A Systematic Approach to the Assessment and Management of the Complicated Concussion Patient

From Research to Recovery

Oregon Health & Science University

September 17, 2016

John Leddy MD FACSM FACP

Professor of Clinical Orthopaedics and Rehabilitation Sciences
Medical Director, University at Buffalo Concussion Management Clinic
SUNY Buffalo Jacobs School of Medicine and Biomedical Sciences
DISCLOSURES

The Buffalo Sabres Foundation
Robert Rich Family Foundation
PUCCS Foundation
NFL Charities
Ralph and Mary Wilson Fund
NIH (1 R01 NS094444-01A1)
At the conclusion of this activity, the participant will be able to:

• Describe an approach to assessment of the complicated concussion patient based upon:
 • Evaluation of exercise intolerance
 • Physical examination findings of neurologic and cervical subsystems

• Describe the active approach to concussion treatment with respect to:
 • Subthreshold aerobic exercise
 • Vestibular and vision therapy
 • Cervical physical therapy
Individual Recovery From Sports Concussion: High School

- All Athletes
- No Previous Concussions
- 1 or More Previous Concussions

WEEK 1: 40% RECOVERED
WEEK 2: 60% RECOVERED
WEEK 3: 80% RECOVERED

High School Male Football Athletes

Collins et al., 2006, Neurosurgery
Symptoms From The Time of Injury College
Guskiewicz et al., JAMA 2003

Figure 2. Mean Reported Graded Symptom Checklist Total Scores for Players With Concussion (n=196) Across Repeated Assessments
When does Concussion become PCS?

- **DSM IV**: cognitive deficits in attention or memory and ≥ 3 symptoms for > 3 months.
- **World Health Organization**: three or more of:
 - headache, dizziness, fatigue, irritability, insomnia, concentration difficulty, or memory difficulty.
- **No specific timeframe**
Predictors of PCS

• Headache Apslund et al 2004
• Amnesia Apslund et al 2004
• Memory Lovell et al 2003
• Processing speed Lau et al 2011
• History of concussions Guskiewicz et al 2003
• Age Field et al 2003; Sim et al; 2008 Pellman et al 2006
• Gender Barnes et al 1998
Summary of Research on Prognostic Factors

- Different studies find different predictors of developing PCS
- However, combined, the predictors do not explain much of the variance
- A big problem with research on prognostic factors is the lack of agreement of what constitutes “PCS”
- “PCS” is not a single syndrome.
The pathophysiology of SRC is much better understood than that of PCS.
Neurometabolic Cascade Following Cerebral Concussion/MTBI

(Giza & Hovda, 2001)
Recovered? Looks like it is on fMRI
(Leddy et al 2013)

- PCS
- Recovered
Recovered? Looks like it ain’t on DTI

(Polak P et al. in press)
When does Sport-Related Concussion (SRC) become Post Concussion Syndrome (PCS)?

• **Zurich 2012:** Persistent symptoms (>10 days) in 10–15% of concussions.
 - In general, symptoms are not specific to concussion and it is important to consider other pathologies.

• **Athletes:** symptoms > weeks-months (Harmon. AMSSM Position Statement).

• **Youth (13-16 yrs.):** >4 weeks (Zuckerman et al. Surg Neurol Int. 2012)
 - In SRC, 90% athletes recover 4 wks.
 - 13-16 years old take longer to return to neurocognitive and symptom baselines than athletes 18-22 years old.
 - When recommended "comprehensive" approach used for concussion assessment, recovery time for SRC is 3 to 4 weeks (Henry LC et al Neurosurgery 2015).
To diagnose PCS, best to have a test

- Neuropsychological testing?
 - **Meta-analysis:** most cognitive deficits resolve after 7 days in SRC. (Belanger et al J Int Neuropsychol Soc 2005)

- Advanced Imaging (fMRI, DTI)?
 - Not specific and not ready for clinical use.
To treat “PCS”, need a diagnosis

Do prolonged symptoms reflect a prolonged version of the concussion pathophysiology or a different process?
What are you looking for in PCS?

