Telemedicine Coverage of Intensive Care Units: A Narrative Review
Kelly C. Vranas, MD1, Christopher G. Slatore, MD MS2,1, Meeta Prasad Kerlin, MD MSCE3

1. Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon, Health & Science University, Portland, Oregon.
3. Palliative and Acute Illness Research Center and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania

Corresponding Author:
Meeta Prasad Kerlin, MD MSCE
302 Blockley Hall
423 Guardian Drive
Philadelphia, PA 19104
215-746-0446
prasadm@pennmedicine.upenn.edu

Key Words: critical care, telemedicine

Sources of Funding: KCV is supported by 1K12HL133115, Collins Medical Trust, and the Medical Research Foundation. CGS is supported by resources from the VA Portland Health Care System, Portland, Oregon.

Authors’ Disclaimers: The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. The Department of Veterans Affairs did not have a role in the preparation of the manuscript. The views expressed in this article are those of the authors and do not necessarily represent the views of the Department of Veterans Affairs or the U.S. Government.

Word Count: 4000
Abstract

Telemedicine coverage of intensive care units (ICUs) is an organizational innovation that has been touted as a means to improve access to and quality of critical care. The purpose of this narrative review is to discuss the different organizational models of ICU telemedicine and factors that have influenced its adoption, and to review the existing literature to consider whether it has lived up to its promise. We conclude by suggesting future directions to fill in some of the existing gaps in the literature.
The intensive care unit (ICU) is traditionally defined as a dedicated area in the hospital where acute care services are provided to patients requiring invasive, life-sustaining therapies and who are at high risk of dying (1, 2). Over five million patients are admitted annually to ICUs in the United States (US), and nearly one in five Americans will die after using ICU services (2, 3). Critical care is both resource-intensive and costly, consuming nearly 15% of all hospital costs in the US with total costs approaching 1% of the US gross domestic product (4, 5). As a result, substantial efforts have been made in recent years to improve its overall quality, value and efficiency.

Although it is traditionally defined by what happens in an ICU, modern critical care is less a technologic creation and more of an organizational innovation (6). Therefore, it stands to reason that improvements in ICU quality and efficiency might be maximized through innovations in the reorganization of its care delivery system (6, 7). ICU telemedicine is defined as the provision of care to critically ill patients by healthcare professionals located remotely. It is a particularly appealing strategy because of its potential ability to improve access to trained intensivists, whose in-house presence is associated with lower mortality, shortened ICU length of stay (LOS), and lower costs for critically ill patients (8, 9). The demand for critical care has already and will further outpace the supply of intensivists in the setting of the aging US population (10, 11); ICU telemedicine has been proposed as an intervention that may help alleviate this workforce crisis (12, 13). ICU telemedicine providers typically use electronic medical records combined with audiovisual technologies to assist bedside caregivers in patient care activities including best practice adherence, monitoring of clinical stability, and the creation and execution of care plans (14-16).
In this review, we will describe the history of ICU telemedicine and its different models of implementation in the US (as very little data on international adoption of ICU telemedicine exists); explore factors influencing its adoption; review the evidence regarding its effectiveness; discuss potential mechanisms for successful implementation; and propose directions for future research.

The History and Organizational Models of ICU Telemedicine

ICU telemedicine was first reported in 1977. Via a two-way audiovisual link, an intensivist at a university hospital remotely conducted daily rounds and once-weekly teaching conferences with staff of a small non-academic ICU (17). Through their groundbreaking experience, the authors concluded that ICU telemedicine was feasible, though expensive; generally acceptable to both patients and ICU staff; and had great potential to improve patient care, provide education, and facilitate the establishment of multi-hospital networks.

The next two decades saw a substantial improvement in telemedicine technologies, including communication strategies, patient monitoring systems, computerized data collection, and clinical decision support (18). In 1997, a team of investigators at an academic medical center conducted a feasibility study in which they used telemedicine to achieve 24-hour intensivist coverage of a 10-bed surgical ICU at an affiliate hospital over a 16-week period (19, 20). Associated with a marked reduction in severity-adjusted ICU and hospital mortality, ICU LOS, and hospital costs, the ICU telemedicine program was expanded across multiple ICUs in the same healthcare system using commercially available equipment. In a subsequent multi-site
roll-out, the ICU telemedicine intervention was again associated with significantly reduced hospital mortality (12.9% vs. 9.4%) and ICU LOS (4.35 days vs. 3.63 days) (20). These results ultimately led to the development of the predominant ICU telemedicine technology in the US, broader commercialization of telecommunication technologies, and subsequent expansion of ICU telemedicine across the US, from 16 hospitals in 2003 to 213 hospitals in 2010, with most of the growth occurring in the first four years of the expansion (14, 21, 22), (Figure 1.

