TO INTUBATE OR NOT TO INTUBATE

ACUTE RESPIRATORY FAILURE MANAGEMENT FOR THE NON-INTENSIVIST

KINSLEY HUBEL, MD

ASSISTANT PROFESSOR OF MEDICINE

OHSU DIVISION OF PULMONARY, ALLERGY & CRITICAL CARE

19 SEP 2024

DISCLOSURES

None

OBJECTIVES

- Define acute respiratory failure
- Compare and contrast high flow nasal cannula (HFNC), CPAP, BIPAP and mechanical ventilation

- Distinguish key features of common ventilator modes including volume control, pressure control and pressure support
- Determine appropriate ventilatory support and management for representative clinical scenarios

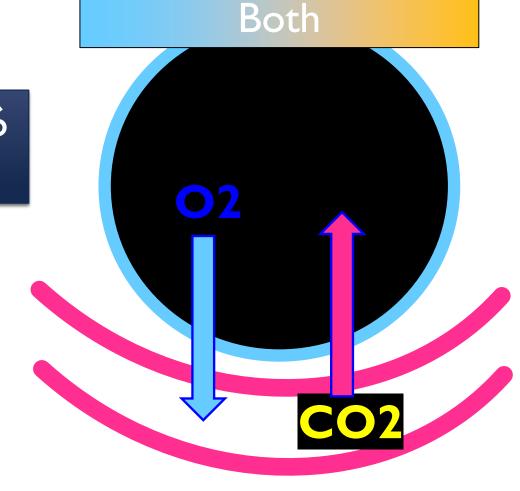
ACUTE RESPIRATORY FAILURE

You are called to the bedside of a 65 y/o male who feels short of breath and is tachypneic

HOW FAST DO YOU NEED TO ACT?

INITIAL ASSESSMENT

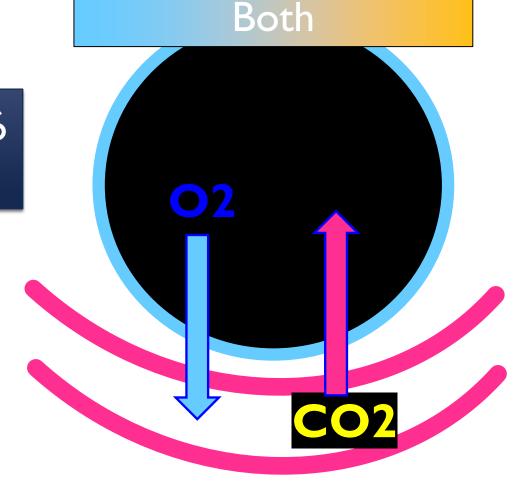
- Vitals (RR, O₂ Sat, BP, Pulse)
- Work of breathing
- ABG
 - (pH / PaCO2 / PaO2 / Bicarb)
- CXR
- ECG


ABG

Oxygenation Problem

Ventilation Problem

7.43 / 39 / 55 / 26 on 100% FiO2


7.13 / 89 / 105 / 29 on 100% FiO2 **ABG**

Oxygenation Problem

Ventilation Problem

7.43 / 39 / <u>55</u> / 26 on 100% FiO2

7.13 / **89** / 105 / 29 on 100% FiO2

DEFINITIONS

Type I (Hypoxemic)

PaO2 ≤ 60 mmHg

Normal or decreased PaCO2

A-a gradient normal or increased

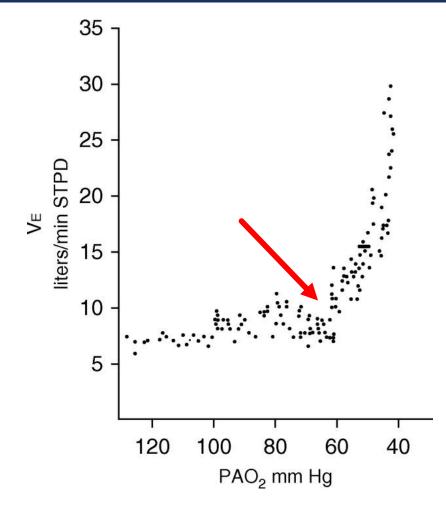
Type II (Hypercapnic)

■ $PaCO2 \ge 45$ with a pH < 7.35

PaO2 normal or low

 REMEMBER: chronic CO2 retainers may have a high PaCO2 but a compensated pH ≥ 7.35