- Treatable Disorders (PCDs)
 - Cervical dysfunction
 - Vestibular dysfunction
 - Oculomotor dysfunction
 - Cognitive dysfunction
 - Migraine
 - Affective disorders
Cannot use Symptoms to Diagnose Concussion
N=128
(Leddy et al. 2014)

• P-PCD (n=36)
 • Headache
 • Dizziness
 • Foggy
 • Can’t concentrate

• Cervical/vestibular injury (n=92)
 • Headache
 • Dizziness
 • Foggy
 • Can’t concentrate

No significant separation of symptoms
Can we define PCS more systematically?

Physiological Approach

- **Physical examination**
 - focus on physiology/autonomic nervous system
 - e.g., cranial nerves, orthostatic vital signs.
 - Cervical, vestibular, ocular examinations

- **Response to exertion** (Leddy et al 2010, 2013)
 - Symptom-limited submaximal threshold = persistently abnormal concussion physiology (a dysautonomia of control of cerebral blood flow) = “Physiological Post-Concussion Disorder”
 - Exercise to exhaustion without a threshold = look for an alternative diagnosis.
How do we diagnose Cervicogenic/Vestibular/Ocular PCD?

- Exercise to exhaustion without a threshold on the treadmill.
- Abnormalities on physical exam
 - Signs and symptoms during visual tracking maneuvers.
 - Cervical tenderness, spasm, reduced proprioception.
 - Altered balance.
Alternative Diagnoses
(N = 181)

Post-Concussion Syndrome
Distribution of Patients Assessed for Post-concussion Syndrome According to their Primary Diagnosis
Leddy et al PM&R 2016
Common Treatments For PCS
(Leddy et al. Sports Health 2012)

• (Radical) Rest
 • Information, counseling
 • Some evidence of efficacy
 • Anti-Depressants
 • Little evidence of efficacy
• Compensatory strategies
 • Particularly for students returning to class.
 • Needs further study.
Cervical and Vestibular Rehabilitation

• A case series and an RCT reported benefit of a combined approach of orthopedic and vestibular PT following concussion. (Schneider K et al. CJSN 2009 and 2012)

• If persistent headache after concussion suggests a cervicogenic etiology, cervical spine manual therapy is effective. (Jull G et al. Spine 2002)
Abnormal Accommodation
Normal is 6-10 cm

- **Eye push-ups**
 - Scheiman et al. Optom Vis Sci 2011
 - Borsting et al. Optom Vis Sci 2012
 - * has not been evaluated in concussion

- Goal is to move the pencil to within 2 to 3 cm of the brow, just above the nose on each push up while trying to keep the target single and clear.
- Perform the pencil push-ups procedure 15 min per day, 5 d per week.
A proactive approach to treating Cervicogenic/Vestibular/Ocular PCD

- Cervical and vestibular/ocular rehabilitation.
- Aerobic exercise (can’t hurt!).
- Outcome (Baker JG et al. Rehabilitation research and practice. 2012)
 - 64% returned to full function
 - Subgroup that doesn’t respond fully
 - Why? Prolonged symptoms (>6 months) before evaluation...
Combined PCDs

• Response to exertion
 • Symptom threshold +

• Physical Exam
 • autonomic, cervical and/or vestibular and/or ocular findings

• Management Options
 • cervical and vestibular/ocular rehabilitation plus
 • Sub-symptom threshold aerobic exercise
Exercise as a Treatment for Prolonged Recovery from Concussion
A proactive approach to treating Physiological PCD

- Establish the diagnosis by systematic evaluation of exercise tolerance
 - symptom-limited threshold on the treadmill (or other exercise modality, e.g., bike).

- Sub-threshold exercise prescription (“Exercise is Medicine”)
 - 80-90% of achieved HR = target HR.
 - HR monitor is **KEY** to prevent athlete from over-exertion.
 - 20 min/day at target HR with 5 min warmup and cool down.
 - Bike first, then running. 6-7 d/wk.
 - Increase target HR 5-10 bpm q1-2 weeks.
A proactive approach to treating Physiological PCD

- ≥ 85% age-predicted max HR x 20 min without symptoms- “Physiological Recovery”
- May need additional Rx for cervical, vestibular and/or ocular dysfunction before RTP.
- Advice on RTP based on history (e.g. number of prior concussions) and other signs and symptoms.
Exercise Treatment Outcomes in P-PCD

- 12/12 subjects returned to full sport or work (Leddy et al. CJSM 2010)

