Muscular Dystrophies in Adulthood

Matthew P. Wicklund, MD, FAAN
Professor of Neurology
University of Colorado School of Medicine

Disclosure Information

- Disclosure of Relevant Financial Relationships
 - Scientific Advisory Board for: Sarepta & Myonexus
 - Speaker’s Bureau for: None
 - Grant/Research support from: Acceleron & Orphazyme
 - Research Collaboration sans compensation: Jain Foundation
 - Stockholder in: None
 - Honoraria from: None
 - Employee of: None

- Disclosure of Off-Label and/or Investigative Uses
 - I may discuss the following off label use and/or investigational use in my presentation: Corticosteroids and genetic-based therapies in muscular dystrophies.

Definition

- Muscular dystrophies are genetic, progressive, degenerative disorders of muscle
 - Muscle weakness is the primary symptom
 - Clinical and histologic criteria have been used in the past for classification
Definition

- Now muscular dystrophies are mostly classified on a genetic basis
- Thus, we often refer to them by the broader moniker of: Genetic muscle diseases

Why Should We Care?

- 200+ genetic muscle diseases
- Overall minimum prevalence of symptomatic disease ~1 in 1,000
 - Similar to multiple sclerosis
 - Dystrophinopathies – 23/100,000
 - Myotonic dystrophies 1 & 2 – 14/100,000
 - FSHD – 11/100,000
 - LGMD – 7/100,000

Pathology Throughout the Myofiber

- Extracellular matrix
 - Sarcolemma
 - Sarcolemmal repair / maintenance / trafficking / signal transduction
 - Sarcoplasma
 - Sarcomere
 - Intermediate filaments
 - Nucleus
Pattern of Weakness Varies

Dystrophinopathies

- Multiple phenotypes
 - Duchenne (1:5,000)
 - Loss of independent ambulation <12 years
 - Becker (1:10,000)
 - Walk past 16th birthday
 - Manifesting female carriers (1:20,000)
 - HyperCKemia or myalgias
 - X-linked dilated cardiomyopathy
 - Cognitive disorders

Duchenne

- Motor
 - Slightly late to walk
 - Improve until 6-8 years
 - Stop walking 7-11 years
 - Continued loss of distal strength in 20s and 30s

Systemic

- Dilated cardiomyopathy
 - ACE inhibitor, b-blocker
- Restrictive lung disease
 - NIV, ventilators
- Gastroparesis/megacolon
 - G-J tubes
- Cognitive dysfunction
 - Language/Asperger/autism
- Developmental pediatrician
- Osteoporosis & fractures
Duchenne

Corticosteroid therapy:
- > 29 dosing regimens
 - Pred 0.75mg/kg/d
 - Deflazacort 0.9mg/kg/d
 - Pred 2.5mg/kg/d on Saturday and Sunday
- Start 3-8 years of age

Treated boys:
- Walk 1-3 years longer
- Fewer falls
- Better pulmonary function
- Less scoliosis, but more fractures
- Probable improvement in cognitive & cardiac function

Weight gain, behavioral changes, growth retardation, hypertension, glucose intolerance, peptic ulcer disease, cataracts, acne, fractures

Dystrophinopathies

Becker
- Highly variable severity
- Skeletal and cardiac muscle involvement may be quite disparate
- Cardiac transplantation a reasonable option
- Pulmonary milder
- Cognitively normal

Female carriers
- Underappreciated
- CK elevated in 30-60%
- 20% with weakness
- 20% with abnormalities on cardiac testing
- 10% with symptomatic dilated cardiomyopathy

Males and females with a limb girdle pattern of weakness should be evaluated for dystrophinopathies

Dystrophinopathies

- DMD
 - Largest gene in human genome
 - 2.3 megabases
 - 79 exons
 - 8 isoforms
 - Dystrophin
 - 3685 AAs
 - 427 kilodaltons

Dystrophin

- 8 isoforms
- 427 kilodaltons

Diagnosis

<table>
<thead>
<tr>
<th></th>
<th>Duchenne</th>
<th>Becker</th>
<th>Carrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset</td>
<td>3-5 years</td>
<td>6-60 years</td>
<td>30-70 years</td>
</tr>
<tr>
<td>Weakness</td>
<td>Severe</td>
<td>Variable</td>
<td>~20%</td>
</tr>
<tr>
<td>CK</td>
<td>2,000-40,000</td>
<td>300-20,000</td>
<td>↑ in ~1/3</td>
</tr>
<tr>
<td>Biopsy</td>
<td>Absent</td>
<td>Decreased</td>
<td>Nil or ↓</td>
</tr>
<tr>
<td>Immunostains</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Diagnosis

