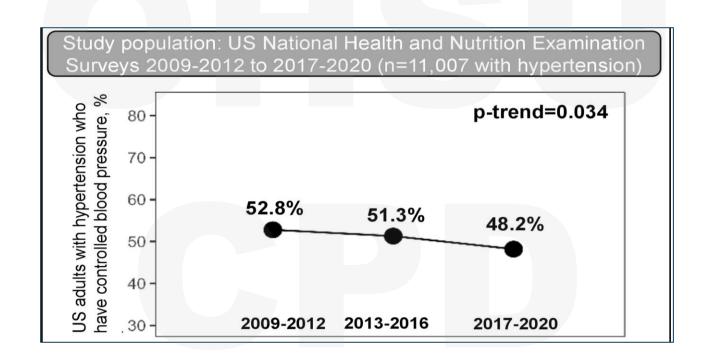


DATE: April 11,2025


PRESENTED BY: Nupur Mistry, MD
Assistant Professor
Director of Comprehensive Hypertension Program
OHSU Division of Nephrology & Hypertension

No Disclosures

Objectives

- Review current anti-hypertensive medication guidelines
- Define resistant hypertension
- Review epidemiology and diagnosis of Primary Hyperaldosteronism
- Review management of Primary Hyperaldosteronism
- Futures of Management

Rate of Blood Pressure Control

Barriers to Blood Pressure Control

Lack of access to care

Therapeutic inertia

Poor adherence to treatments

Inadequate education

Resistant hypertension

Resistant Hypertension

SBP ≥ 130 mmHg , DBP ≥ 80 mmHg ACE/ARB Optimize 3 Anti-Hypertensive Agents CCB Thiazide Rule out white coat HTN diuretic Sodium Restricted Diet