- 4/4 exercise treated subjects had symptom resolution v. stretching placebo control (Leddy et al. J Head Trauma Rehabil 2013)

- 77% of P-PCD (n=65) treated with aerobic exercise returned to full sport or work (Baker et al. Rehabilitation Research and Practice. 2012)
 - *5 of 6 who refused to exercise did not return to full function
Aerobic Exercise for Adolescents With Prolonged Symptoms After Mild Traumatic Brain Injury: An Exploratory RCT
Kurowski et al J Head Trauma Rehabil 2016

- 30 mTBI adolescents (12-17 years) with 4-16 weeks of persistent symptoms.
- **Design:** Partially blinded, pilot RCT of sub-symptom exacerbation aerobic training compared with full-body stretching.
- To be eligible, had to have exercise-exacerbation of symptoms on 30 minute bike test and cervical injury not the primary symptom generator.
- 22% of eligible participants enrolled in the trial.
 - 18/30 injured in sport.
Aerobic Exercise for Adolescents With Prolonged Symptoms After Mild Traumatic Brain Injury: An Exploratory RCT

Kurowski et al J Head Trauma Rehabil 2016

“Potential benefit of active rehabilitation programs for adolescents with persistent symptoms after mTBI”...

> rate of improvement in the sub-symptom threshold aerobic training group than in stretching group ($P = .044$).
CASE
SK
History

- 16 year old Caucasian male who was referred to the clinic for treatment and management of his 2nd concussion.
- Injury occurred during football practice – helmet-to-helmet collision. He did not experience loss of consciousness; however, he immediately stopped playing due to headache, feeling dizzy, nauseous, and foggy. Was attended to by the team AT.
- SK arrived at the clinic 3 days after this event, accompanied by his mother. Since the concussion, he has had a persistent headache, dizziness, sensitivity to light, and fatigue.
SK
History

• This is SK’s 2nd concussion.
• He sustained his first concussion two years ago, from a helmet-to-helmet hit during a football game.
• SK experienced a prolonged recovery, with many of the same issues SK is experiencing currently.
SK
Physical Examination

• Good short term recall.
• Blood pressure supine 119/75 with a pulse of 76. Blood pressure standing 127/81 with a pulse of 94. He was a little lightheaded.
• Cranial nerves II through XII intact. Extraocular motion full without nystagmus. Pupils equal round and reactive to light. Funduscopic examination normal.
SK
Physical Examination

• He became symptomatic with visual tracking and convergence was abnormal at 12 cm from the forehead.
• Tandem gait was abnormal.
• Cervical tenderness and abnormal cervical proprioception.
Cervical Relocation Test

Proprioception (trainable!)

BCTT

• SK completed an exercise/treadmill test to determine his heart rate threshold.

• Information from the test
 • Level of exercise tolerance
 • Symptom pattern may yield clues to other diagnoses
 • Vestibular dysfunction
 • Cervical injury
 • Oculomotor dysfunction
Treatment

- Due to persistent symptoms, the patient was prescribed prednisone for 5 days to manage headaches.
- MRI was ordered
- Referred to vestibular rehabilitation.
- Over the ensuing 6 ½ months, SK presented at the clinic for a total of 15 visits.
VISIT 1

Symptoms at rest: headache, dizziness

Resting Likert Score: 6

<table>
<thead>
<tr>
<th>Min</th>
<th>HR</th>
<th>BP</th>
<th>RPE</th>
<th>Likert</th>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>82</td>
<td></td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>88</td>
<td>139/62</td>
<td>6</td>
<td>6</td>
<td>Headache, dizziness</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td></td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>91</td>
<td>142/59</td>
<td>6</td>
<td>7</td>
<td>Balance worse</td>
</tr>
<tr>
<td>4</td>
<td>97</td>
<td></td>
<td>7</td>
<td>7</td>
<td>Headache worse</td>
</tr>
<tr>
<td>5</td>
<td>99</td>
<td>137/58</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>104</td>
<td></td>
<td>8</td>
<td>8</td>
<td>Dizziness worse, balance worse, headache</td>
</tr>
<tr>
<td>7</td>
<td>106</td>
<td>143/55</td>
<td>8</td>
<td>8</td>
<td>Balance worse, headache worse, headache worse</td>
</tr>
</tbody>
</table>

Test Stopped
Outcome

• Meeting at his school and his teachers made changes
 • he was taking breaks when needed, was given additional time to complete assignments, took tests on paper rather than on the computer, and more.