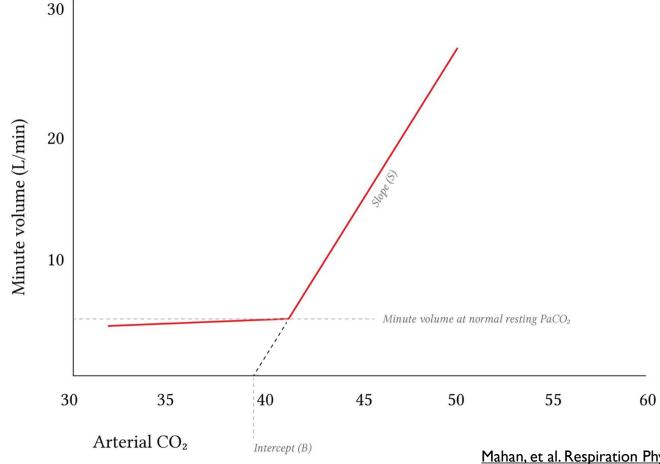
TYPE I (HYPOXEMIC) RESP. FAILURE


Normal A-a Gradients		Increased A-a Gradients			
Alveolar Hypoventilation Can progress to Type II Resp Failure	I ow inspired Fig.		V/Q Mismatch Most common Type I Resp Failure	Shunt Occurs when VQ ratio = 0	
CNS Depression (meds, hypothyroid) Decreased chest wall compliance (kyphoscoliosis) Neuromuscular disease (GBS, ALS)	High altitudes	Emphysema Edema Exercise Interstitial lung disease	ARDS Atelectasis COPD CHF PE Pneumonia	AVM Complete atelectasis Severe pulmonary edema Severe pneumonia	

HYPOXEMIA & RR

 Hypoxemia rarely increases the RR assuming PaCO2 is unchanged

 Once the PaO2 falls < 60 mmHg the RR starts to increase


TYPE II (HYPERCAPNIC) RESP. FAILURE

	Increased CO2						
Altered Neural & Neuromuscular Transmission	Chest wall/Pleural Disorders	Dead Space Ventilation (Increased VQ ratio)	Decreased Central Drive	Muscle Abnormalities			
ALS GBS Myasthenia gravis Transverse myelitis Botulism Spinal cord injury Organophophate poisoning	Kyphoscoliosis Obesity Large pleural effusions	ARDS Bronchiectasis Emphysema PE	Sedatives Encephalitis Stroke	Diaphragm Paralysis	Increased in fever, exercise, sepsis, thyrotoxicosis		
*Respiratory Pump = chest wall, lung parenchyma, muscles of respiration, nervous system (central and peripheral)							

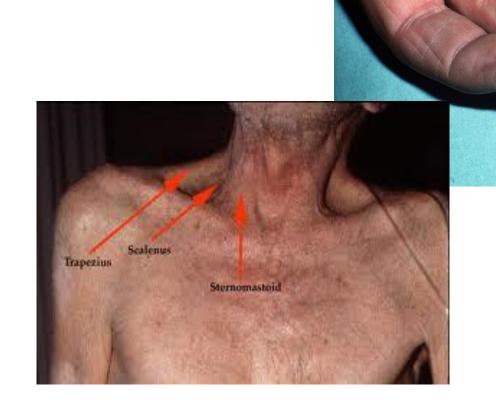
HYPERCARBIA & RR

 Hypercarbia causes a rapid rise in RR once PaCO2 ≥ 40

Mahan, et al. Respiration Physiology 108; 1997: 101-115. Reproduced by Derangedphysiologist.com

SIGNS OF IMPENDING RESPIRATORY ARREST

SIGNS OF IMPENDING RESPIRATORY ARREST


Vitals (sats, RR)

Speaking in short sentences

Cyanosis

Accessory muscle use

Decreased consciousness

MODES OF VENTILATORY SUPPORT

Delivered FiO2 DECREASES during respiratory distress due to increased room air entrainment

Inspiratory flow at rest is ~25– 40 LPM

 Respiratory distress generates even <u>higher</u> flow in the patient (60 – 100 LPM)

Device flow rates are fixed

LEVELS OF NON-INVASIVE SUPPORT

Supports Oxygenation ≤ 15 LPM

Supports Oxygenation & Ventilation > 15LPM

High Flow

HFNC NIPPV

Intermediate Flow

Venturi Mask

Low Flow

Nasal Cannula Face Mask Non-rebreather Mask

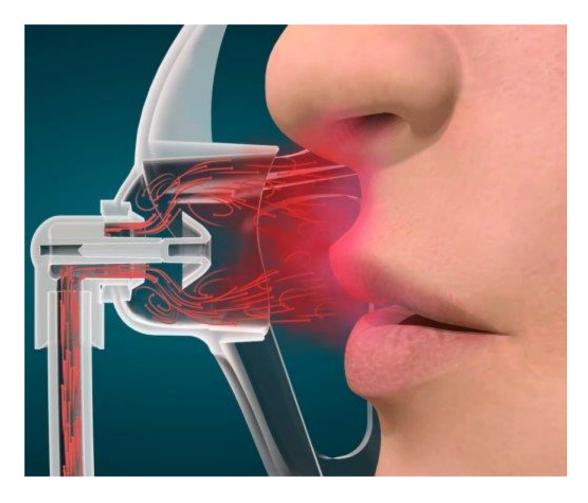
LOW FLOW OXYGEN SUPPORT

Nasal Cannula

Simple Mask

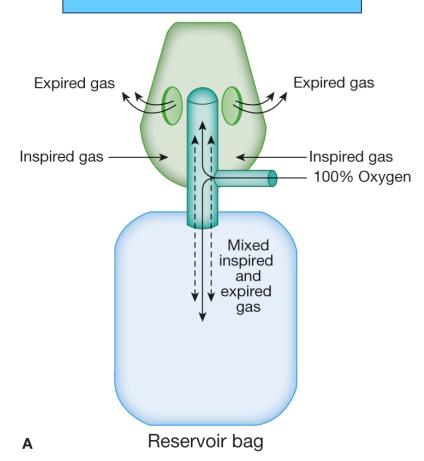
Oxymask

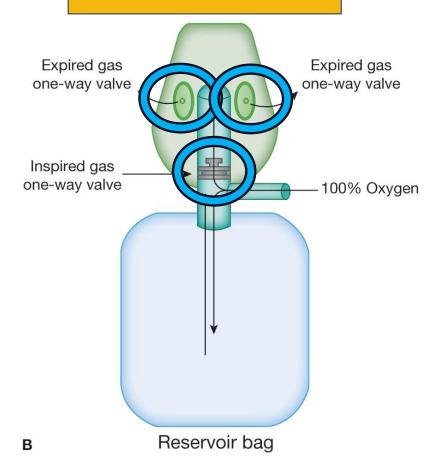
Partial Rebreather Mask Non-Rebreather Mask