Today, ICU telemedicine programs are more widespread, covering at least 15% of ICU beds in the US (18, 21), but with considerable variation in how and where they have been implemented. For example, ICUs that utilize telemedicine are widely dispersed geographically and serve communities of all sizes, including both rural and urban settings. They are also located in hospitals that vary substantially in size, from as few as 25 to over 1,000 licensed beds (23). Despite this variability, certain adoption patterns have emerged (23). Compared to non-adopting hospitals, those with ICU telemedicine programs are more likely to be large, non-profit, teaching hospitals located in urban settings and with greater access to resources including major technologies (21).

The most common model is the centralized telemedicine unit, which uses a hub-and-spoke model from which critical care services originate (22, 24). The hub (or center) is the remote site from which a multidisciplinary team (including variable combinations of intensivists, nurses, advanced practitioners, pharmacists, respiratory therapists, and administrative staff) provides off-site monitoring for critically ill patients. Alternatively, the de-centralized model uses a reverse hub-and-spoke model, in which there is no central monitoring facility. In this model, computers equipped with audiovisual technology are also located at sites of patient
care, but the remote monitoring occurs from sites of convenience for individual remote care providers such as physician offices or homes (24). Some ICU telemedicine programs have a logistic center that manages patient flow (including ICU admissions and intra- or interhospital transfers) within a hospital or health system (25). Many telemedicine units provide benchmarking data to monitored ICUs, including rates of adherence to evidence-based practices, patient outcomes data, and professional service revenue data; however, how these types of data are reported or used is not well-described.

The intensity of interaction between ICU telemedicine program and bedside providers varies widely across three primary domains: time, reactivity, and scope. For example, the ICU telemedicine team may provide services intermittently, or in a continuous fashion up to 24 hours-per-day. ICU telemedicine programs may implement a reactive model, in which telemedicine providers respond to automated alerts for worrisome trends that may not yet be recognized by the bedside providers or to requests for involvement from bedside providers. Such requests may be based on pre-specified criteria, such as new admissions, the need for certain therapies indicative of critical illness (such as vasopressors or mechanical ventilation), emergency situations, or questions concerning patient care (22, 26). In contrast, a proactive model typically involves the continuous remote surveillance of patients, including the methodical review of patient data and best-practice adherence (e.g., lung protective ventilation for patients with acute respiratory distress syndrome) (22). Scheduled (i.e., pre-emptive) care models also exist, in which virtual visits by the remote provider occur at defined times rather than in response to prompting from the bedside team (24). Importantly, these models of reactivity are not mutually exclusive. Scope of involvement by the ICU telemedicine team also
varies substantially, ranging from minimal discretion only (e.g., the ICU telemedicine team only intervenes for life-threatening situations) up to full discretion (e.g., the telemedicine team has full prescribing authority ranging from placing routine orders to changing treatment plans) (27). In this way, bedside providers can adjust the intensity of involvement by the ICU telemedicine program across these domains depending on the local culture and resources available.

The ICU telemedicine team typically expands the number of clinicians involved in patient care by adding a number of remote providers to the bedside provider team (28). However, there are no guidelines to establish the optimal “dose” of remote providers, or the ideal composition of the multidisciplinary team. ICU telemedicine teams are staffed with, on average, one nurse per 30-35 ICU beds and one intensivist per 100-130 patients (28). In one survey, ICU telemedicine centers were staffed an average of 16.5 hours per weekday. Weekday staffing included a median of three nurses, with a range of 1-12, and one intensivist, with a range of 1-3. Staffing tended to increase with the number of beds being evaluated by the ICU telemedicine program (23).

