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INTRODUCTION  

There is evidence that loss of memory 
contributes to poor medication adherence in the 
elderly [1,2].  We previously investigated this 
contribution in a group of independently-living 
seniors [3].  Here we describe the application of 
statistical pattern recognition techniques to 
medication adherence data, and demonstrate that 
patterns of adherence can reliably detect mild 
cognitive loss.  We apply neural network 
classifiers to the task of discriminating between 
healthy individuals and those with early cognitive 
loss on the basis of medication adherence 
behavior.  The results establish that data from 
relatively unobtrusive behavior monitoring can 
provide reliable inference for individuals.   

SUBJECTS AND ADHERENCE 
MONITORING 

Forty independently-living elder subjects were 
recruited for the original study [3].  All had 
baseline mini mental state examination (MMSE) 
scores greater than 24, and Clinical Dementia 
Rating (CDR) of 0 or 0.5.  Subjects were divided 
into two groups based on their memory function 
as assessed by Alzeheimer’s Disease Assessment 
Scale-Cognitive (ADAS-Cog) scores.  Graham’s 
normative ADAS-Cog data [4] were used to 
generate an age-adjusted 95th percentile interval 
for cognitively healthy individuals.  We define the 
Healthy Control (HC) group as those subjects 
whose age-adjusted ADAS-Cog scores fell within 
this interval (N=19), and the Cognitive Loss (CL) 
group as those subjects whose scores fell outside 
this interval (N=21).  After the data collection, 
results from two individuals were removed for  

 
 
this study: Data from one HC subject was 
corrupted by equipment failure, and one CL 
subject met the clinical standard for mild 
cognitive impairment (MCI), greater cognitive 
loss than the intended target population.  This left 
38 subjects, N=18 in the HC group and N=20 in 
the CL group.  The retained CL group 
corresponds to very mild cognitive loss.   

Subjects were instructed to take a vitamin C 
supplement twice daily at agreed-upon times, one 
in the morning, and one in the evening.  Their 
behavior was monitored by an instrumented 
seven-day pillbox, dubbed the MedTracker, 
developed in our group [5]. The device records 
the time of opening of the compartments.  Event 
times are stored in an on-board buffer and 
transferred from the device by Bluetooth wireless 
every two hours.  The design provides about eight 
weeks operation from a 9V battery.   

Subjects in the pilot study [3] were monitored 
for approximately five weeks.  A sample time 
series of events (from a healthy individual) 
recorded by the MedTracker is shown in Figure 1.  
Dots mark the compartment openings, and crosses 
mark missed doses.  The two solid horizontal lines 
(at approximately 7:00am and 9:30pm) mark the 
planned dose times (explained below) for this 
subject.  The dashed horizontal lines bound a 
window one hour before and two hours after the 
median dose times.   

 
   

 
 



 
 
 

 
 

 

 
 
 
 

Fig.1: MedTracker event time series. 

 
CLASSIFIER CONSTRUCTION 

Data Preparation 

Two aspects of the subjects’ dose-taking 
behavior created the need for some care in the 
data analysis.  First, although instructed to take 
one dose in the morning and one in the afternoon, 
the noon hour is not a reliable boundary between 
events for each subject. To determine an 
appropriate boundary between the two sets of 
events for each subject, we cluster the subject’s 
events into morning and evening groups using the 
Matlab function clusterdata.  The algorithm 
returned a good partition except on two subjects, 
which we clustered manually.  Second, although 
each subject agreed on planned AM and PM times 
for their doses, their actual median dose times 
deviated considerably from their plan.  For 
analysis we define a surrogate planned time for 
the AM dose as the median time for all morning 
events in a subject (rounded to the nearest half-
hour).  Planned time for the PM dose is similarly 
defined.  The median times are shown by solid 
horizontal lines in the example time series in 
Figure 1.  

Feature Extraction  

      We summarize the time series by four features 
that describe the subject’s dose behavior and will 
be used as input to the classifier: (1) As_ 

Prescribed is the percentage of days with no less 

than two compartment openings; (2) As_Planned 
is the percentage of the individual’s events for 
which the dose was taken close to the planned 
time; no more than one hour  
before or two hours after the planned (that is, the 
median AM or PM) time; (3) AM_STD is the 
standard deviation of the time of the morning 
dose; and (4) PM_STD is the standard deviation of 
the time of the evening dose.  
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Not all of the features are equally useful for 
discriminating between the two groups.  Figure 2 
shows kernel density estimates [6] of the 
probability density of two of the features for the 
two groups.  The plots suggest that the As_ 
Prescribed feature has discriminatory power, 
and the AM_STD feature has much less.  We are 
only using these density estimates for 
visualization; we do not suggest that they are 
accurate for constructing Bayesian classifiers, nor 
do we expect that they are valuable for ranking 
features according to their discriminatory 
capability.  Below we discuss how we choose the 
optimal subset of features to obtain good 
classification.      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Density plots of the As_Prescribed  
and AM_STD summary features. 
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Neural Network Classifier  