Life-Style Modifications in Hypertension Management

Initial 3 Drug Regimen

Ensure adequate dosing of medications based on half life

Ex. HCTZ and lisinopril

Note strength of agents within drug class

Losartan Valsartan

Irbesartan

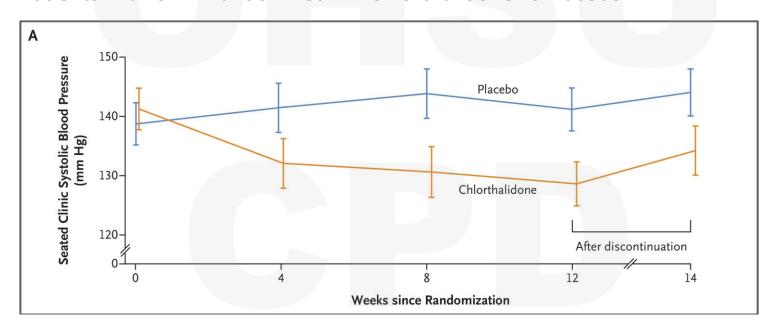
Olmesartan Candasartan Telmisartan

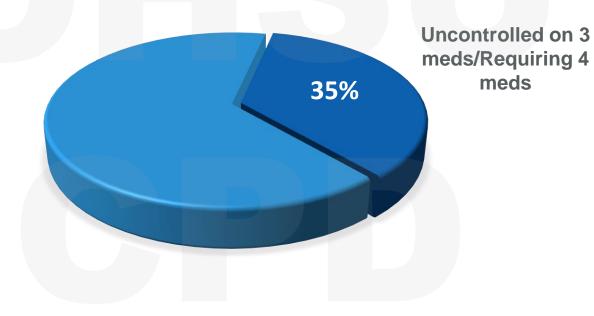
Azilsartan

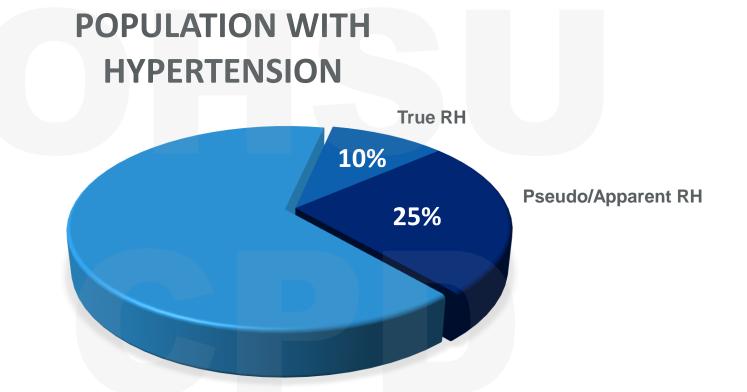
Initial 3 Drug Regimen

Ensure adequate dosing of medications based on half life

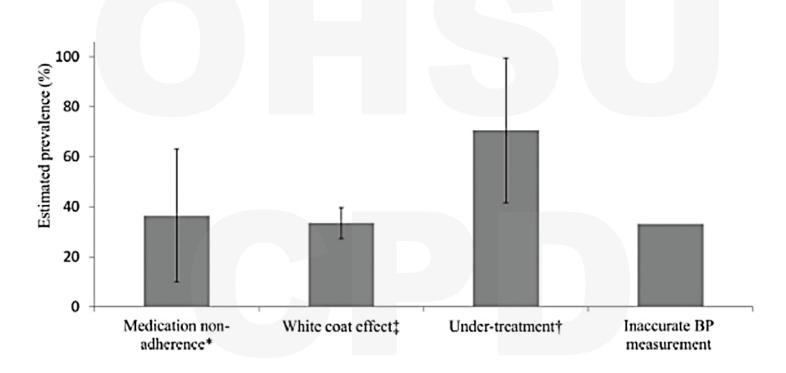
Ex. HCTZ and lisinopril


Note strength of agents within drug class

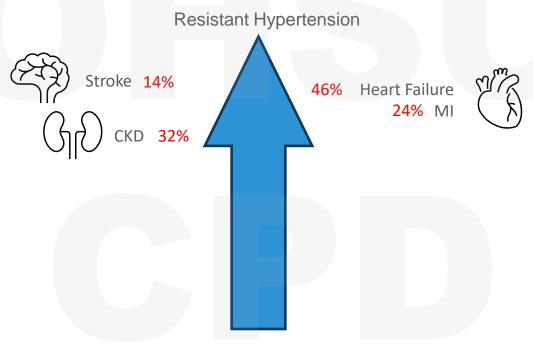

Ensure selected diuretics are appropriate for eGFR

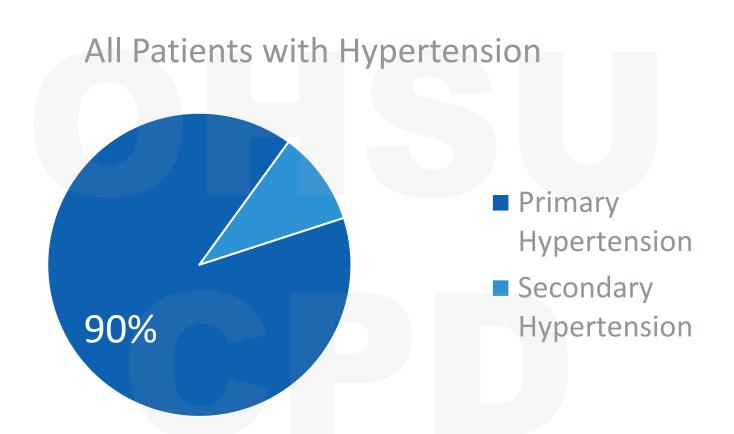

CLICK Trial

Patients with CKD4 randomized 1:1 Chlorthalidone vs Placebo



POPULATION WITH HYPERTENSION




Pseudo-Resistant Hypertension

Prognosis for Individuals with RH

Non-Resistant Hypertension

Renal Artery Stenosis	Renal Parenchymal Disease	Primary Hyperaldosteronism		
Pheochromocytoma	Cushing Syndrome	Hypo/Hyperthyroidism		
Coarctation of the Aorta	OSA	Medications		