Factors Influencing ICU Telemedicine Adoption

The rapid expansion of ICU telemedicine in the early 2000s was based on its potential to improve patient outcomes and quality of care (14). Patient safety and increased access to an intensivist workforce that falls short of demand are often cited as primary motivations for adoption (2, 10, 22, 28, 29). Other proposed benefits of ICU telemedicine include the ability to recognize worrisome vital signs or laboratory trends more quickly than bedside providers would
alone (28, 30, 31), and to target care processes associated with better outcomes, including more rapid initiation of life-sustaining therapies and shorter response times to alarms (16, 22, 32-34). ICU telemedicine programs may also aid in the identification of patients appropriate for transfer to higher levels of care; alternatively, the supplemental care provided by the remote clinicians may enable patients to remain in their community facilities who would have otherwise been transferred (35). In addition, ICU telemedicine can add to the quality improvement infrastructure within hospitals. Through the ability to capture and analyze large amounts of data, ICU telemedicine programs can provide benchmarking reports to individual hospitals about their overall performance over time and compared to other similar facilities. Finally, some hospitals have viewed ICU telemedicine as a way to build relationships with smaller hospitals, support the development of regional care delivery systems, increase revenue by selling their ICU telemedicine services to unaffiliated hospitals, enable hospitals to provide high-risk procedures to patients with complicated medical histories, or distinguish themselves in competitive markets (28, 36).

Despite its initial rapid expansion, the adoption of ICU telemedicine programs appears to have slowed down over recent years, possibly related to the recent recession across the US that led to reduced investment in healthcare infrastructure (21). Indeed, cost is a major barrier to adoption (28). A 2013 systematic review estimated the cost to implement an ICU telemedicine program for one year was between $50,000 and $123,000 (in 2011 US dollars) per monitored ICU bed, with subsequent operating costs of up to $3 million annually (15, 37, 38). Few studies have assessed the financial return on investment of ICU telemedicine, and those that have reported significant cost benefits often contain limited data on actual financial
savings and rarely describe their accounting methods (20, 37, 39). A recent study using an activity-based micro-accounting method at a single academic institution found that implementation of ICU telemedicine led to favorable clinical outcomes and financial benefits that exceeded program capital and operating costs through increased case volume, higher case revenue relative to direct costs, and shorter LOS (40). In contrast, several other studies have shown that ICU telemedicine is associated with higher net costs (41, 42).

ICU telemedicine also faces legal and regulatory challenges. Some states require providers to have a special license to deliver telemedicine services from out of state (36). States also vary in their policies regulating reimbursement for ICU telemedicine services. Because patients may never know that they have been seen by a remote physician, controversy exists as to whether ICU telemedicine services function as a surrogate for in-person care, or as an enhanced level of care that augments in-person care (43, 44).

Has ICU Telemedicine Lived up to its Promise?

There are persistent questions about the benefit of ICU telemedicine for multiple reasons (45). First, the paucity of high-quality evidence prevents strong conclusions about its overall effectiveness. Most existing studies are pre-post studies without concurrent controls (46) and without consistent measurement, reporting, and adjustment for patient severity (47). Furthermore, many studies lack details about how ICU telemedicine was implemented. Because it is such a complex intervention, program structures and local buy-in can vary greatly, likely substantially affecting its overall effectiveness.
With these caveats in mind, a review of the existing literature demonstrates mixed effects of ICU telemedicine on patient outcomes, as summarized in Table 1. Most of the early before-after studies demonstrated significant improvement in patient outcomes associated with implementation of ICU telemedicine (19, 20, 48-51), though the interventions were notably different across these studies in several ways, including (but not limited to) the composition of the ICU telemedicine team, the surveillance models and frequency, and the organization of the target ICUs (Table 1). These positive findings were reinforced by a large study in a single academic center published in 2011 (16). Notably, in this study, remote clinicians worked synergistically with bedside providers to enforce daily goals, respond to bedside alarms, and review adherence to evidence-based practices. Authors reported a significant decrease in risk-adjusted hospital mortality after implementation of the ICU telemedicine program (adjusted odds ratio 0.40). ICU admission post-intervention was also associated with significantly higher rates of best clinical practice adherence, lower rates of ICU-acquired complications, and shorter hospital LOS (16). A subsequent large, multi-center observational study evaluated the relationship between individual processes of care that varied among ICU telemedicine interventions and the outcomes of ICU and hospital mortality, and ICU and hospital LOS. The authors found that four individual components of the interventions were associated with better outcomes, including prompt remote intensivist case review, improved adherence to evidence-based practices, reduced response times to alarms, and the real-time use of performance measures (22, 30). By identifying individual domains associated with improved outcomes post-ICU telemedicine implementation, authors offered plausible mechanisms for the potential effectiveness of this intervention (29). Finally, a recent large
national study evaluating the effectiveness of ICU telemedicine programs with concurrent controls showed a small relative mortality reduction with wide variation in ICU telemedicine effect across adopting hospitals, although this study used an administrative database that lacked detailed clinical risk adjustment (52).