Non-reservoir based devices

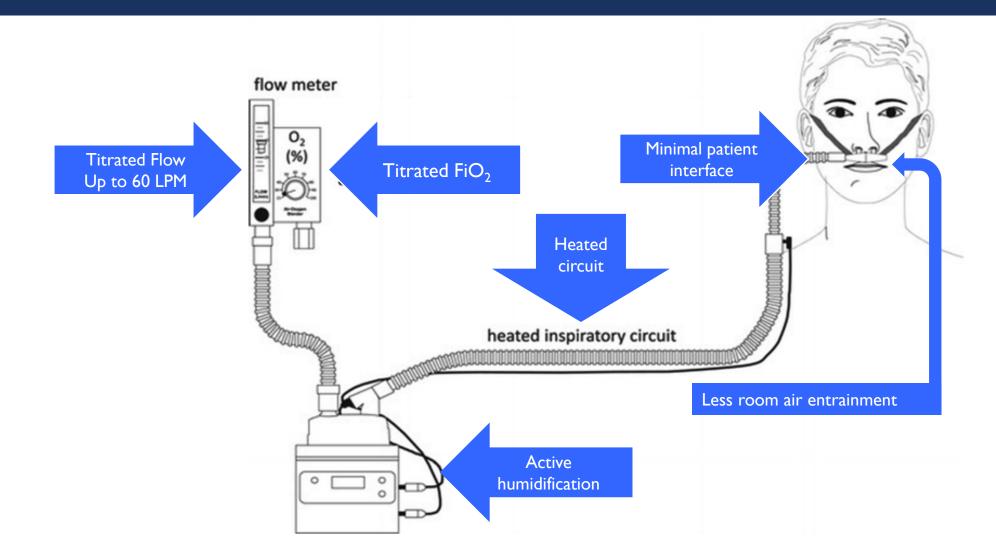
Reservoir based devices

OXYMASK

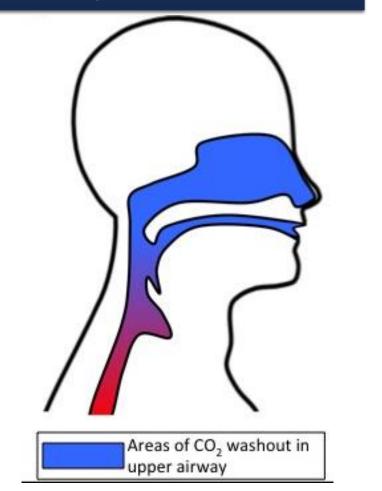


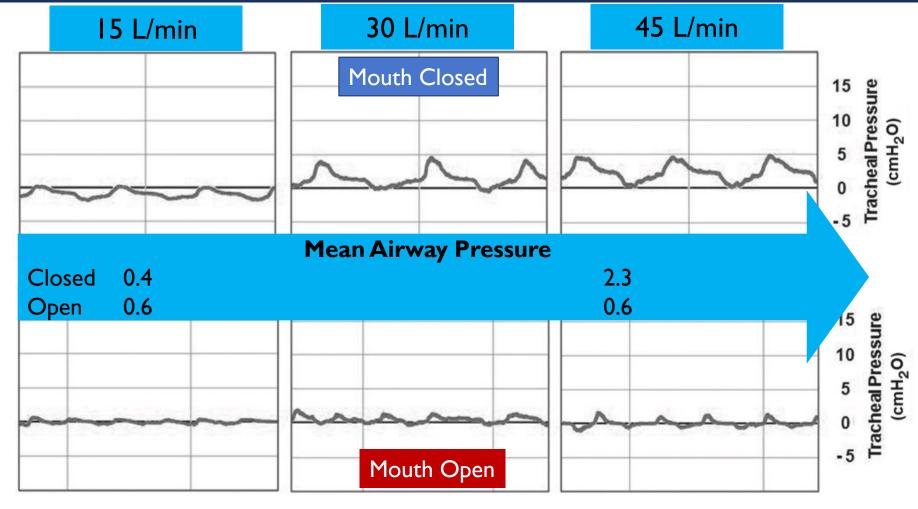

RESERVOIR DEVICES

Partial Rebreather



Non-Rebreather

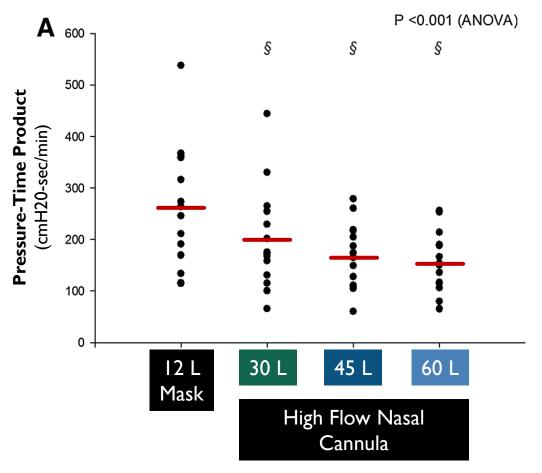

HIGH FLOW NASAL CANNULA


HFNC REDUCES ANATOMIC DEAD SPACE

Flow-Dependent CO2 Clearance

HFNC & PEEP

Chanques et al. Comparison of three high flow oxygen therapy delivery devices: a clinical physiological cross-over study. Minerva Anestesiol 2013;


HFNC REDUCES WORK OF BREATHING

17 Adults with I2L/min 30 L/min 45 L/min 60 L/min Acute Respiratory **Face Mask High Flow High Flow High Flow** Failure 20 minutes 20 minutes 20 minutes 20 minutes P/F < 300

