Chronic Lymphocytic Leukemia Update

Boyu Hu, MD

January 26th, 2024

Annual Hematology and Breast Cancer Update for Oregon Health Sciences University

Disclosures

- Consulting: Novartis, Bristol Meyers Squibb, Eli Lilly, GenMab, ADC Therapeutics, ImmPACT Bio, Seattle Genetics, Regeneron, Caribou Biosciences
- **Research Funding:** Genentech, Celgene, CRISPR Therapeutics, Morphosys AG, Caribou Biosciences, Repare Therapeutics, Artiva Biotherapeutics, Newave, AstraZeneca, ImmPACT Bio
- Grant Funding: Lymphoma Research Foundation

Extended Follow Ups of Prior Trials

Extended Follow-up of ALPINE Randomized Phase 3 Study Confirms Sustained Superior Progression-free Survival of Zanubrutinib Versus Ibrutinib for Treatment of Relapsed/Refractory Chronic Lymphocytic Leukemia and Small Lymphocytic Lymphoma (R/R CLL/SLL)

Jennifer R. Brown, MD, PhD¹; Barbara Eichhorst, MD²; Nicole Lamanna, MD³; Susan M. O'Brien, MD⁴; Constantine S. Tam, MBBS, MD^{5,6}; Lugui Qiu, MD⁷; Maciej Kaźmierczak, MD, PhD⁸; Wojciech Jurczak, MD, PhD⁹; Keshu Zhou, MD, PhD¹⁰; Martin Simkovic, MD, PhD^{11,12}; Jiri Mayer, MD¹³; Amanda Gillespie-Twardy, MD¹⁴; Alessandra Ferrajoli, MD¹⁵; Peter S. Ganly, BMBCh, MD¹⁶; Robert Weinkove, MBBS, PhD^{17,18}; Sebastian Grosicki, MD, PhD¹⁹; Andrzej Mital, MD, PhD²⁰; Tadeusz Robak, MD, PhD²¹; Anders Osterborg, MD, PhD^{22,23}; Habte A. Yimer, MD²⁴; Megan (Der Yu) Wang, PharmD²⁵; Tommi Salmi, MD²⁶; Liping Wang²⁷; Jessica Li, MS²⁷; Kenneth Wu, PhD²⁵; Aileen Cohen, MD, PhD²⁵; Mazyar Shadman, MD, MPH^{28,29}

¹Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; ²Department of Internal Medicine, University of Cologne, Center for Integrated Oncology Aachen, Bonn, Cologne, Germany; ³Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA; ⁴Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA; ⁵The Alfred Hospital, Melbourne, Victoria, Australia; ⁵Monash University, Melbourne, Victoria, Australia; ⁵State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematology cand Bond Diseases Hospital, Chinese Academy of Medical Sciences, and Peking University Hospital Hrade Cology, Varkiw, Pischer Hospital of Chematology and Bone Marrow Transplantation, Pornan University of Medical Sciences, Paran, Polandi, ³MSC National Research Center for Hematology, Natoral Clinical Research Center for Jematology, Varkiw, Hospital Hrade Cralove, Carch Republic; ¹⁴Ath Department of Internal Medicine – Haematology, University Hospital Hrade Cralove, Czech Republic; ¹⁵Department of Internal Medicine-Hematology and Oncology, Kasavy, University Hospital, Brno, Czech Republic; ¹⁵Department of Internal Medicine-Hematology and Oncology, Kasavy, University Hospital, Brno, Czech Republic; ¹⁴Bue Rigde Cancer Center, Fettory, Newson, XS, ¹⁵Department of Internal, Christchruch Hospital of Oncology, Natavy, Newson, Val USA; ¹⁵Department of Internal Medicine-Hematology and Oncology, Masavy University Hospital, Brno, Czech Republic; ¹⁴Bue Rigde Cancer Center, Fettory, Newson, XS, ¹⁵Department of Hematology, Christchruch Hospital of Odo and Cancer Center, New Zealand; ¹⁵Medical University of Sciences and Bond Capital Coas & Hutt Valley, Wellingen and ¹⁵Cancer Immunotherapy Programment of Hematology, Natorika, Galarisk, Galar

Zanubrutinib Is a Differentiated BTKi With High Potency, Bioavailability, and Selectivity

- Zanubrutinib is highly selective for BTK and has potent inhibitory activity against BTK¹
- Zanubrutinib has no active metabolite; ibrutinib and acalabrutinib each have an active metabolite (PCI-45227 and M27, respectively) with activity on kinases other than BTK¹
- Zanubrutinib has continuous exposure coverage above its IC₅₀ compared with ibrutinib² and acalabrutinib³
 - Higher drug-concentration/IC₅₀ ratios would be expected to lead to more sustained and complete BTK inhibition to improve efficacy

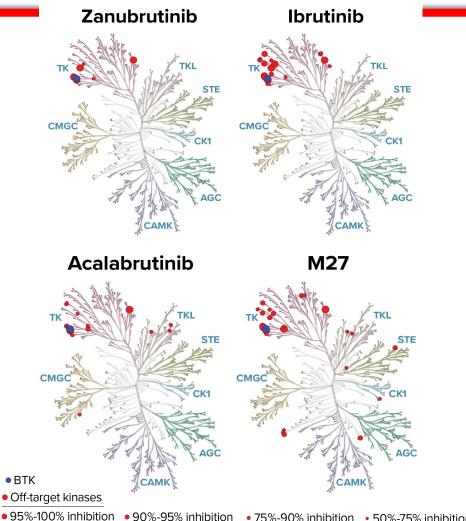
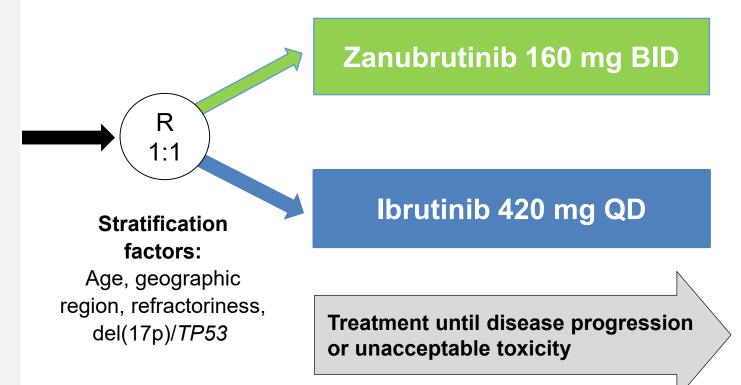


