1. Tan YH, Helms H, Nakayama KH. Decellularization Strategies for Regenerating Cardiac and Skeletal Muscle Tissues. Frontiers in Bioengineering and Biotechnology. 10, 2022.  DOI: 10.3389/fbioe.2022.831300
  2. Alcazar CA, Hu C, Rando TA, Huang NF, Nakayama KH. Transplantation of Insulin-like Growth Factor-1 Laden Scaffolds Combined with Exercise Promotes Neurovascular Regeneration and Angiogenesis in a Preclinical Muscle Injury Model, Biomaterials Science, 2020, DOI: 10.1039/D0BM00990C
  3. Nakayama KH, Quarta M, Paine P, Alcazar C, Garcia V, Calvo N, Simmons CS, Abilez O, Rando T, Huang NF. Treatment of Volumetric Muscle Loss Using Spatially Patterned Scaffolds Enhances Vascular Organization and Functional Integration. Commun Biol, 2:170, 2019. doi:10.1038/s42003-019-0416-4
  4. Nakayama KH, Shayan M, Huang NF. Engineering Biomimetic Materials for Skeletal Muscle Repair and Regeneration. Adv Healthc Mater, 8: 1801168, 2019. doi:10.1002%2Fadhm.201801168 
  5. Huang NF, Serpooshan V, Morris VB, Sayed N, Pardon G, Abilez OJ, Nakayama KH, Pruitt BL, Wu SM, Yoon YS, Zhang J, Wu, JC. Big Bottlenecks in Cardiovascular Tissue Engineering. Commun Biol, 1:199, 2018. doi:10.1038/s42003-018-0202-8
  6. Nakayama KH, Alcazar C, Yang G, Quarta M, Paine P, Doan L, Davies A, Rando T, Huang NF. Rehabilitative exercise and spatially patterned nanofibrillar scaffolds enhance tissue revascularization for treatment of volumetric muscle loss. NPJ Regenerative Medicine, 3:16, 2018. doi:10.1038/s41536-018-0054-3
  7. Wanjare M, Hou L, Nakayama KH, Kim JJ, Mezak NP, Abilez O, Tzatzalos E, Wu JC, Huang NF. Anisotropic microfibrous scaffolds enhance the organization and function of cardiomyocytes derived from induced pluripotent stem cells. Biomater Sci, 5:1567-1578, 2017. doi:10.1039/c7bm00323d
  8. Giordano S, Zhao X, Xing D, Hage F, Oparil S, Cooke JP, Lee J, Nakayama KH, Huang NF, Chen YF. Targeted Delivery of Human iPS-ECs Overexpressing IL-8 Receptors Inhibits Neointimal and Inflammatory Responses to Vascular Injury in the Rat. AJP-Heart and Circulatory Physiology 310: H705-H715, 2016. doi:10.1152/ajpheart.00587.2015
  9. Nakayama KH, Surya VN, Gole M, Walker T, Yang W, Lai ES, Ostrowski M, Fuller GG, Dunn AR, Huang NF. Nanoscale Patterning of Extracellular Matrix Alters Endothelial Cell Function Under Flow. Nano Letters 16:410-419, 2016. doi:10.1021%2Facs.nanolett.5b04028
  10. Nakayama KH, Joshi PA, Lai ES, Gujar P, Joubert LM, Chen B, Fuller GG, Huang NF. Bi-Layered Vascular Graft Derived from Human Induced Pluripotent Stem Cells with Biomimetic Structure and Function. Regen Med 10:745-755, 2015. doi:10.2217/rme.15.45
  11. Nakayama KH, Hong G, Lee J, Patel J, Edwards B, Zaitseva T, Paukshto M, Dai H, Cooke J, Woo Y, Huang N. Aligned-Braided Nanofibrillar Scaffold with Endothelial Cells Enhances Arteriogenesis. ACS Nano 9:6900-6908, 2015. doi:10.1021/acsnano.5b00545
  12. Burridge PW, Metzler SA, Nakayama KH, Abilez OJ, Simmons CS, Bruce MA, Matsuura Y, Kim P, Wu JC, Butte M, Huang NF, Yang PD. Multi-cellular interactions sustain long-term contractility of human pluripotent stem cell-derived cardiomyocytes. Am J Transl Res 6:724-735, 2014. PubMed.
  13. Na Hong G, Lee JC, Jha A, Diao S, Nakayama KH, Hou L, Doyle T, Robinson J, Antaris A, Dai H, Cooke J, Huang N. Near-Infrared II Fluorescence for Imaging Hindlimb Vessel Regeneration with Dynamic Tissue Perfusion Measurement. Circulation: Cardiovascular Imaging 7:517-525, 2014. doi:10.1161/CIRCIMAGING.113.000305
  14. Nakayama KH, Hou L, Huang NF. Role of extracellular matrix signaling cues in modulating cell fate commitment for cardiovascular tissue engineering. Adv Healthc Mater 3:628-641, 2014. doi:10.1002/adhm.201300620
  15. Nakayama KH, Lee CI, Batchelder CA, Tarantal AF. Tissue Specificity of Decellularized Rhesus Monkey Kidney and Lung Scaffolds. Plos One. 8:e64134, 2013. doi:10.1371/journal.pone.0064134
  16. Tarantal AF and Nakayama KH. Use of large animal and nonhuman primate models for cell therapy and tissue engineering. In: Bernstein H, editor. Tissue Engineering in Regenerative Medicine. NY: Springer, LLC, 2011. p. 393-413. doi:10.1007/978-1-61779-322-6_21
  17. Nakayama KH, Batchelder CA, Lee CI, Tarantal AF. Renal tissue engineering with decellularized rhesus monkey kidneys: age-related differences. Tissue Eng Part A. 17:2891-2901, 2011. doi:10.1089/ten.TEA.2010.0714
  18. Nakayama KH, Batchelder CA, Lee CI, Tarantal AF. Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Eng Part A. 7:2207-2216, 2010. doi:10.1089/ten.tea.2009.0602