HFNC REDUCES WORK OF BREATHING

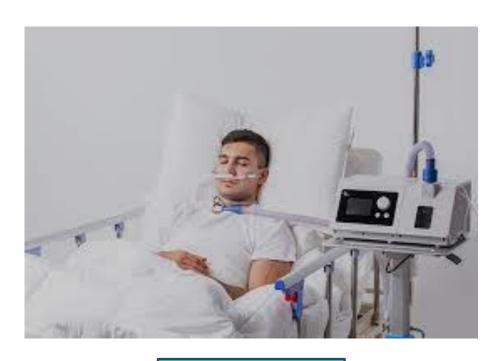
Metabolic Demands of Breathing

HFNCTITRATION

High work of breathing? At risk for intubation?

Low work of breathing?

Support both ventilation and oxygenation


Support oxygenation

Maximize flow (>30 L/min) Titrate FiO₂ to sat goal Maximize FiO₂
Titrate flow to sat goal

WEANING HFNC

- Has the underlying condition requiring HFNC improved?
- SpO2 ≥88%
- RR ≤ 25
- Low work of breathing
 - Able to speak in full sentences
 - Absence of accessory muscle use

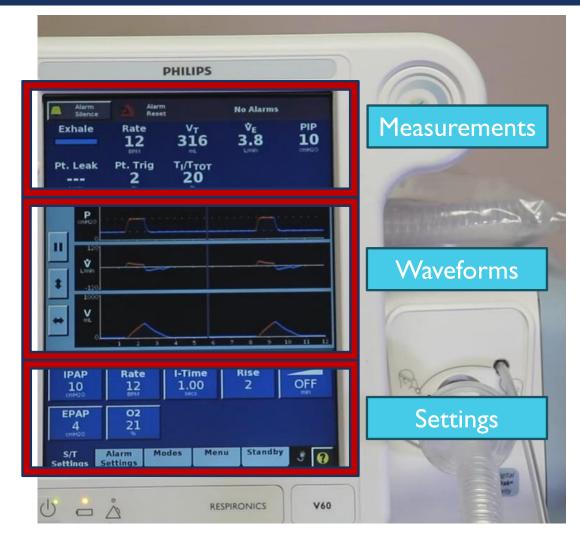
≤ 40 L/min≤ 60% FiO₂

WEANING HFNC

Increase FiO₂ to 100% Decrease flow by 10 L/min

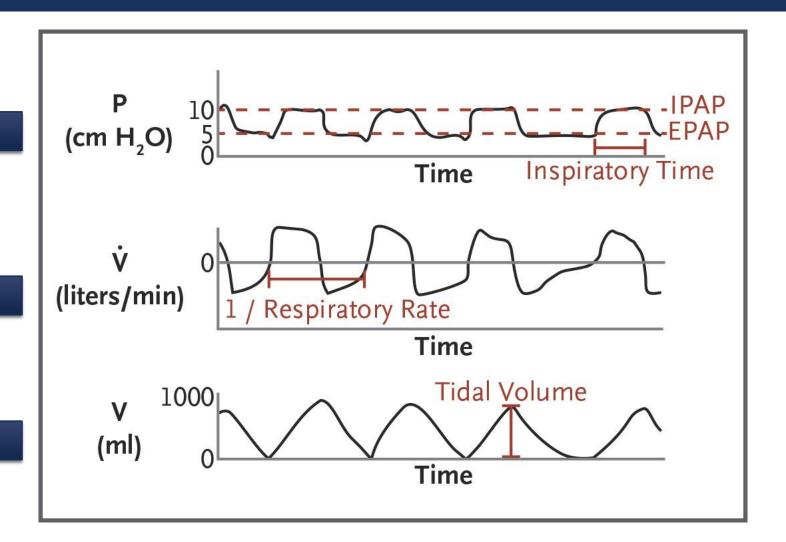
Reassess vital signs and work of breathing in 10-20 minutes