Mutation Analysis

- Mutations
 - Deletions ~55%
 - Duplications ~10%
 - Point (missense & nonsense) ~25%
 - Splice site ~5%

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Duchenne</th>
<th>Becker</th>
<th>Carrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out of frame</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In frame</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Either</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reading frame rule holes in ~80-90% of cases
Reading Frame Rule

[Diagram showing normal and abnormal pathways involving extracellular matrix and cytoplasmic bridges]

Reading Frame Rule

[Diagram showing normal and abnormal pathways involving extracellular matrix and cytoplasmic bridges]
Myotonic Dystrophies

<table>
<thead>
<tr>
<th></th>
<th>Type 1</th>
<th>Type 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weakness</td>
<td>Distal</td>
<td>Proximal</td>
</tr>
<tr>
<td>Clinical Myotonia</td>
<td>Prominent</td>
<td>Not usually</td>
</tr>
<tr>
<td>Other Organs</td>
<td>Prominent</td>
<td>Less frequent</td>
</tr>
<tr>
<td>Pain</td>
<td>Uncommon</td>
<td>Frequent</td>
</tr>
<tr>
<td>EMG (Myotonia)</td>
<td>NL-5x</td>
<td>NL-5x</td>
</tr>
<tr>
<td>Gene</td>
<td>DMPK</td>
<td>ZNF9</td>
</tr>
<tr>
<td>Mutation</td>
<td>CTG repeat (3’ untranslated region)</td>
<td>CCTG repeat (Itron1)</td>
</tr>
<tr>
<td>Anticipation</td>
<td>Yes (especially ♀)</td>
<td>No, variable</td>
</tr>
</tbody>
</table>
DM1
"Christmas Tree Cataracts"

Temporal Tip White Matter Hyperintensities

DM1
Temporal Tip White Matter Hyperintensities

DM2
Multiple internal nuclei
Nuclear clumps

Genetics in DM1

• (CTG)n repeat length matters:
 - 4–37 => NL
 - 38–50 => stable, asymptomatic or minimal symptoms late in life
 - 51–100 => minimal symptoms late (e.g. cataracts)
 - 101–1,000 => classic adult onset DM1
 - 1,001 – 4,000 => severe ± congenital onset

[Image of eye with cataracts]
[Image of MRI scans]
[Image of histological section]
Genetics

- In DM1, larger repeat length correlates with:
 - Earlier onset of disease
 - More severe manifestations of disease
 - More severe cardiac involvement
- In DM2, there is no good correlate of repeat length with disease severity

Myotonic Dystrophies

Takeaway points

- DM1
 - Clinical myotonia or EMG
decrescendo/crescendo myotonic
discharges should spur genetic
testing for DM1
 - 1 in 4 children born to a woman with
DM1 will have congenital DM1
 - The word “pacemaker” should never
be uttered without “defibrillator”
- DM2
 - Consider this diagnosis in 30-50 year
old patients with pain, myalgias ±
weakness
 - Myotonic discharges may not be
appreciated on the first EMG in 15-
25% of cases

FSHD

(Facioscapulohumeral muscular dystrophy)

- Up to 30% sporadic
- Onset in teens
- Facial involvement may be mild (5-10%)
FSHD (Facioscapulohumeral muscular dystrophy)

- Up to 30% sporadic
- Onset in teens
- Facial involvement may be mild
- Asymmetries
- “Triple hump sign”
- Reversal of the anterior axillary folds
Diagnosis

- Autosomal dominant
- Clinical features
 - CK = NL to 5x ULN
 - EMG => myopathy or irritable myopathy
 - Biopsy almost always not necessary
 - Often inflammation associated with dystrophic features
 - Genetic testing

Genetics

- Reduction in the number of 3.3 kilobase (kb) tandem repeats (termed D4Z4) on chromosome 4q35
 - Normal >11
 - Shorter repeat length correlates with:
 - Earlier onset
 - More severe disease

Genetics

- Obligate conditions for FSHD
 1. Chromosome 4q35 (not chromosome 10q)
 2. 1-10 D4Z4 repeats
 3. 4qA variant at the terminus (not 4qB)
 4. Presence of one of three permissive simple sequence length polymorphisms – SSLPs (4A159, 4A161 or 4A168)
- Hypomethylation allowing DUX4 activity
- ~5% with FSHD phenotype not have the above
- FSHD2 – hypomethylation of D4Z4 repeats
- SMCHD1

