminals. Direct studies of synaptic terminals have been hampered by their small sizes and technical constraints. However, using high time resolution patch-clamp membrane capacitance measurements, von Gersdorff and his associates have studied the kinetics of vesicle fusion (exocytosis) and subsequent membrane retrieval (endocytosis) in single, live synaptic terminals from bipolar cells of the goldfish retina and from hair cells of the frog amphibian papilla. These cells have compact ribbon-type active zones that contain a large pool of releasable vesicles suitable for the transfer of high bandwidths of information. Following short depolarizations, a fast form of endocytosis can be observed, indicating that synaptic vesicle membrane is quickly re-internalized after vesicle fusion. Von Gersdorff and his colleagues are presently investigating mechanisms for short-term synaptic plasticity at ribbon synapses in mouse retinal slices and also multivesicular release at the hair cell synapses using capacitance measurements together with paired recordings of hair cells and their afferent fibers. The lab is also using imaging techniques to record optically the fast dynamics of calcium changes in active zones and nerve fibers.

To study conventional active zone synapses, the lab has been examining the calyx of Held nerve terminal, a pivotal element in the auditory brainstem circuitry that computes sound source localization. Precise timing of action potential discharges is essential for accomplishing this task. Nevertheless, the mechanisms that modulate and preserve the timing of spikes are poorly understood. von Gersdorff and his coworkers are studying these mechanisms and short-term forms of plasticity at this synapse. The large size of the calyx terminal allows them to directly patch-clamp the terminal and the postsynaptic cell simultaneously, and thus to measure calcium currents, presynaptic capacitance changes, and glutamate release. This direct access to the terminal allows the lab to study the kinetics of synaptic vesicle exocytosis and endocytosis, neurotransmitter reuptake mechanisms, and the modulation of postsynaptic spikes. Presently, the lab is focused on revealing the developmental changes that fine-tune auditory synapses for short synaptic delays and for sustained high frequency firing.

Zemel BM, Nevue AA, Tavares LES, Dagostin A, Lovell PV, Jin DZ, Mello CV, von Gersdorff H. (2023) Motor cortex analogue neurons in songbirds utilize Kv3 channels to generate ultranarrow spikes. Elife. 12:e81992.

Berry MH, Moldavan M, Garrett T, Meadows M, Cravetchi O, White E, Leffler J, von Gersdorff H, Wright KM, Allen CN, Sivyer B. (2023) A melanopsin ganglion cell subtype forms a dorsal retinal mosaic projecting to the supraoptic nucleus. Nat Commun. 14(1):1492.

Zemel BM, Nevue AA, Dagostin A, Lovell PV, Mello CV, von Gersdorff H. (2021) Resurgent Na+ currents promote ultrafast spiking in projection neurons that drive fine motor control. Nat Commun. 12(1):6762. doi: 10.1038/s41467-021-26521-3.

Meadows MA, Balakrishnan V, Wang X, von Gersdorff H. (2021) Glycine release is potentiated by cAMP via EPAC2 and Ca2+ stores in a retinal interneuron. J. Neurosci. Oct 7:JN-RM-0670-21.

Rutherford MA, von Gersdorff H, Goutman JD. (2021) Encoding sound in the cochlea: from receptor potential to afferent discharge. J. Physiol. 599(10):2527-2557.

Chen M, von Gersdorff H. (2019) How to build a fast and highly sensitive sound detector that remains robust to temperature shifts. J. Neurosci. 39(37):7260-7276.

Lujan B, Dagostin A, von Gersdorff H. (2019) Presynaptic diversity revealed by Ca2+-permeable AMPA receptors at the calyx of Held synapse. J. Neurosci. 39(16):2981-2994.

Vincent PFY, Cho S, Tertrais M, Bouleau Y, von Gersdorff H, Dulon D. (2018) Clustered Ca2+ channels are blocked by synaptic vesicle proton release at mammalian auditory ribbon synapses. Cell Reports 25(12):3451-3464.e3.

Sebe JY, Cho S, Sheets L, Rutherford MA, von Gersdorff H, Raible DW. (2017) Ca2+-permeable AMPARs mediate glutamatergic transmission and excitotoxic damage at the hair cell ribbon synapse. J. Neurosci. 37(25):6162-6175.

Johnson SL, Olt J, Cho S, von Gersdorff H, Marcotti W. (2017) The coupling between Ca2+ channels and the exocytotic Ca2+ sensor at hair cell ribbon synapses varies tonotopically along the mature cochlea. J. Neurosci. 37(9):2471-2484. 

Delvendahl I, Vyleta NP, von Gersdorff H, Hallermann S. (2016) Fast, temperature-sensitive and clathrin-independent endocytosis at central synapses. Neuron 90(3):492-498.

Kim MH, von Gersdorff H. (2016) Postsynaptic plasticity triggered by Ca2+-permeable AMPA receptor activation in retinal amacrine cells. Neuron 89(3):507-520.

Balakrishnan V, Puthussery T, Kim MH, Taylor WR, von Gersdorff H. (2015) Synaptic vesicle exocytosis at the dendritic lobules of an inhibitory interneuron in the mammalian retina. Neuron 87(3):563-575.

Kim JH, Renden R, von Gersdorff H. (2013) Dysmyelination of auditory afferent axons increases the jitter of action potential timing during high-frequency firing. J. Neurosci. 33(22):9402-9407.

Cho S, Li GL, von Gersdorff H. (2011) Recovery from short-term depression and facilitation is ultrafast and Ca2+ dependent at auditory hair cell synapses. J. Neurosci. 31(15):5682-5692.

Li GL, Keen E, Andor-Ardó D, Hudspeth AJ, von Gersdorff H. (2009) The unitary event underlying multiquantal EPSCs at a hair cell's ribbon synapse. J. Neurosci. 29(23):7558-7568. 

Renden R, von Gersdorff H. (2007) Synaptic vesicle endocytosis at a CNS nerve terminal: faster kinetics at physiological temperatures and increased endocytotic capacity during maturation. J. Neurophysiol. 98(6):3349-3359.

Kim JH, Sizov I, Dobretsov M, von Gersdorff H. (2007) Presynaptic Ca2+ buffers control the strength of a fast post-tetanic hyperpolarization mediated by the alpha3 Na+/K+-ATPase. Nature Neurosci. 10(2):196-205.

Vigh J, Li GL, Hull C, von Gersdorff H. (2005) Long-term plasticity mediated by mGluR1 at a retinal reciprocal synapse. Neuron 46(3):469-482.

Leão RM, Kushmerick C, Pinaud R, Renden R, Li GL, Taschenberger H, Spirou G, Levinson SR, von Gersdorff H. (2005) Presynaptic Na+ channels: locus, development, and recovery from inactivation at a high-fidelity synapse. J. Neurosci. 25(14):3724-3738.

Taschenberger H, Leão RM, Rowland KC, Spirou GA, von Gersdorff H. (2002) Optimizing synaptic architecture and efficiency for high-frequency transmission. Neuron 36(6):1127-1143.

Taschenberger H, von Gersdorff H. (2000) Fine-tuning an auditory synapse for speed and fidelity: developmental changes in presynaptic waveform, EPSC kinetics, and synaptic plasticity. J. Neurosci. 20(24):9162-9173.

von Gersdorff H, Matthews G. (1994) Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals. Nature 367(6465):735-739.