Maintain FiO₂ at 100% Decrease flow by 10 L/min


Reassess vital signs and work of breathing in 10-20 minutes

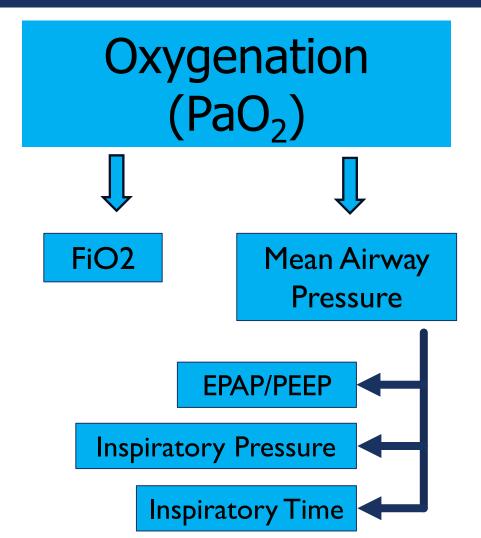
Once flow \leq 20 L/min, trial of low flow cannula or face mask

NON-INVASIVE POSITIVE PRESSURE VENTILATION


BIPAP WAVEFORMS

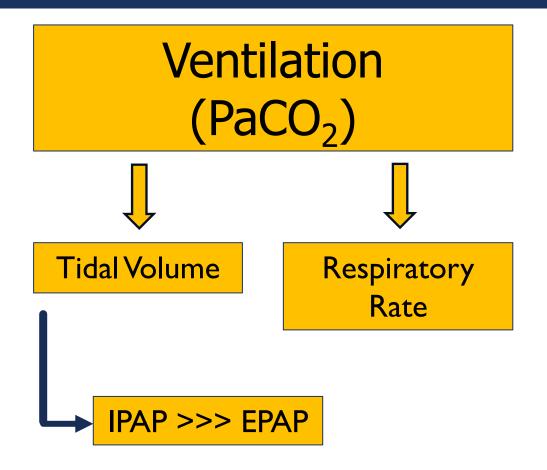
Pressure

Minute Ventilation


Tidal Volume

BIPAP TITRATION

7.38 / 36 / <u>58</u>



BIPAPTITRATION

7.14 / <u>85</u> / 108

MY ALGORITHM

ASSESS YOUR PATIENT

Overall appearance - toxic, work of breathing, comfortable

Vitals – hemodynamics, sats, resp rate

Obtain ABG or VBG and xrav

Respiratory history?

New medications? Recent blood products?

Determine if the respiratory insufficiency or failure is hypoxic or hypercapnic Determine if there are any contraindications to NIV ventilation If so then consider need for intubation Review documented goals of care

CONTRAINDICATIONS TO NIV

- Uncooperative patient
- Altered mental status **
 - Unless purely from elevated PaCO2
- Hemodynamically unstable
- Active cardiac ischemia, arrhythmias
- Active upper GI bleed
- Copious secretions

- Vomiting or emesis
- Unable to protect airway
- Facial trauma
- Untreated pneumothorax
- Recent facial/upper airway surgery
- Epistaxis
- Skull base fracture

MYALGORITHM

Hypercapnic

PaCO2 > 45 with acidemia

BiPAP

Indications:

- Acute COPD exacerbation
- Post-extubation respiratory failure
- OSA
 OHS
- Acute asthma exacerbation
- CHF exacerbation

Initial Settings:

- 100% FiO2 and rapidly titrate to saturation goal
- Start IPAP at 10cmH20 and EPAP 5cmH20

Hypoxic

PaO2 < 60

Indications:

- Pneumonia
- · Cardiogenic pulmonary edema
- · Acute asthma exacerbation
- PE
- Post-extubation respiratory distress
- Post CT surgery

Initial Settings:

- 100% FiO2
- Flow 60L/min

CPAP

Indications:

- · Cardiogenic pulmonary edema
- · Post-op respiratory failure
- OSA
- · Post trauma respiratory failure

Initial Settings:

- 100% FiO2 and rapidly titrate to saturation goal
- · Start 5cmH20 and titrate to goal

MYALGORITHM

Monitoring

- Frequent reassessment is critical!
- Set a goal for your patient (sats or ABG)
- Obtain ABG/VBG and do clinical reassessment at frequent intervals:
 - 30min, 1hr, 2hr, 4hr
- If they aren't making progress to the goal or meeting the goal consider intubation.

