Brian J. O'Roak, PhD
Associate Professor

Oregon Health & Science University
3181 SW Sam Jackson Park Road
Portland, OR 97239
Mail Code: L103
3181 SW Sam Jackson Park Road
Portland, OR 97239
Mail Code: L103
BIO
I’m originally from California’s Central Valley. After earning a B.S. in Biology at CSU Fresno, I did my PhD studies at Yale University working with Dr. Matthew W. State in the Department of Genetics. I then went on for postdoctoral training in the Department of Genome Sciences at the University of Washington, under Drs. Evan E. Eichler and Jay Shendure. I joined the MMG faculty in Fall 2013.
RESEARCH
Highlights of my past research successes include: developing a chromosomal outlier approach to identify candidate genes for Tourette’s syndrome and autism, pioneering trio-based exome sequencing in simplex autism, and developing new technologies for rapid and economical targeted resequencing. I plan to build on this experience by forming a strong and diverse research group focused on developing and implementing cutting-edge methods and technologies for discovery and replication, molecular diagnosis, functional dissection of pathways, and targeted therapeutics for neurodevelopmental and related disorders. This work has the potential to dramatically improve the lives of individuals affected with these currently untreatable disorders through early intervention and biologically based personal therapies.
Please see our lab website for information on active research projects.
Please see our lab website for information on active research projects.
PubMed Link
SELECTED PUBLICATIONS
- O'Roak BJ, Vives L, Fu W, Egertson JD, Stanaway IB, Phelps IG, Carvill G, Kumar A, Lee C, Ankenman K, Munson J, Hiatt JB, Turner EH, Levy R, O'Day DR, Krumm N, Coe BP, Martin BK, Borenstein E, Nickerson DA, Mefford HC, Doherty D, Akey JM, Bernier R, Eichler EE, Shendure J. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science. 2012 ;338(6114):1619-22. PMCID: 3528801.
- Hiatt JB, Pritchard CC, Salipante SJ, O'Roak BJ, Shendure J. Single molecule molecular inversion probes for targeted, high-accuracy detection of low-frequency variation. Genome Res. 2013;23(5):843-54. PMCID: 3638140.
- Rivière JB, Mirzaa GM, O'Roak BJ, Beddaoui M, Alcantara D, Conway RL, St-Onge J, Schwartzentruber JA, Gripp KW, Nikkel SM, Worthylake T, Sullivan CT, Ward TR, Butler HE, Kramer NA, Albrecht B, Armour CM, Armstrong L, Caluseriu O, Cytrynbaum C, Drolet BA, Innes AM, Lauzon JL, Lin AE, Mancini GM, Meschino WS, Reggin JD, Saggar AK, Lerman-Sagie T, Uyanik G, Weksberg R, Zirn B, Beaulieu CL; Finding of Rare Disease Genes (FORGE) Canada Consortium, Majewski J, Bulman DE, O'Driscoll M, Shendure J, Graham JM Jr, Boycott KM, Dobyns WB. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet. 2012 Jun 24;44(8):934-40. PMCID: 3408813.
- O'Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S, et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet. 2011;43(6):585-9. PMCID: 3115696.
- O'Roak BJ, Vives L, Girirajan S, Karakoc E, Krumm N, Coe BP, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012. PMCID: 3350576.
- Riviere JB, van Bon BW, Hoischen A, Kholmanskikh SS, O'Roak BJ, Gilissen C, et al. De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome. Nat Genet. 2012;44(4):440-4, S1-2. PMCID: 3677859.
- Karakoc E, Alkan C, O'Roak BJ, Dennis MY, Vives L, Mark K, et al. Detection of structural variants and indels within exome data. Nat Methods. 2012;9(2):176-8. PMCID: 3269549.
- Abelson JF, Kwan KY, O'Roak BJ, Baek DY, Stillman AA, Morgan TM, et al. Sequence variants in SLITRK1 are associated with Tourette's syndrome. Science. 2005;310(5746):317-20. PMID: 16224024.
- Bakkaloglu B, O'Roak BJ, Louvi A, Gupta AR, Abelson JF, Morgan TM, et al. Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders. Am J Hum Genet. 2008;82(1):165-73. PMCID: 2253974.
- Sanders SJ, Ercan-Sencicek AG, Hus V, Luo R, Murtha MT, Moreno-De-Luca D, et al. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron. 2011;70(5):863-85. PMID: 21658581.