• SK was also given an “exercise prescription” to ride a stationary bike, monitoring his HR so it did not go above his threshold.

• He pushed over the recommended HR once or twice—which caused him to have increased symptoms (headache).
FOLLOW-UP 5

Symptoms at rest: Headache

Resting Likert Score: 1

<table>
<thead>
<tr>
<th>Min</th>
<th>HR</th>
<th>RPE</th>
<th>Likert</th>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>104</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>110</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>105</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>110</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>113</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>128</td>
<td>7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>134</td>
<td>7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>126</td>
<td>8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>140</td>
<td>9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>140</td>
<td>9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>150</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>166</td>
<td>11</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>168</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>166</td>
<td>13</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>169</td>
<td>14</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>168</td>
<td>15</td>
<td>1</td>
<td>Getting tired</td>
</tr>
<tr>
<td>16</td>
<td>169</td>
<td>15</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>178</td>
<td>16</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>181</td>
<td>16</td>
<td>2</td>
<td>Headache</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Post Ex</td>
</tr>
<tr>
<td>145</td>
<td>2</td>
<td></td>
<td></td>
<td>Headache</td>
</tr>
</tbody>
</table>
Outcome

• SK began to show significant improvement and reduction in symptoms –
• Fully recovered - cleared to go back to gym, and attend full-days of school – 6 months after his injury.
Why could sub-threshold exercise improve CBF regulation?

- Exercise training increases parasympathetic activity at rest and may have restored ANS balance. (Carter et al. Med Sci Sports Exerc 2003)

- Progressive stepwise aerobic training may improve CA by conditioning the brain to gradually adapt to repetitive mild elevations of systolic BP. (Brys et al. Am J Physiol Heart Circ Physiol 2003)

- Physical deconditioning is associated with reduced CA (Zhang et al. J Appl Physiol 1997) whereas regular exercise improves control of CBF. (Guiney et al. Neuropsychology 2014)

- A controlled progressive breathing training program can increase CO₂ sensitivity in subjects with low CO₂ sensitivity to begin with. (Pendergast et al. Undersea and Hyperbaric Medicine 2006)
What Athletes do

This? Or This?
The Principle of Exercise tolerance
Using pre-determined stopping criteria

- Diagnose concussion.
- Establish accurate short-term prognosis.
- Establish physiological recovery and readiness to RTP.
- Develop a sub-threshold aerobic “exercise is medicine” program to treat physiological post-concussion disorder.
Activity After Concussion

- Old view
 - Rest until symptoms resolve
Activity After Concussion
New view

• Rest for a couple of days.
• Get back into activity gradually staying below cognitive and physical symptom thresholds.
Take Homes

• The physiology of concussion can inform an evidence-based approach to concussion diagnosis, determination of prognosis and recovery, and management of those with PCS.

• Patients with prolonged symptoms who have exercise intolerance have a physiological component to their symptoms. Get them active.

• Exercise after concussion must be used wisely, i.e., controlled. Athletes should not push through symptoms.
Take Homes

• For those of you not accustomed to systematic assessment of exercise tolerance, consider partnering with a practitioner who is (Sports MD, PT, ATC…).

• Consider Rx approaches that improve autonomic function
 • Individualized sub-threshold aerobic exercise treatment.
 • Breathing exercise (Dr. Jon Silver) at NYU
 • Slow, deep breathing increases HRV.
 • Rates between 4.5 and 6.5 breaths/min produce greatest improvement in HRV in most persons. (Conder and Conder. Heart rate variability interventions for concussion and rehabilitation. Frontiers in Psychology 2014)
Research Evidence

• Reduced CO$_2$ sensitivity.
• Reduced CBF at rest.
• Increased CBF during exercise.
• Increased difficulty switching ANS at appropriate time.

Signs

• Exercise intolerance.
• Orthostatic imbalance.
• Oculomotor difficulties.
• Balance problems.
Thank you for your attention

Concussion.ubmd.com
leddy@buffalo.edu