Case Presentation #1

- Mr. N is a 47 yo M, referred due to concern of primary hyperaldosteronism
- HTN diagnosed 2 years ago
- Home Medications:
 - Diltiazem 300mg
 - Spironolactone 50mg
- Prior Medications
 - Hydrochlorothiazide discontinued

History

Additional Past Medical Hx

- OSA using CPAP
- Pre-Diabetes

Family Hx

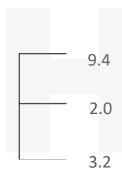
Mother diagnosed with HTN at age 65

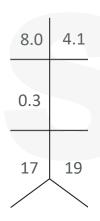
Social Hx

- Non-smoker
- Social Alcohol Use

Physical Exam

Vitals:


BP: 149/82 HR: 67


Home BPs: 137-148/84-93

Physical Exam: Unremarkable

Lab Studies

A1c: 5.9

Urinalysis: No protein, no blood

Why Primary Hyperaldosteronism?

Primary Hyperaldosteronism

~20-25% of resistant hypertension

30-60 years of age

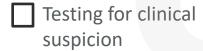
Unprovoked hypokalemia (30-35%)

Will commonly see hypokalemia in presence of diuretic therapy

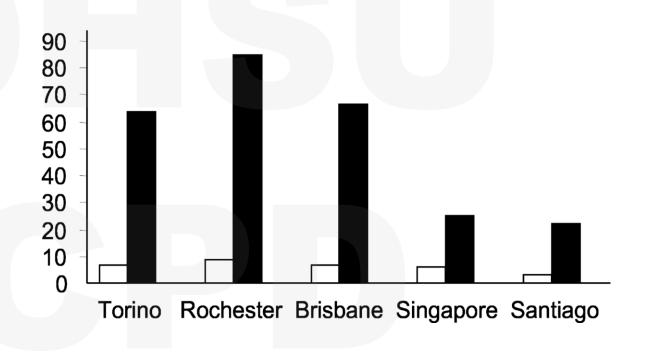
Who Should Be Tested?

Patients with Hypertension and Hypokalemia

Treatment-Resistant Hypertension


Severe Hypertension

Hypertension and Incidental Adrenal Mass


Early Onset of Hypertension

Family Hx of Primary Hyperaldosteronism

Number of Cases of Primary Hyperaldosteronism Diagnosed

Testing for anyone with BP >160/100

Initial Testing – PAC and PRA

Ideally performed in AM

Seated patient

Can be performed in setting of most antihypertensive medications

- Do not need to discontinue ACE/ARB, BB
- MRA/potassium-sparing diuretic medications
 - Spironolactone: discontinued for 4-6 weeks
 - Eplerenone, amiloride, triamterene: discontinued for 2 weeks

Normokalemia

Primary Hyperaldosteronism - ARR

No consensus on ARR threshold

Ranges from 12-30

Confirmatory Testing

Oral Salt Load

Saline Suppression Test

Fludrocortisone suppression Test

Captopril Challenge Test

Oral Salt Load

Procedure:

6g/day sodium chloride intake for 3 days

Supplement KCl

Check 24 hr U-Aldo, Una, UCr starting on day 3

Results

Ualdo > 12 confirms primary hyperaldo

Must have UNa >200 mEq

Advantage

Inexpensive

Perform in outpatient

Disadvantage

Need accurate urine collection

Risky in severe HTN, CKD, HF, or arrhythmia

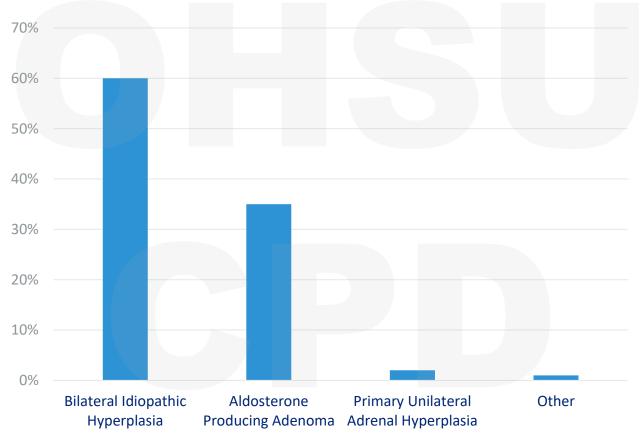
Our Patient's Labs

Medication Regimen

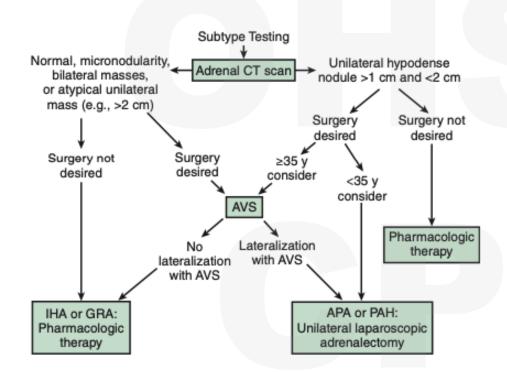
Discontinue spironolactone and diltiazem

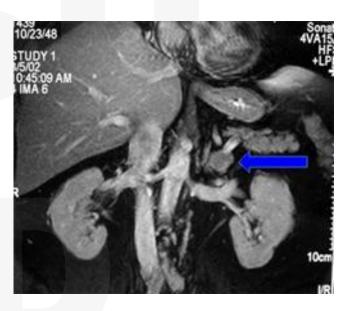
Started on amlodipineolmesartan 5-40mg qd

KCl 20mEq BID


Lab results 30 days later

Aldosterone 53


Renin 0.98


ARR 54

Subtypes of Primary Hyperaldosteronsim

Imaging

Adrenal Vein Sampling - Interpreting the Results

Selectivity Index

- Adrenal vein cortisol/IVC Cortisol ≥ 5:1
- Indicates successful adrenal vein catheterization

Lateralization Index

- [High side A/C ratio]/ [Low side A/C ratio] ≥ 4
- Indicates lateralization of aldosterone secretion

Suppression Index

- Low side A/C ratio/ IVC A/C ratio < 1.0
- Indicates suppression of aldo from low side