However, multiple other observational studies with similar limitations did not find any association of ICU telemedicine with improved patient outcomes (42, 53, 54). Specifically, one study in multiple ICUs across a large US healthcare system evaluated the association of ICU telemedicine with patient outcomes. Of note, ICUs in this study incorporated varying degrees of involvement of the remote ICU telemedicine team, and also utilized a variety of open and closed staffing models (49, 53). The authors reported no difference in severity-adjusted mortality or LOS post-intervention. However, they did report decreased mortality for the most severely-ill patients after ICU telemedicine implementation, which is consistent with findings from several other studies (41, 53, 55, 56). In another study conducted within the Veterans Affairs Healthcare System using a methodologically rigorous design across seven hospitals with matched controls, authors did not find an association of ICU telemedicine with patient outcomes, but noted that their study cohort had an extremely low ICU mortality rate of 2.9%, making it difficult to detect a statistically significant reduction in mortality (54). More recently, one study evaluated whether implementation of an ICU telemedicine program across a regional healthcare system was associated with reduced inter-hospital transfers (25). Somewhat unexpectedly, they found that inter-hospital transfers were significantly increased post-implementation of the ICU telemedicine intervention, without associated changes in mortality.
or LOS. This finding was driven primarily by transfers from less specialized to more specialized ICUs, and was not readily explained by increased severity of illness (25).

Several systematic reviews and meta-analyses based on these mostly uncontrolled, before-after observational studies concluded that significant associations of ICU telemedicine with reduced ICU mortality and LOS exist, with variable conclusions for hospital mortality and LOS (46, 57). Overall, these data suggest that ICU telemedicine may improve patient outcomes, but likely only when applied in the appropriate setting (29). Unfortunately, the specific characteristics of the target hospital, ICU, and ICU telemedicine unit necessary to optimize the intervention’s effectiveness remain largely undefined. It is also unclear which component of the intervention (e.g., additional providers vs. effects on processes measures vs. the technology itself) may provide greater benefit to patients.

Finally, the cost-effectiveness of ICU telemedicine remains uncertain. Multiple studies have demonstrated this intervention to be more cost-effective when directed toward the care of sicker patients (41, 56, 58). For example, a simulation analysis based on previously published literature and using hypothetical ICU patients found that the optimal cost-effectiveness of ICU telemedicine was achieved when applied to the 30-40% highest-risk patients among all ICU patients in urban tertiary hospitals (56). On the other hand, a 2017 study found that implementation of an ICU telemedicine program (including a logistic center that helped manage ICU admissions and discharges) was associated with lower LOS, which translated into greater case volume. This finding, in combination with increased per case revenue attributed to a structured documentation system that more efficiently captured clinical information, improved financial performance within a single academic medical center (38).
Another recent study of Emory University Critical Care Center’s innovative ICU telemedicine and advanced practice provider training program demonstrated a significant reduction in average Medicare spending per care episode associated with the program’s implementation. These findings were primarily driven by reduced readmissions within 60 days and substitution of home health care for institutional post-acute care for Medicare fee-for-service beneficiaries (59). Despite this, authors noted that sustaining the complex intervention was challenging because ICU admissions covered by the remote ICU telemedicine providers were reimbursed at the same rate as standard ICU stays despite the added cost of the program (59). Ultimately, the cost-effectiveness of ICU telemedicine likely varies between facilities depending on their individual case mix and volume, reimbursement strategy, staffing patterns, presence of existing electronic medical record, and number of beds over which the costs are depreciated (37, 59, 60). For these reasons, the most pressing questions regarding ICU telemedicine intervention at this point is not only whether telemedicine works, but also how, where, and which components of the intervention work best depending on the unique local culture and resources available in a given setting (13).

How and Where Might ICU Telemedicine Be Successfully Implemented?