Our goal is to build classifiers that use appropriate 
combinations of the four summary features as 
input, and accurately assign individuals to the 
Healthy Control or Cognitive Loss groups.  We 
adopt multilayer perceptron (MLP) neural 
networks [7] for this study.  We expect that 
similar results would be obtained with similarly 
flexible classifier technology such as support 
vector machines [8].  The classifier consists of 
three layers of nodes: the input layer (which 
receives the values of our summary features 
extracted from the MedTracker time series), the 
hidden layer, and the output layer whose single 
node activity identifies which of the two classes 
(HC or CL) the input belongs.  A logistic function  
constrains the output to lie in the range (0,1).  If 
the output is greater than 0.5, the subject is 
classified as CL, otherwise the subject is 
classified as HC.  The numerous weights between 
the nodes comprise free parameters that are 
optimized to construct the final classifier. 

The number of hidden nodes in the network is 
an architectural parameter determined by the user.  
Larger hidden layers provide more functional 
flexibility and hence power to construct complex 
decision boundaries when required.  However the 
functional flexibility needs to be constrained to 
avoid overfitting to peculiarities of the training 
data.  We discuss regularization below.     

The network weights are trained to match the 
output to the class labels over the training data, 
which consists of sequences of pairs (Fi, yi), of the 
feature and class label (0 for HC and 1 for CL) 
respectively for the ith subject. We use the mean 
square error between the network output and the 
class label as an error criteria, and optimize the 
weights using conjugate gradient descent.  To 
avoid using solutions from poor local optima we 
use ten random-initializations and restarts of the 
optimizer.  To avoid overfitting, we use weight 
decay regularization [7] and adjust the 
corresponding hyper-parameter α by cross 
validation [6,7].  The hyper-parameter provides 
continuous control over the network’s functional 

flexibility.  For our experiments, we limited the 
network size to 6 and 12 hidden units, and 
controlled the network complexity by 
regularization.  Both network sizes produced very 
similar results.  

Feature Selection and Network Regularization 

      Due the very small number of data samples, 
we adopted leave-one-out cross validation 
(jackknife) [6,7] for feature selection and for 
determining the regularization hyper-parameter α.  
For each of the 15 possible combinations of input 
features we trained networks, choosing as the 
optimimal weight decay parameter α (from a 
discrete set) that which gave the best validation 
performance.  (Validation performance is the 
average of the classification rate of 38 classifiers, 
each of which is trained on a different 37-sample 
training set, and evaluated on a one-sample 
validation set.)  The discriminative ability of each 
feature combination is measured using the 
validation error achieved with the optimal weight 
decay.  In our experiment, the combination of  
As_Planned + As_ Prescribed features 
returns the best performance. 

CLASSIFIER PERFORMANCE 

Having selected the optimal feature set, we 
want to estimate the classifier performance on an 
independent test set not used for training or 
adjusting regularization.  Again, the scarcity of 
samples suggests we adopt leave-one-out cross-
validation.  With a regularization parameter to 
choose, this is a two-loop process (O(N2) 
complexity in the number of samples).  We 
sequentially select one subject as the test set, and 
use the remaining 37 subjects as the development 
set.  On the development set, we do another leave-
one-out cross-validation to determine the optimal 
weight decay parameter α.  Then we train a 
classifier on the complete development set and 
apply it to the single-sample test set. We repeat 
this over all 38 development–test partitions and 
report the total number of misclassified test 
samples as test set error.   



In our experiments, the combination of 
As_Planned + As_ Prescribed features provides 
the best performance. This configuration 
misclassifies 10 of the 38 examples (error rate 
0.263), or equivalently yields a correct 
classification rate of 0.737.  (The 95% confidence 
limit computed using binomial statistics on the 
classification rate is [0.58, 0.85].) In contrast, 
guessing based on the class probabilities would 
return a correct classification rate of 0.53.  Table 1 
gives error rates for several other feature 
combinations; the ranking of feature combinations 
according to their classification performance 
parallels that returned by the feature selection 
study discussed in the last section, lending 
confidence to the selection process. 

 
 
 
 
 
 
 

Table 1: Test error rates  

DISCUSSION 
Our results show that relatively unobtrusive 

automated monitoring of medication adherence 
behavior provides a feasible detector for mild 
cognitive loss at the level of individuals.  This 
study was based on approximately five weeks of 
adherence data for each subject.  Classifiers 
trained on features derived from shorter data 
streams performed less well and the curve of 
performance versus observation time suggests that 
longer data streams could provide better 
discrimination.  The study could be extended by 
appeal to alternative classifiers (such as the 
SVM), and resampling and boosting techniques. 
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