Our Patient

•	Sel	lecti ^s	vity	Ind	ex:
---	-----	--------------------	------	-----	-----

•	L:	5	09	/28	=	18
---	----	---	----	-----	---	----

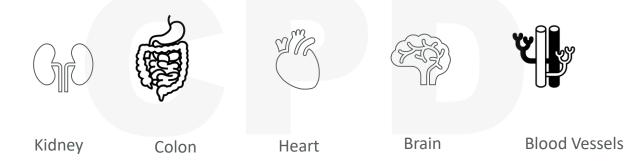
• R: 526/28 = 18

Lateralization Index

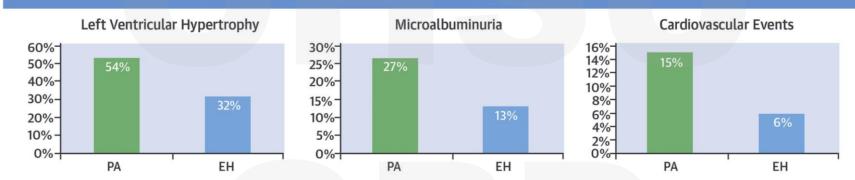
• 8.25/0.14 = 58

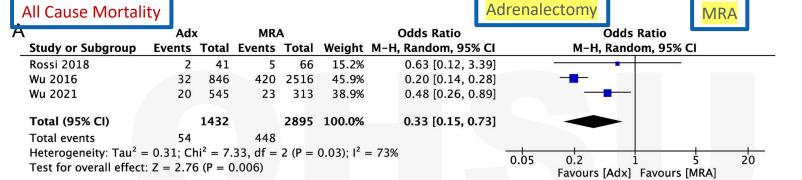
Suppression Index

• 0.14/1.8 = 0.07

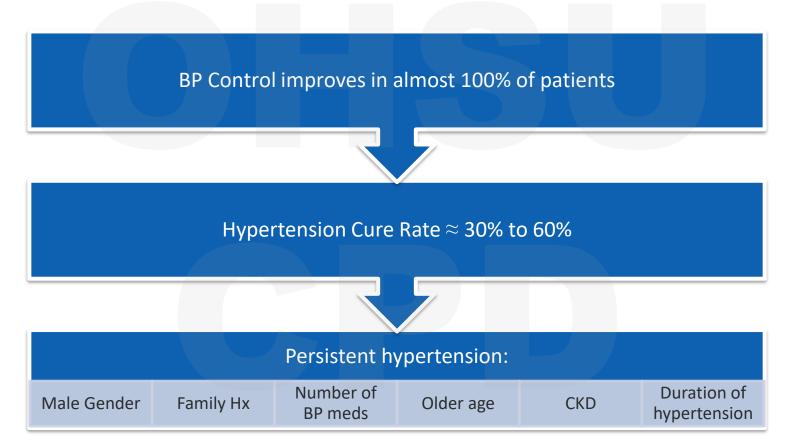


Venous Site	Aldosterone	Cortisol	A/C Ratio
L Adrenal Vein	4200	509	8.25
R Adrenal Vein	74	526	0.14
IVC	52	28	1.8


Treatment

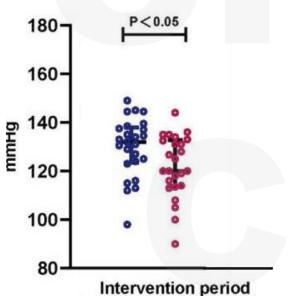

- Goal
 - Not just BP management
 - Aldosterone receptors are located in:

4


B. Target Organ Damage and Cardiovascular Events

B MACE								
	Adx	(MRA	A	Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
Catena 2008	10	24	12	30	5.8%	1.07 [0.36, 3.19]	2008	
Kunzel 2012	2	49	11	56	3.3%	0.17 [0.04, 0.83]	2012	
Mulatero 2013	7	57	24	213	7.7%	1.10 [0.45, 2.71]	2013	-
Wu 2016	163	846	587	2516	21.0%	0.78 [0.65, 0.95]	2016	-
Hundemer 2018	11	201	38	195	10.4%	0.24 [0.12, 0.48]	2018	
Rossi 2018	6	41	13	66	6.1%	0.70 [0.24, 2.01]	2018	•
Chang 2020	70	799	409	2368	19.6%	0.46 [0.35, 0.60]	2020	-
Puar 2021	8	86	12	68	7.0%	0.48 [0.18, 1.25]	2021	-
Wu 2021	155	545	138	313	19.0%	0.50 [0.38, 0.67]	2021	
Total (95% CI)		2648		5825	100.0%	0.55 [0.40, 0.74]		•
Total events	432		1244					
Heterogeneity: $Tau^2 = 0.11$; $Chi^2 = 24.65$, $df = 8$ ($P = 0.002$); $I^2 = 68\%$						0.05 0.2 1 5 20		
Test for overall effect:	Z = 3.86	5 (P = 0)	0.0001)					Favours [Adx] Favours [MRA]

Adrenalectomy Outcomes


Medical Management

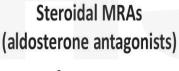

A Sodium restricted diet (<100 mEq of sodium per day)

Impact of Low Sodium Diet

Serum Potassium Levels

Medical Management

A Sodium restricted diet (<100 mEq of sodium per day)

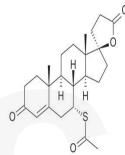


MRA treatment

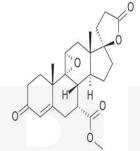
Spironolactone

Eplerenone

Mineralocorticoid Receptor Antagonists



Higher affinity to MR receptor



Higher incidence of:

- Gynecomastia
- Impotence

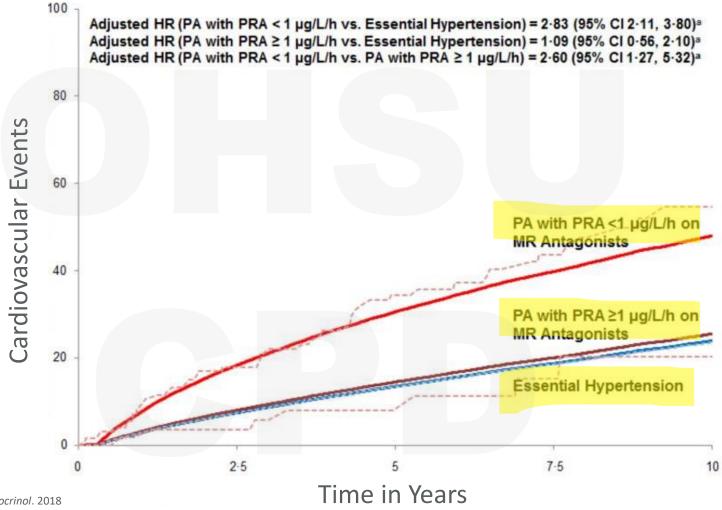
Spironolactone

Eplerenone

Higher selectivity to MR receptor

Medical Management

A Sodium restricted diet (<100 mEq of sodium per day)


MRA treatment

Spironolactone

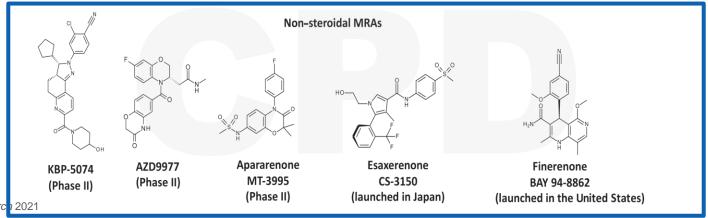
Eplerenone

Goal of Renin > 1

Our Patient

- Received an adrenalectomy
- On follow up, was off all antihypertensive therapies with BPs 130/75
- No further hypokalemia

Future Directions

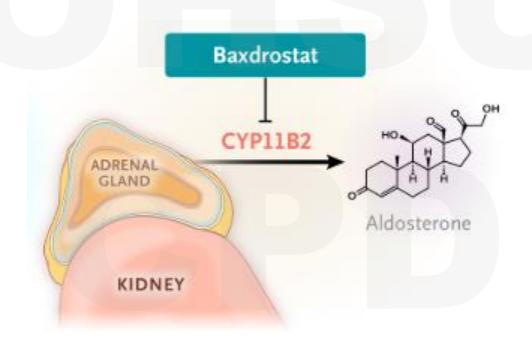

- Non-steroidal MRA
- Aldosterone Synthetase Inhibitors
- Imaging vs AVS

Mineralocorticoid Receptor Antagonists

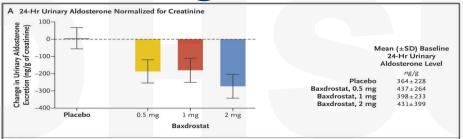
Steroidal MRAs (aldosterone antagonists)

