Oculomotor deficits in mild Traumatic Brain Injury (mTBI)

Samuel Stuart

Department of Neurology, Oregon Health and Science University, Portland, USA
VA Portland Health Care System, Portland, USA
Disclosures

This work was supported by the Assistant Secretary of Defense for Health Affairs under Award No. W81XWH-15-1-0620, “Assessment and rehabilitation of central sensory impairments for balance in mTBI”

Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the Department of Defense.

The authors have no direct conflict of interest to declare.

This study uses commercial wearable sensor technology from APDM, Inc, a commercial entity that may benefit from this work. Dr. Fino and Dr. King’s research have been partially supported in the past by federally funded awards to APDM, Inc., through sub-award contracts OHSU. OHSU and APDM, Inc. actively collaborate on several federally funded awards. Direct conflicts of interest between the two parties are managed by OHSU.
Background

Concussion/mild TBI

Oculomotor Deficits

Reportedly occur in 40-90% in acquired brain injury (mTBI is a sub-set of this)
Assessment of eye movements

SUBJECTIVE or CLINICAL

Symptoms-based
Self-reported
Visual inspection

OBJECTIVE or INSTRUMENTED

Quantitative

Vestibular/Ocular-Motor Screening (VOMS) for Concussion

<table>
<thead>
<tr>
<th>Vestibular/Ocular Motor Test</th>
<th>Not Tested</th>
<th>Headache 0-10</th>
<th>Dizziness 0-10</th>
<th>Nausea 0-10</th>
<th>Fogginess 0-10</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASELINE SYMPTOMS:</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smooth Pursuits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saccades – Horizontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saccades – Vertical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convergence (Near Point)</td>
<td></td>
<td>(Near Point in cm): Measure 1: Measure 2: Measure 3:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOR – Horizontal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOR – Vertical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visual Motion Sensitivity Test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Types of eye movements

Saccades
- Self-paced
- Reflexive or Pro-saccades
- Memory-guided (step or gap)
- Anti-saccades

Fixations
- <30°/sec velocity
- >100ms duration
- <2° amplitude

Smooth Pursuit
- >30 & <100°/sec velocity
- >60ms duration
- >2° amplitude

Memory Guided Saccades
- Response
- Delay
- Target
- Fixation
Why care about eye movements?

- Eye movements involve a vast array of different brain regions
- Overlap exists between eye movement and locomotor/balance circuitry
- Reflect cognitive, visual and motor deficits that can impact locomotion/balance
- Diagnose dysfunction
- Monitor rehabilitation / recovery
Issues with previous mTBI literature

Samples
- Few studies and small number of participants
- Various times following head injury with varying diagnosis criteria
- Differing populations; sports, military, civilians, young, old etc.

Types of eye movement assessment
- No “gold-standard” assessments
 - For example; despite internationally standardized assessment for anti-saccades being available, it is not used
- As a result, various testing paradigms have been employed (many only horizontal)
 - For example;
 - Smooth pursuits with varying trajectories, velocities or target visibility
 - Saccades, voluntary or reflexive, step/gap protocols, self-paced, anti- or pro-saccadic tests, memory-guided
 - Fixation, stability (but performed while doing other tasks e.g. balancing on a board)

Technology used to monitor eye movements
- Eye-trackers
 - Range of sampling frequencies (e.g. 30Hz to >1000Hz)
 - Cannot accurately obtain some metrics with low sample rates
 - Static or tethered devices primarily used
 - Paradigms lack functional impact that dynamic testing can provide
 - May not be practical for use in field or pitch-side
Aims

1. Examine eye movements during static tasks in chronic stage mTBI
 - We hypothesized that ocular motor deficits would be present during static testing compared to controls

1. Preliminary examination of eye movements during static and functional tasks in early stage mTBI
 - We hypothesize that ocular motor deficits will be more prominent during functional (walking or turning) rather than static tasks compared to controls
Methods – Chronic stage mTBI

Study 1

Chronic mTBI (>3 months post-injury and report balance issues) vs controls

Otometrics VNG tethered eye-tracker
• 60Hz
• Static tests
 • Eye movements; saccades, smooth pursuits
Results – Chronic mTBI

No differences in metrics
Study 2

Early mTBI (with 12 days of injury) vs controls

Tobii Pro Glasses 2 mobile eye-tracker
- 100Hz
- Static and Dynamic tests
 - Saccades
 - Fixations (and smooth pursuits)
 - Pupil diameter
 - Vestibular ocular reflex

Static testing - Vestibular ocular motor screen

- Smooth Pursuits (Horizontal & Vertical)
 - Tests ability to follow a slowly moving target
 - Both patient and clinician are seated
 - Patient follows finger with eyes
 - Do not move head, just eyes
 - Rate symptoms (0-10)

- Saccades (Horizontal & Vertical)
 - Tests ability of eyes to move quickly between targets
 - Both patient and clinician are seated
 - Clinician holds fingers 3" apart
 - Patient initially looks L-R
 - Do not move head, just eyes
 - Rate symptoms (0-10)

- Convergence
 - Measures ability to view a near target without double vision
 - Patient holds target with 14-point "X" at arm's length
 - Patient brings target toward eyes focusing on the "X"
 - Stop when they see double
 - Rate symptoms (0-10)

- Visual Motion Sensitivity
 - Tests visual motion sensitivity & ability to inhibit vestibular induced eye movements using visual motion
 - Patient holds arm outstretched in front with thumbs up
 - Turn body as a unit to 40 deg from midline turning on trunk
 - Use metronome 60 bpm
 - Rate symptoms (0-10)

- Vestibular-Ocular Reflex (Horizontal & Vertical)
 - Tests ability to stabilize vision as head moves
 - Clinician holds target 3" from patient's eye level
 - Patient initially turns head L-R 10x
 - Keep eyes focused on target
 - Use metronome 180 bpm
 - Rate symptoms (0-10)
 - Repeat with patient looking up/down
Functional testing - Walking

Single Task

Dual Task - Auditory Stroop

Hi, Low, Hi, Hi, Low
Turning course

Turning course with dual-task

Turning course fast walking

Functional testing - Turning
Preliminary Results – Static Saccades

Saccades (Horizontal & Vertical)
Tests ability of eyes to move quickly between targets
Both patient and clinician are seated
Clinician holds fingers 3” apart
Patient initially looks L-R
Do NOT move head, just eyes
10 reps as quickly as possible
Rate symptoms (0-10)
Repeat with patient looking Up-Down

- Possibly differences between groups
 - Inhibitory control issue?
- Earlier stage following injury
- Sampling frequency of device??

<table>
<thead>
<tr>
<th>Peaks Velocity</th>
<th>Horizontal</th>
<th>Vertical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>600</td>
<td>550</td>
</tr>
<tr>
<td>mTBI</td>
<td>650</td>
<td>600</td>
</tr>
</tbody>
</table>

Degrees per second

Time

Velocity
Preliminary Results – Functional Tasks

Clearer differences in metrics
Summary

- Ocular motor deficits may be a useful for diagnosis and recovery tracking in mTBI
 - Functional deficits may be particularly useful
- Chronic mTBI subjects who present with balance issues may not have ocular motor deficits during static tests
 - Cautious interpretation due to low eye tracker sampling frequency and limited range of tests / metrics
- Early stage mTBI may have ocular motor deficits, which are possibly more prominent during functional rather than static tasks
 - Cautious interpretation due to small sample of preliminary data
- Future work with a larger cohort of early stage mTBI subjects will establish findings
Funding: This work was supported by the Assistant Secretary of Defense for Health Affairs under Award No. W81XWH-15-1-0620. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the Department of Defense.