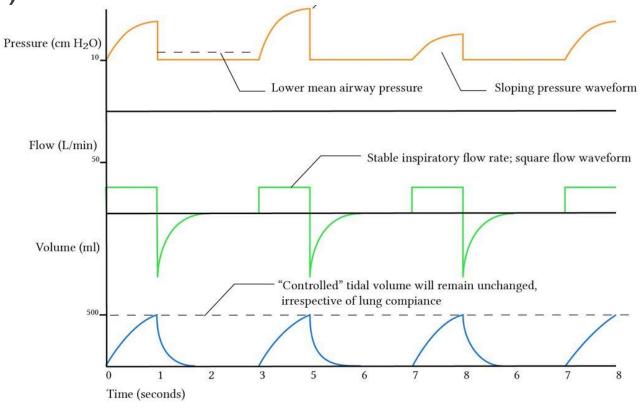
Goals not met by NIV

Intubation

INVASIVEVENTILATION

- Common Modes
 - Volume
 - Pressure

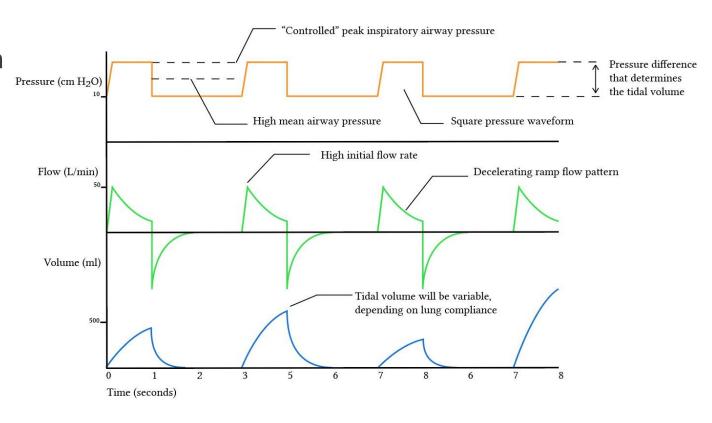
- 3 Features of Each
 - Trigger
 - Cycle
 - Limit


VOLUME CONTROL

 Delivers a set tidal volume (TV) with each breath

- We set:
 - RR, TV, PEEP, FiO2

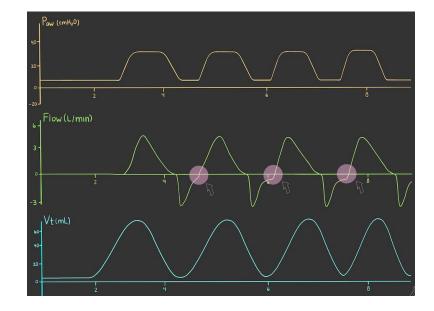
- We monitor patient pressures
 - Peak and plateau pressure
 - Driving pressure = plateau peep



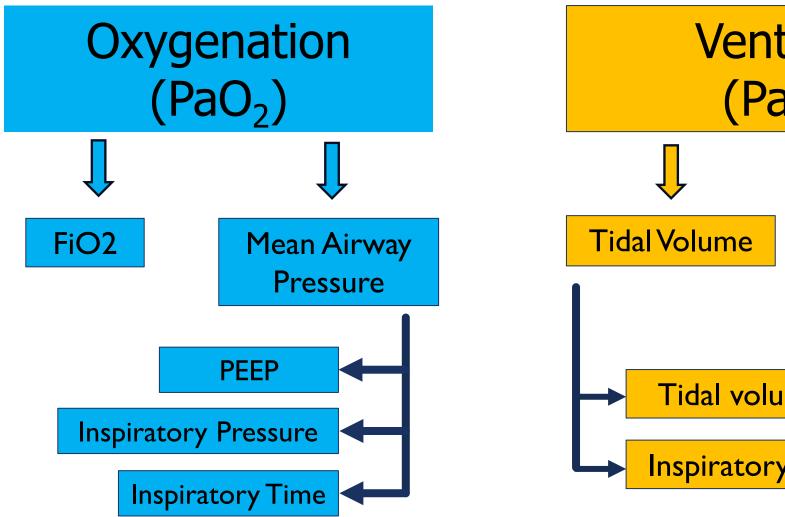
PRESSURE CONTROL

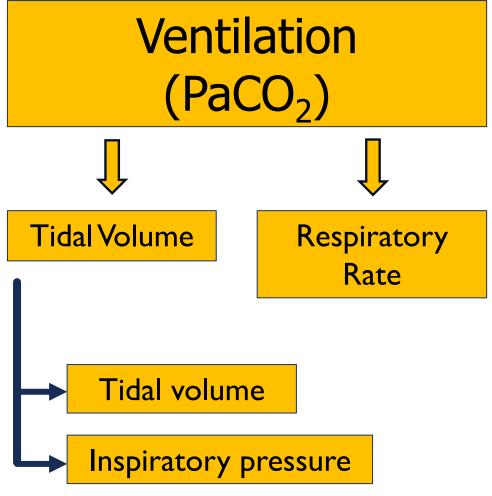
 Delivers a set inspiratory pressure (Pinsp) for a set time (Ti) with each breath

- We set:
 - RR, Pinsp, PEEP, FiO2
- We monitor patient:
 - Tidal volume
 - Minute ventilation



PRESSURE SUPPORT


- **ALL** breaths are patient initiated
- No ventilation guaranteed → determined solely by patient effort
- Used for spontaneous breathing trials
- We set:
 - PS, PEEP, FiO2


- We monitor patient:
 - Tidal volume
 - Minute ventilation
 - RR

VENTILATOR TITRATION

CLINICAL CASES

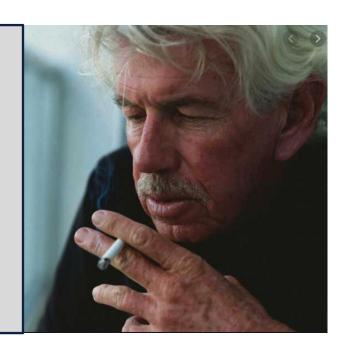
65 y/o male with COPD on 3L NC home O2 presents with:

- Productive cough
- Wheezing for 5 days
- History of prior exacerbation requiring intubation

VS: Afebrile

HR 95 and regular

BP 145/84


RR 28 breaths/min

SpO₂ 92% on 8 LPM oxymask

Exam: diffuse expiratory wheezing, accessory muscle use

CXR: hyperinflation, airway thickening, no consolidation

ABG: 7.20 / 85 / 59

CASE I CONTINUATION

You initiate bronchodilators, prednisone and antibiotics for a COPD exacerbation

He continues to have a respiratory rate of 35 and accessory muscle use. He requires IOL oxymask.