Certain themes have emerged in the literature over the last two decades that provide some guidance as to how and where ICU telemedicine might be most effective. First, sicker patients may benefit more from ICU telemedicine intervention compared to less sick patients (27, 41, 55, 56). Indeed, if patients are not actually critically ill, then having an intensivist involved in
their care may not be cost-effective or even beneficial (61). Second, although it was originally conceived as a way to expand intensivists’ reach and availability to rural areas, ICU telemedicine may be particularly effective in large urban hospitals (21, 52). ICU capacity strain – when demand on an ICU’s resources exceeds availability – may be the mechanism for this finding (62). Because hospitals located in urban centers are often tertiary care centers with higher daily census and acuity of illness, they may experience greater ICU capacity strain, which has been associated with increased mortality (63). By increasing the number of available care providers, albeit remotely, ICU telemedicine may be one tool that enables ICUs to be more elastic than others during times of high strain, helping to ensure that care remains timely, comprehensive, and accurate (62, 64).

In addition, the impact of ICU telemedicine on patient outcomes varies greatly depending on where and how the intervention is applied (65). Table 2 provides some organizational strategies that may maximize the potential benefit of ICU telemedicine. Important factors to consider include the autonomy assigned to the ICU telemedicine team, and the degree to which the technology is embraced by bedside clinicians. Studies in which these aspects were limited did not find an association between ICU telemedicine and patient outcomes (27, 54). However, studies in which the remote team was allowed full discretion in the care for all patients showed significant associations with improved mortality and LOS with the intervention (16, 30, 51). Identifying ways to improve collaboration and integration between the ICU remote team and the bedside providers is important for the effective implementation of ICU telemedicine programs.
A recent qualitative study of staff acceptance after ICU telemedicine implementation found that receipt of training about the technology, staff knowledge about when and how to use it, and perceived need for the program emerged as important themes influencing the acceptance of ICU telemedicine (66). Including bedside nurses as part of the off-site team is another approach to facilitate local acceptance of the ICU telemedicine intervention. Improved integration between the remote and local teams may also be greater when standards for sign-out, collaborative rounding models, and agreement on standard best practice approaches are developed jointly (67). This type of care model helps to encourage trust in the ICU telemedicine team, which in turn may allow them greater autonomy in the direct care of patients and translate into better outcomes. In addition, the use of a direct intervention with timely notification strategy by the remote ICU telemedicine team, rather than a passive monitor and notify approach, has been associated with improved outcomes (68).

Finally, ICU telemedicine programs may be more effective when they are used as tools for population management and are intentionally linked to specific quality improvement initiatives and care processes (16, 29). For example, ICU telemedicine has been associated with better adherence to evidence-based practices such as stress ulcer and venous thromboembolism prophylaxis, and lower rates of preventable complications (16, 30, 69, 70). Beyond these traditional approaches to quality improvement, other potentially important care processes associated with ICU telemedicine include the review of daily goal sheets to ensure implementation of care plans, and off-hours, off-site case review by intensivists (16). These care processes may be important contributors to the positive association of ICU telemedicine with patient outcomes observed in multiple studies (16, 30). Indeed, ICU telemedicine’s greatest
effectiveness may actually lie in its ability to ensure the consistent implementation of care plans and ICU best practices that have been proven to save lives, rather than in monitoring patients for clinical deterioration (14).

Future Directions

ICU telemedicine is a promising mechanism to improve outcomes for critically ill patients. More insight into why some ICU telemedicine programs are effective, while others are less successful, is of utmost importance and requires a deeper understanding of how to maximize the value of these additional resources. Additional pre-post observational studies will not be helpful in answering these questions. Rather, future studies should be guided by frameworks of implementation science in order to allow for their results to be interpreted through the lens of relevance, generalizability, and applicability across health systems (71-73). Such an approach can enable a better understanding of ICU telemedicine’s influence on the organization and structure of the local ICUs, and how organizational readiness for telemedicine prior to implementation may impact its effectiveness (14). For example, using a standardized approach to assess the pre-implementation ICU environment is a key first step in efforts to understand the environmental and cultural factors that may influence the program’s success, and to allow valid comparisons across centers and sites (14). Mixed-methods research using both qualitative and quantitative approaches will also be necessary to better understand the crucial issue of context when studying if, how, when, and where ICU telemedicine is most effective (65). Finally, more research is needed into the optimal organizational structure of ICU telemedicine
programs and staffing models, such as the optimal ratio of off-site providers to patients, and
the core competencies required of the personnel staffing the ICU telemedicine units (14, 74).