Prognosis

- Indolently progressive weakness
 - Patients may comment on periods of quiescence interrupted by rapid deterioration
 - 20% eventually require wheelchair use
 - Women less severely affected than men
 - Rough correlation between disease severity and size of deletion
 - Normal life expectancy
Treatment

- No medical therapy
 - Prednisone, albuterol and creatine did not yield functional improvements
- Exercise is OK
- Pain management
- High frequency hearing loss screening
- Assistive devices like AFOs for foot drop
- Surgical scapular stabilization procedures

Limb Girdle Muscular Dystrophies

- Recessive:
 - More common (~85%)
 - Higher CK levels
 - Often appears sporadic in smaller families
- Dominant:
 - Passed generation to generation
 - NL or mildly elevated CK levels

<table>
<thead>
<tr>
<th>DISEASE</th>
<th>LINKAGE</th>
<th>GENE</th>
<th>GENE PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGMD1A</td>
<td>1q11-11.2</td>
<td>LMNA</td>
<td>Lamin A/C</td>
</tr>
<tr>
<td>LGMD1B</td>
<td>1q21-21.3</td>
<td>LTNA</td>
<td>Lamin A/C</td>
</tr>
<tr>
<td>LGMD1C</td>
<td>3p11.22</td>
<td>DYSF</td>
<td>Dysferin</td>
</tr>
<tr>
<td>LGMD2A</td>
<td>1q21-12</td>
<td>SCG2</td>
<td>G-protein gamma</td>
</tr>
<tr>
<td>LGMD2B</td>
<td>3p12</td>
<td>SGC1</td>
<td>G-protein gamma</td>
</tr>
<tr>
<td>LGMD2C</td>
<td>3q21-21.33</td>
<td>SGC2</td>
<td>G-protein gamma</td>
</tr>
<tr>
<td>LGMD2D</td>
<td>5q33.1-5q34</td>
<td>SGC3</td>
<td>G-protein gamma</td>
</tr>
<tr>
<td>LGMD2E</td>
<td>5q33.1-5q34</td>
<td>SGC4</td>
<td>G-protein gamma</td>
</tr>
<tr>
<td>LGMD2F</td>
<td>5q33.1-5q34</td>
<td>SGC5</td>
<td>G-protein gamma</td>
</tr>
<tr>
<td>LGMD2G</td>
<td>3p11.1</td>
<td>FKRP</td>
<td>FK-Bet protein</td>
</tr>
<tr>
<td>LGMD2H</td>
<td>3p12.3</td>
<td>FKRP</td>
<td>FK-Bet protein</td>
</tr>
<tr>
<td>LGMD2I</td>
<td>3p11.1</td>
<td>FKRP</td>
<td>FK-Bet protein</td>
</tr>
<tr>
<td>LGMD2J</td>
<td>3p11.1</td>
<td>FKRP</td>
<td>FK-Bet protein</td>
</tr>
<tr>
<td>LGMD2K</td>
<td>3p11.1</td>
<td>FKRP</td>
<td>FK-Bet protein</td>
</tr>
<tr>
<td>LGMD2L</td>
<td>3p11.1</td>
<td>FKRP</td>
<td>FK-Bet protein</td>
</tr>
<tr>
<td>LGMD2M</td>
<td>3p11.1</td>
<td>FKRP</td>
<td>FK-Bet protein</td>
</tr>
<tr>
<td>LGMD2N</td>
<td>3p11.1</td>
<td>FKRP</td>
<td>FK-Bet protein</td>
</tr>
<tr>
<td>LGMD2O</td>
<td>3p11.1</td>
<td>FKRP</td>
<td>FK-Bet protein</td>
</tr>
<tr>
<td>LGMD2P</td>
<td>3p11.1</td>
<td>FKRP</td>
<td>FK-Bet protein</td>
</tr>
</tbody>
</table>
Relative Prevalence in USA

- Calpain 25%
- Sarcoglycans 15%
- Dysferlin 15%
- FKRP 15%
- Anoctamin 10%
- Lamin A/C 10%
- All others 10%

LGMD2A - Calpain

- Overall most common LGMD, ~20-30%
- Onset 2nd or 3rd decade (2-55 years)
- Hip extensors, knee flexors and hip adductors most involved
- ~50% wheelchair confined after 20 years of disease
- Scapular winging
- Finger extensor weakness
- May be confused clinically with DMD/BMD
- Lack of cardiac involvement

Pollitt et al. Neuromusc Disord 2001;11:287-296
Calpainopathy

- CK
 - 1000-5000 U/L
 (450-12,500 U/L)
- Muscle biopsy
 - Dystrophic
 - Lobulated fibers
 - Eosinophilic myositis
 - Early in disease