Does this patient require additional respiratory support?

BIPAP OUTCOMES VS LOW FLOW 02 IN COPD

Lower mortality (7.1% versus 13.9%; RR 0.54, 95% CI 0.38–0.76)

Fewer intubations (12% versus 30.6%; RR 0.43, 95% CI 0.35–0.53)

Shorter hospital LOS (2.88 days fewer, 95% CI 1.17—4.59 days fewer)

Short ICU LOS (4.99 days fewer, 95% CI 0–9.99 days fewer)

CASE I CONTINUED

- You initiate BiPAP with:
 - IPAP 10cm H2O
 - EPAP 4cm H2O
 - FiO2 titrated to 88-92%

What would make you comfortable he is improving?

How soon would you reassess him?

CASE I CONCLUSION

- Next ABG:
 - **7.23 / 80 / 65**

Any changes?

- IPAP 10cm H2O
- EPAP 4cm H2O
- FiO2 titrated to 88-92%

- Increase the IPAP to 14
 - New Settings: IPAP 14 / EPAP 4

Final ABG: 7.30 / 65 / 70

65 y/o female with history of systolic heart failure presents with:

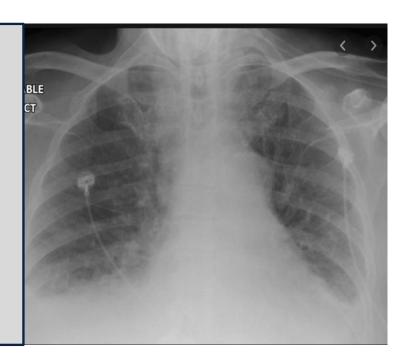
- 2 weeks of increasing dyspnea/orthopnea
- Weight gain
- Lower extremity edema bilaterally

VS: afebrile

HR 105 and irregularly irregular

BP 98/45

RR 34 breaths/min


SpO₂ 84% on room air

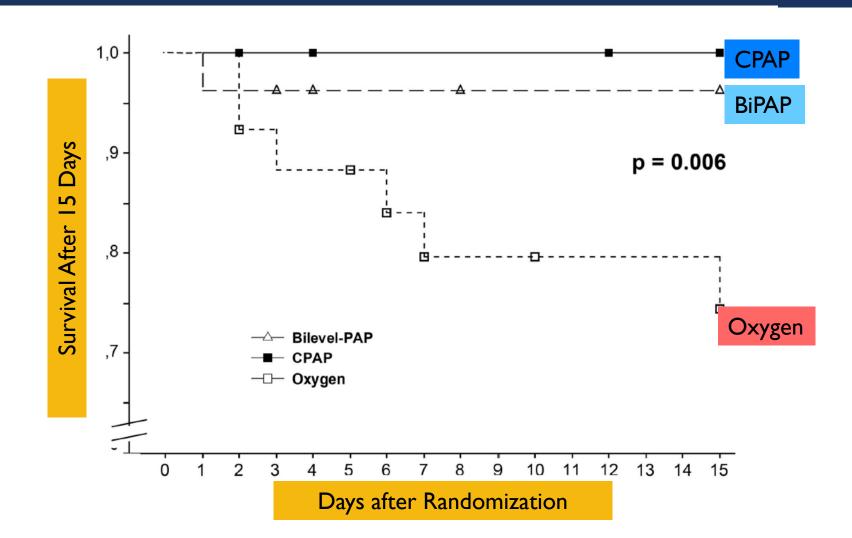
Exam: inspiratory rales from bases to midlung

accessory muscle use

EKG: afib, no ST-T wave changes

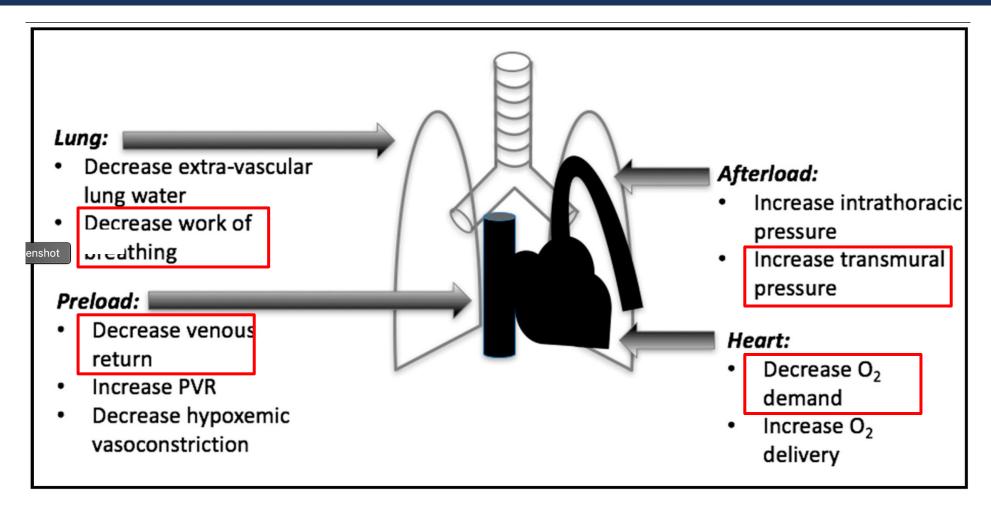
ABG: 7.44 / 30 / 45

CASE 2 CONTINUATION


Patient is AAO x3 but in moderate respiratory distress

You give 60mg IV Lasix pending UOP response

What type of respiratory support do you choose in this case?