Conclusions

ICU telemedicine represents an organizational innovation that has the potential to improve
access to and quality of critical care. However, its effectiveness is not necessarily assured and
likely depends on the characteristics of the environment where it is deployed and the degree of
collaboration between remote providers and bedside clinicians. It is crucial to recognize the
wide range of implementation strategies for ICU telemedicine when interpreting existing
evidence about its effects on the quality and efficiency of critical care. It is also important to
account for local culture and resources when deciding whether to implement the intervention
in a particular healthcare system. Although several decades of research have suggested many
areas of potential benefit, we still lack understanding about how best to apply and leverage this
technology to maximize its value and effectiveness. Future research using mixed-methods
approaches and validated models for evaluating public health interventions will be essential in
order to understand how, when, and whether ICU telemedicine should be implemented.

Acknowledgements

We would like to sincerely thank Jeremy Kahn and Omar Badawi for providing their input in the
preparation of this manuscript.
References

Figure 1. Growth of ICU telemedicine over time, expressed as percentages of all United States hospitals utilizing this service (panel A) and percentages of ICU beds covered (panel B). Reproduced with permission from Critical Care Medicine (Wolters Kluwer Health, Inc.) (21).
Table 1. Summary of comparative studies evaluating the effectiveness of ICU telemedicine programs

