Dynamics of Concussion

Erin Kenzie
Project origins
Methods

➢ Sought to understand factors and processes relevant to recovery using systems maps & models
➢ System dynamics: feedback, nonlinear dynamics, causal structure; create maps of knowledge
➢ Iterative process:
 ○ Literature review
 ○ Expert interviews
 ○ Group workshops
Early phases
Concussion As a Multi-Scale Complex System: An Interdisciplinary Synthesis of Current Knowledge

Erin S. Kenzie1, Elle L. Parks1, Erin D. Bigler2, Miranca M. Lim3,4, James C. Chesnutt5 and Wayne Wakeland6

1 Systems Science Program, Portland State University, Portland, OR, United States; 2 Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, United States; 3 Sleep Disorders Clinic, Division of Hospital and Speciality Medicine, Veterans Affairs Portland Health Care System, Portland, OR, United States; 4 Departments of Neurology, Medicine, and Behavioral Neuroscience, and Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States; 5 TBI/Concussion Program, Orthopaedics & Rehabilitation and Family Medicine, Oregon Health & Science University, Portland, OR, United States

Traumatic brain injury (TBI) has been called “the most complicated disease of the most complex organ of the body” and is an increasingly high-profile public health issue. Many patients report long-term impairments following even “mild” injuries, but reliable criteria for diagnosis and prognosis are lacking. Every clinical trial for TBI treatment to date has failed to demonstrate reliable and safe improvement in outcomes, and the existing body of literature is insufficient to support the creation of a new classification system.
The Dynamics of Concussion: Mapping Pathophysiology, Persistence, and Recovery With Causal-Loop Diagramming
Interactive model

Explore the diagram in Kumu.

Available at: www.dynamicsofconcussion.com
What the model *is . . .* and *isn’t.*

- Preliminary reflection of current knowledge
- Snapshot of the ‘big picture’
- Qualitative
- Exploratory

- Comprehensive
- Inclusive of all aspects of heterogeneity
- Statistical or mathematical
- Data-driven
Benefits and possibilities of this approach

- Reveal patterns, gaps in knowledge, and connections
- Classification / sub-typing: help understand how variables (e.g., biomarkers) fit together
- Starting point for computational modeling
- Iterative reflection between data-driven & conceptual models
- Continuously updated “living” model
- New directions?
References

Kumu.io
Thank you!

Erin Kenzie
Systems Science Program
Portland State University
erin.kenzie@pdx.edu

www.dynamicsofconcussion.com