NIPPV FOR HEART FAILURE EXACERBATIONS

PHYSIOLOGIC EFFECTS OF POSITIVE PRESSURE

CASE 2 CONTINUED

- You initiate CPAP with:
 - CPAP I0cm H2O
 - FiO2 titrated to > 92%

What would make you comfortable she is improving?

How soon would you reassess her?

CASE 2 CONCLUSION

- Next ABG:
 - **7.42 / 35 / 55**

Any Changes?

Increase CPAP to 14cm H2O

Final ABG: 7.42 / 35 / 70

28 y/o healthy male presents with:

- 2 days of fevers and chills
- Productive cough with purulent phlegm
- Dyspnea
- LLL Opacity

VS: Temp 39.4° C
HR 138 and regular
BP 95/60
RR 32 breaths/min
SpO₂ 82% on room air

Exam: rhonchi and crackles throughout left lung accessory muscle use

ABG: 7.34 / 32 / 52

CASE 3 CONTINUATION

You initiate IV fluids, IV antibiotics and apply an oxymask.

He appears in moderate respiratory distress with high work of breathing despite the improvement in sats to 90% on 15L.

What respiratory support mode would you move to next?

JUNE 4, 2015

VOL. 372 NO. 23

High-Flow Oxygen through Nasal Cannula in Acute Hypoxemic Respiratory Failure

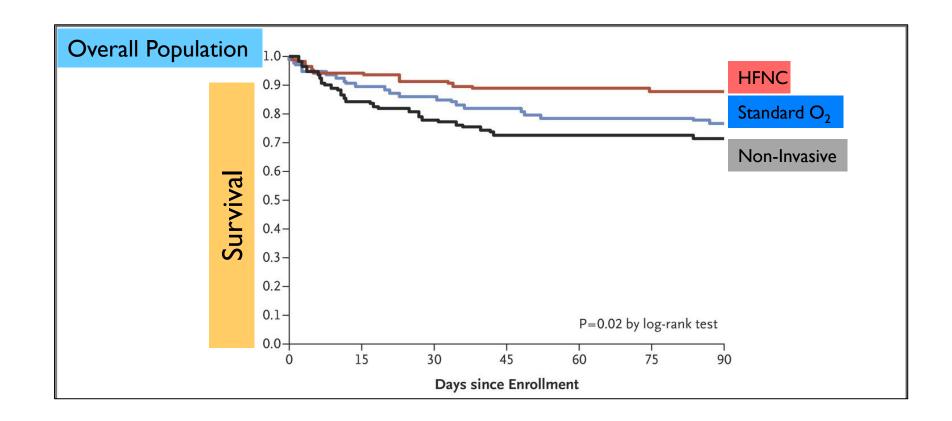
313 Patients with Acute Resp Failure

- RR>25
- $PaCO_2 < 45$
- P/F < 300
- 10+ liters for 15+ minutes

106 // High Flow No

~48 L/min ~82% FiO₂

96 // Standard Oxygen


13 L/min

111 // NIV

IPAP 8.3 cm/ H_20 Vt ~ 9 EPAP 5 cm/ H_20 FiO₂ 67% ~8 Hrs per day

IMPROVED SURVIVAL IN THE HFNC GROUP

CASE 3 CONCLUSION

- You initiate HFNC with:
 - 40 60L flow
 - 100% FiO2

What would make you comfortable he improving?

How soon would you reassess him?

WHAT VENTILATOR CHANGES?

7.38 / 40 / 45 on 30% FiO2 and PEEP 5

7.38 / 40 / 85

- Vent Settings:
 - Volume Control
 - RR 20
 - VT 450ml (6ml/kg)

7.32 / 38 / 50 on 100% FiO2 and PEEP 10

7.32 / 38 / 70

WHAT VENTILATOR CHANGES?

- Vent Settings:
 - Volume Control
 - RR 14
 - VT 450ml (6ml/kg)

7.15 / 85 / 90 on 30% FiO2 and PEEP 5

7.28 / 65 / 90

7.20 / 85 / 105 on 30% FiO2 and PEEP 5

7.14 / 105 / 95

GENERAL WORKFLOW

NIPPV

High Flow
Nasal Cannula

COPD Exacerbation → BiPAP

Heart Failure Exacerbation → CPAP or BiPAP

Hypoxemic Respiratory Failure → High Flow

TAKE HOME POINTS

Respiratory failure can by hypoxic, hypercapnic or mixed

Respiratory support chosen is determined by cause and type of respiratory failure

 Reassess your patient's response to the chosen respiratory support early and often initially

 Call for help or transfer if the patient isn't responding as expected to the changes you are making

QUESTIONS?

THANK YOU!