<table>
<thead>
<tr>
<th>Study</th>
<th>Publication year</th>
<th>No. ICUs/hospitals</th>
<th>No. patients in control/telemedicine groups</th>
<th>Summary of study design</th>
<th>Characteristics of ICU telemedicine program</th>
<th>Characteristics of Target ICU</th>
<th>Major findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosenfeld et al. (19)</td>
<td>2000</td>
<td>1 ICU/1 hospital</td>
<td>427/201</td>
<td>Retrospective observational study with two historical control groups</td>
<td>Decentralized Continuous Proactive and reactive Full discretion 1 Intensivist</td>
<td>SICU Open Teaching</td>
<td>Reduced ICU mortality Reduced hospital mortality Reduced incidence of ICU complications Reduced ICU LOS Reduced costs</td>
</tr>
<tr>
<td>Breslow et al. (20)</td>
<td>2004</td>
<td>2 ICUs/1 hospital</td>
<td>1,396/744</td>
<td>Retrospective observational study with historical control group</td>
<td>Centralized Intermittent (19 hours/day) Proactive and reactive Variable depending on bedside attending preference 1 Intensivist, 1 RN and 1 clerical staff</td>
<td>MICU, SICU Open Mixed teaching and non-teaching patients</td>
<td>Reduced hospital mortality Reduced ICU LOS Lower variable costs per case</td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>Setting</td>
<td>Governance</td>
<td>Interventions</td>
<td>Outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------</td>
<td>-----------------------------------</td>
<td>---------------------</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thomas et al. (27)</td>
<td>Pre-post observational study</td>
<td>Centralized</td>
<td>MICU, SICU, MSICU</td>
<td>No difference in hospital or ICU mortality overall, but reduced hospital and ICU mortality among patients with higher severity of illness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>6 ICUs/5 hospitals</td>
<td>Variable depending on bedside attending preference 2 Intensivists (19 hours/day on weekdays), 4 RNs, and 2 clerical staff</td>
<td>Variable depending on site</td>
<td>No difference in hospital or ICU LOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zawada et al. (48)</td>
<td>Pre-post observational study</td>
<td>Centralized</td>
<td>MSICU Open Non-teaching</td>
<td>Medium-sized regional hospitals: Could not evaluate severity-adjusted mortality Reduced ICU LOS Tertiary hospital: Reduced observed-to-predicted ICU and hospital mortality Reduced observed-to-predicted ICU and hospital LOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>4 ICUs/4 hospitals</td>
<td>Proactive and reactive Minimal discretion 1 physician (not always intensivist) 20 hours/day; 1 RN and 1 clerical staff 24 hours/day</td>
<td>Non-teaching</td>
<td>Reduced ICU and hospital LOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McCambridge et al. (49)</td>
<td>Pre/Post observational study</td>
<td>Centralized</td>
<td>Not specified Closed Non-teaching</td>
<td>Reduced ICU mortality Reduced use of mechanical ventilation No difference in ICU or hospital LOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>3 ICUs/1 hospital</td>
<td>Intermittent (7 pm to 7 am) Proactive and reactive Full discretion 1 Intensivist and 1 RN</td>
<td>Not specified Closed Non-teaching</td>
<td>Reduced ICU mortality Reduced use of mechanical ventilation No difference in ICU or hospital LOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Study Design</td>
<td>Telemedicine Group Details</td>
<td>Interventions</td>
<td>Outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morrison et al. (42) 2010</td>
<td>Retrospective observational study with historical control group, early ICU telemedicine group, and late (well-established) ICU telemedicine group</td>
<td>4 ICUs/2 hospitals
Not specified
Not specified
Variable depending on bedside attending preference
Not specified</td>
<td>MICU, SICU, CICU, MSICU
Open
Teaching (MICU, SICU, CICU), non-teaching (MSICU)</td>
<td>No difference in ICU or hospital mortality
No difference in ICU or hospital LOS
No difference in costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lilly et al. (16) 2011</td>
<td>Prospective observational study with stepped-wedge implementation</td>
<td>7 ICUs/2 hospitals
Centralized
Continuous
Proactive and reactive
Full discretion
Intensivist present; rest of team not specified</td>
<td>MICU, SICU, CICU
Closed
Teaching hospital; individual ICU staffing not specified</td>
<td>Reduced hospital mortality
Reduced hospital LOS
Higher rates of best practice adherence
Reduced ICU complications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kohl et al. (51) 2012</td>
<td>Pre-post observational study in surgical ICU with medical ICU as temporal control</td>
<td>2 ICUs/1 hospital
Centralized
Continuous
Proactive and reactive
Full discretion
2 RNs during day (7 am to 7 pm), and 1 intensivist and 1 RN during night (7 pm to 7 am)</td>
<td>MICU (control), SICU (intervention)
MICU closed; SICU open Teaching</td>
<td>Reduced ICU and hospital mortality
Reduced ICU LOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Design and Setting</td>
<td>Staffing Model</td>
<td>Variables Not Specified</td>
<td>Outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>--</td>
<td>-------------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Willmitch et al. (50)</td>
<td>Pre-post observational study with one pre-implementation period compared to three consecutive post-implementation periods 10 ICUs/5 hospitals 6,504/18,152</td>
<td>Centralized Variable depending on site Not specified Variable depending on attending preferences 1 intensivist, 3 RNs, 1 clerical staff</td>
<td>Not specified Variable depending on site Not specified</td>
<td>Reduced hospital mortality Reduced hospital LOS Reduced ICU LOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lilly et al. (23, 30)</td>
<td>Multicenter retrospective cohort study 56 ICUs/32 hospitals 11,558/107,432</td>
<td>Variable depending on site Variable depending on site</td>
<td>Variable depending on site Variable depending on site</td>
<td>Reduced ICU mortality Reduced hospital mortality Reduced ICU LOS Reduced hospital LOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study (Year)</td>
<td>Design</td>
<td>Setting</td>
<td>Telemedicine Description</td>
<td>Patients</td>
<td>Outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>---------</td>
<td>--------------------------</td>
<td>----------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nassar et al. (54) 2014</td>
<td>Retrospective observational study including pre-post analysis within ICUs implementing telemedicine programs, in addition to concurrent control ICUs without telemedicine</td>
<td>Centralized Intermittent (21 hours/day) Variable depending on the site 1 intensivist and 2 RNs</td>
<td>MICU, SICU, MSICU Variable depending on site</td>
<td>8 telemedicine ICUs with 8 matched control ICUs/7 hospitals 3,584/3,355</td>
<td>No difference in ICU mortality No difference in hospital mortality No difference in 30-day mortality No difference in LOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kahn et al. (52) 2016</td>
<td>Multicenter retrospective case-control study, matching adopting hospitals (cases) to up to 3 non-adopting hospitals (controls)</td>
<td>Centralized Not specified Not specified</td>
<td>Not specified Not specified Variable depending on site</td>
<td>No. ICUs not specified/132 case hospitals with 389 control hospitals 830,927/292,636</td>
<td>Reduced 90-day mortality Most effective in large urban hospitals</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: ICU, intensive care unit; SICU, surgical intensive care unit; LOS, length of stay; MICU, medical intensive care unit; RN, registered nurse; MSICU, medical surgical intensive care unit; CICU, cardiac intensive care unit
Table 2. Strategies to maximize potential benefit of ICU telemedicine

| Ensure adequate autonomy of ICU telemedicine team |
| Build integrated teams between remote providers and bedside clinicians |
| Promote active co-management with direct intervention by telemedicine team |
| Develop telemedicine-based protocols for care processes and quality improvement |
| Incorporate internal benchmarking practices led by telemedicine team |