Dysferlinopathy

- Phenotypes
 - Limb girdle pattern
 - Also causes distal myopathies:
 - Miyoshi myopathy (posterior complex)
 - Distal anterior compartment myopathy (tab. ant)
 - Scapuloperoneal or proximodistal pattern
 - Biceps atrophy
 - Bent spine syndrome
 - Carriers may be symptomatic
- Identical mutations may present with different phenotypes
 - Even within the same family
Dysferlin's Function

- Membrane repair
 - Satellite cells
- T-tubules
- Mitochondria

Dysferlinopathy

- Onset – 2nd & 3rd decades (0-73 yrs)
 - Most have some distal, calf weakness
 - No cardiac manifestations
 - CK may be markedly elevated
 - Mean = 3800 U/L (generally 1,000-30,000 U/L)
- Biopsies:
 - Inflammation
 - Treatment refractory polymyositis
 - Amyloid
- Prevalence:
 - 20-30%

Dysferlin

Polymyositis

Duchenne Muscular Dystrophy

LGMD2I – FKRP

- Fukutin-related protein (FKRP)
 - Prevalence = 6-40%
 - Highly prevalent LGMD subtype in Northern Europeans
 - 8% in US study
 - Phenotypes:
 - Congenital muscular dystrophy – Fetal / neonatal
 - LGMD – Onset 3-55 years
 - Asymptomatic hyperCKemia

Gallardo, E Neurology 2001;57:2136
Spuler, S Ann Neurol 2008;63:323
Defective glycosylation in muscular dystrophy

Defective glycosylation in muscular dystrophy

LGMD2I - FKRP

- Highly variable progression
- Calf and tongue hypertrophy
- Muscle pain & cramps
- Cardiac dysfunction
- Respiratory involvement
 - Nocturnal ventilation in 30-50%
 - Myoglobinuria not uncommon
- CK = NL <= 50 x ULN
- May be confused with DMD/BMD
LGMD2C-F - Sarcoglycans

- \(\gamma\), \(\alpha\), \(\beta\), and \(\delta\)-sarcoglycan
- \(~15\text{-}20\%\) of LGMD
- Form a tetrameric transmembrane subcomplex within the dystrophin glycoprotein complex
 - links the extracellular matrix to the subsarcolemmal cytoskeletal proteins

Sarcoglycanopathies

- Onset
 - In first decade in lower extremities
- Phenotypes
 - SCARMD (Duchenne-like)
 - Mild, later onset (Becker-like)
 - Aches/pains/cramps syndrome
 - Recurrent myoglobinuria
 - Asymptomatic hyperCKemia
 - Dilated cardiomyopathy
 - Calf hypertrophy in \(\frac{1}{2}\)
 - Scapular winging frequent

- May develop cardiac dysfunction (conduction defect and/or dilated cardiomyopathy)
- CK markedly elevated 1,000-25,000 IU
- Muscle biopsy dystrophic
 - Eosinophic myositis reported early in \(\gamma\)-sarcoglycanopathy
LGMD2L – Anoctamin 5

• ANO5 – Anoctamin 5
• Putative calcium-activated chloride channel
 ▫ Involved in membrane repair
• More common than dysferlinopathy in Northern England

LGMD2L – Anoctamin 5

• AR inheritance:
 ▪ LGMD2L
 ▪ Dermal myopathy (MM2D)
 ▪ Asymptomatic hyperCKemia
• LGMD clinical
 ▪ Onset 11-55 years of age
 ▪ Quadriceps & biceps atrophy
 ▪ Muscle pain in 85%
 ▪ Most remain ambulatory
 ▪ CE = NC to 50 fold normal
 ▪ AS = Dystrophic
 ▪ AD mutations => gnathodiaphyseal dysplasia (GDD)

LGMD1B – Lamin A/C

• ~7-10% of LGMD
• Onset:
 ▪ Congenital – 3rd decade
• Contractures
 ▪ Elbows
 ▪ Achilles
 ▪ Neck extensors
 ▪ Hip flexors
 ▪ Rigidity of the spine
 ▪ Scapular winging
 ▪ Variable rates of progression
 ▪ Frequent cardiac involvement

LGMD2L

• A-D – Atrophy of thighs & medial gastrocs
• E – Biceps atrophy
• F-H – Severe quad & hamstring wasting
• I – Hyperextension of knee

LGMD1B – Lamin A/C
Laminopathy

- 57 yo Grandfather without weakness, but required pacemaker in early 30’s
- 32 yo Mother asymptomatic
- 10 yo proband with typical muscular dystrophy requiring wheelchair
- All with the same mutation

Lamin A/C

- Mutations in LMNA also cause:
 - AR LGMD
 - Familial partial lipodystrophy
 - AD & AR axonal polyneuropathies
 - Mandibuloacral dysplasia syndrome
 - Progeria syndromes
 - Isolated dilated cardiomyopathy with A-V block (CMD1A)
 - Heart-hand syndrome of the Slovenian type
 - Metabolic syndrome
 - Cerebral white matter disease
What else looks like LGMD?