Spironolactone

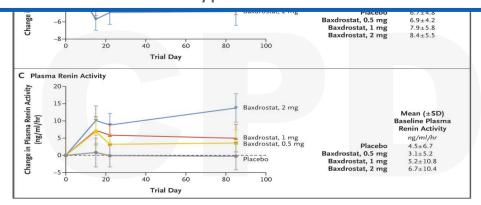
Eplerenone

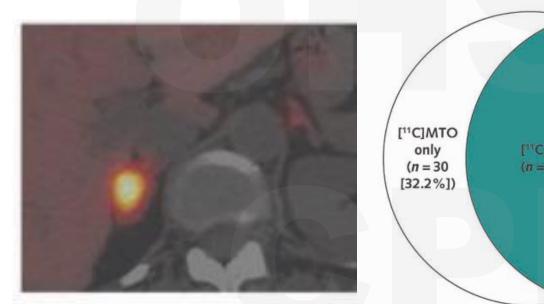


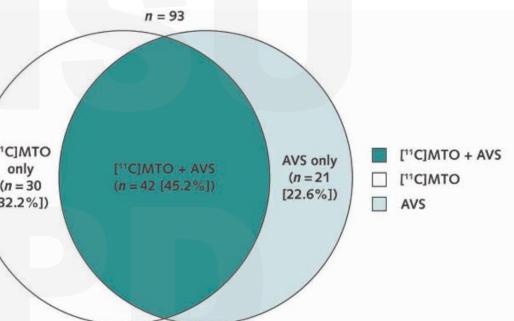
Kolkhof, Pharm Researc 2021


Finerenone vs Spironolactone in Primary Hyperaldosteronism

	Finerenone (n=30)			Spironolactone (n=29)			
	Baseline	Final visit	Change from baseline	Baseline	Final visit	Change from baseline	Mean difference (95% CI)
Daytime SBP, mm Hg	143.2±12.8	133.3±16.2	-9.9±13.0	142.5±12.4	134.7±13.6	-7.8±10.2	-2.1 (-8.2 to 4.0)
Daytime DBP, mm Hg	90.2±9.9	85.3±12.2	-4.9±7.9	89.2±8.3	84.2±10.8	-5.0±8.4	0.1 (-4.1 to 4.3)
24-h SBP, mm Hg	141.8±12.5	130.9±15.7	-10.9±12.5	141.8±12.1	134.1±13.5	-7.8±9.5	-3.1 (-8.9 to 2.7)
24-h DBP, mm Hg	88.6±9.8	82.7±11.7	-5.9±7.4	87.8±8.1	83.2±9.5	-4.7±6.7	-1.2 (-4.9 to 2.4)
Office SBP, mm Hg	151.5±16.7	133.8±13.6	-17.7±19.7	154.2±24.2	137.1±18.9	-17.1±19.0	-0.6 (-10.7 to 9.5)
Office DBP, mm Hg	95.0±10.0	85.9±11.0	-9.1±8.3	94.0±12.9	87.2±11.7	-6.8±11.9	-2.3 (-7.6 to 3.1)
Serum potassium, mmol/L	3.9±0.4	4.1±0.4	0.2±0.4	3.7±0.4	4.2±0.4	0.5±0.4	-0.3 (-0.5 to -0.1) <u>*</u>
eGFR, mL·min ⁻¹ ·1.73 m ⁻²	86.3 (72.5 to 99.8)	79.5 (70.5 to 95.8)	-2.3 (-5.9 to 2.0)	88.5 (79.9 to 91.8)	76.2 (70.0 to 87.8)	-6.4 (-11.7 to 1.2)	3.9 (-3.6 to 10.8)
Upright PAC, pg/mL	190.5 (164.0 to 226.0)	287.5 (228.5 to 345.0)	79.5 (35.5 to 145.0)	177.0 (159.0 to 229.0)	233.0 (190.0 to 302.0)	22.0 (-3.0 to 91.4)	36.6 (-19.0 to 88.0)
Upright PRC, μIU/mL	3.4 (2.6 to 5.4)	7.9 (5.0 to 17.1)	3.4 (1.4 to 7.0)	2.7 (1.3 to 5.4)	8.1 (3.4 to 21.3)	5.0 (1.3 to 12.8)	-0.8 (-6.2 to 2.2)
Office BP control rate, n (%)†		20 (66.7)	.,,		14(48.3)		


Baxdrostat - Aldosterone Synthetase Inhibitor


Baxdrostat - BrigHTN Trial



OHSU Hypertension to participate in AstraZeneca trial on use in Primary Hyperaldosteronism

NM PET Scan vs AVS

Take Aways

- Primary aldosteronism is a condition that should be recognized and appropriately diagnosed in patients with RH
- Medical management targeted to un-suppressed renin may be equivalent to surgery
- New methods for diagnosis and treatment may further improve outcomes

Thank You