- Dystrophinopathies
- FSHD
- Bethlem myopathy
- X-linked EDMD
- Myofibrillar myopathies
- Mitochondrial myopathies
- Metabolic myopathies
- Pompe disease

Pompe Disease
- Affects all ages
- Treatable disorder
- Enzyme replacement therapy

Myopathy with Paget’s Disease
- Uncommon
- Adult onset – mean age of 42 years
- Slowly progressive proximodistal weakness
 - Early onset: Paget’s disease
 - Premature, frontotemporal dementia (FTD)
- 29yo F with AD proximodistal weakness and FH of Paget’s disease...
Extracellular Matrix-Related Myopathies

- Collagen VI
 - Bethlem and Ullrich
 - COL6A1/A2/A3
 - Hyperlaxity => contractures
 - Keloids
 - CK NL 2.5th U/L
 - Ultrasound “central cloud”
 - MRI – “outside-in” pattern
- Collagen XII
 - Similar features

Emery-Dreifuss

- Clinical triad:
 - Early and disproportionately prominent contractures
 - Elbows, spine and Achilles
 - Childhood onset of humeroperoneal weakness
 - Cardiac disease with arrhythmias, conduction block, and cardiomyopathy
 - Pacemaker/defibrillators
 - Manifesting female carriers

<table>
<thead>
<tr>
<th>Gene</th>
<th>Protein</th>
<th>Mode of Inheritance</th>
<th>% of Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMD</td>
<td>Emerin</td>
<td>X-linked recessive</td>
<td>17%</td>
</tr>
<tr>
<td>LMNA</td>
<td>Lamin A/C</td>
<td>Autosomal dominant</td>
<td>32%</td>
</tr>
<tr>
<td>SYNE1</td>
<td>Nesprin-1</td>
<td>Autosomal dominant</td>
<td>Unknown</td>
</tr>
<tr>
<td>SYNE2</td>
<td>Nesprin-2</td>
<td>Autosomal dominant</td>
<td>Unknown</td>
</tr>
<tr>
<td>FMAN1</td>
<td>Fasta and 1/2 LIM protein</td>
<td>X-linked recessive</td>
<td>Unknown</td>
</tr>
<tr>
<td>FMAN2</td>
<td>Transmembrane protein 43</td>
<td>Autosomal dominant</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

OPMD
(OCulopharyngeal Muscular Dystrophy)

- Clusters of disease
 - French Canadians & New Mexico Hispanics
- Onset 40s-60s
- Ptosis & dysphagia
 - 2/3 ophthalmoplegia
 - limb weakness
 - 2/3 lower extremity
 - U/L upper extremity
 - CK – NL 1,000 U/L
 - Biopsy with vacuoles
 - (GCN)12-17 trinucleotide repeat expansion in exon 1 of PABPN1
What if the CK is very high?
(>10,000 U/L)
- LGMD2A - Calpain
- LGMD2B - Dysferlin
- LGMD2C - Sarcoglycans
- LGMD2I - FKRP
- LGMD2L - Anoctamin 5
- Dystrophinopathy (Duchenne/Becker)

Diagnostic Strategies
- If clinically FSHD, DM1 or OPMD => genetic testing
- If "limb-girdle" pattern of weakness
 - Use phenotype, PH, FH, CK & EMG => targeted genetic test(s)
 - Jain Foundation web-based "smart" algorithm (ALDA)
- Pompe disease testing – free through MDA
- Dystrophin gene testing
 - Including in women

Jain Foundation
LGMD Online Patient Diagnostic Tool
Diagnostic Strategies

- Muscle biopsy?
 - Muscle biopsy with immunostains - $7,000-$12,000
 - Or... multiple mutation analyses
 - Commerially available panels (33, 79 & 200+ genes)**
 - Or...
 - Exome sequencing – 3 affected & 3 unaffected family members***
 - Genome sequencing – now raw data available in < 1 week***
 - Cautionary tale...
 - "Inverted Diagnosis"

LGMD Genetic Testing through MDA

- MDA now offering same panel of 35 genes to >5,000 LGMD patients registered with the MDA.
 - An explosion of diagnoses over the upcoming year!