Figure adapted from Shadman et al. Lancet Haematol. 2023.

ALPINE Study Design (NCT03734016)


R/R CLL/SLL with ≥1 prior treatment (N=652)

Key Inclusion Criteria

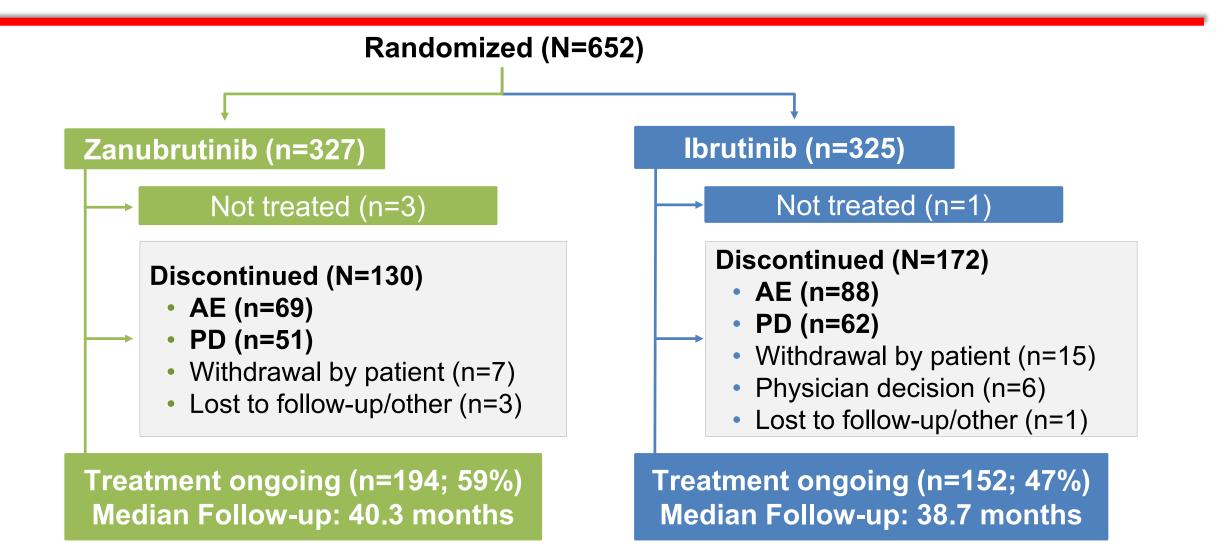
- R/R to ≥1 prior systemic therapy for CLL/SLL
- Measurable lymphadenopathy by CT or MRI
- Requires treatment per iwCLL

Key Exclusion Criteria

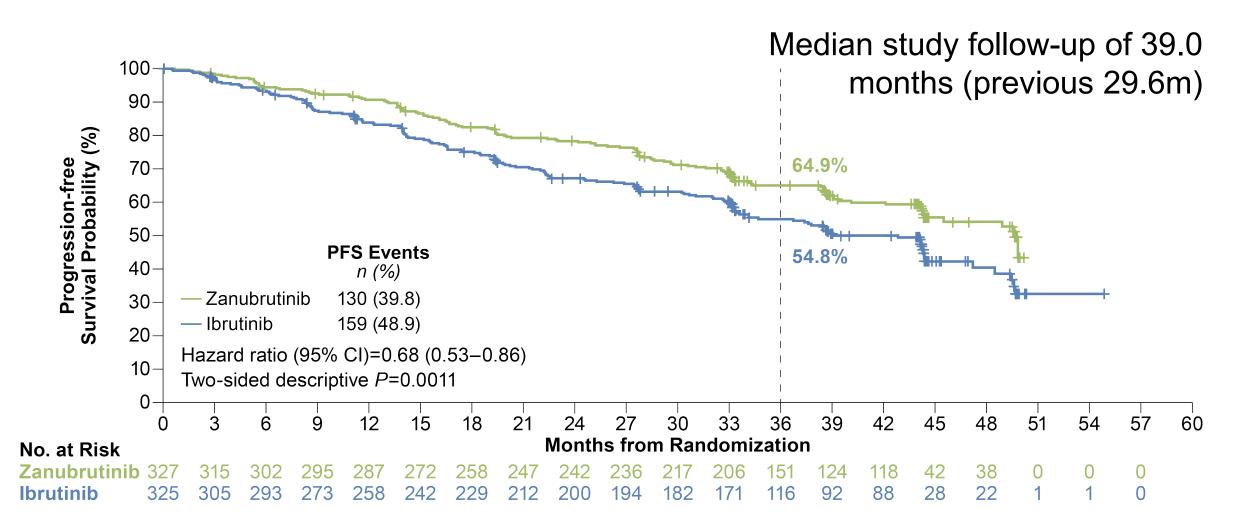
- Prior BTK inhibitor therapy
- Treatment with warfarin or other vitamin K antagonists

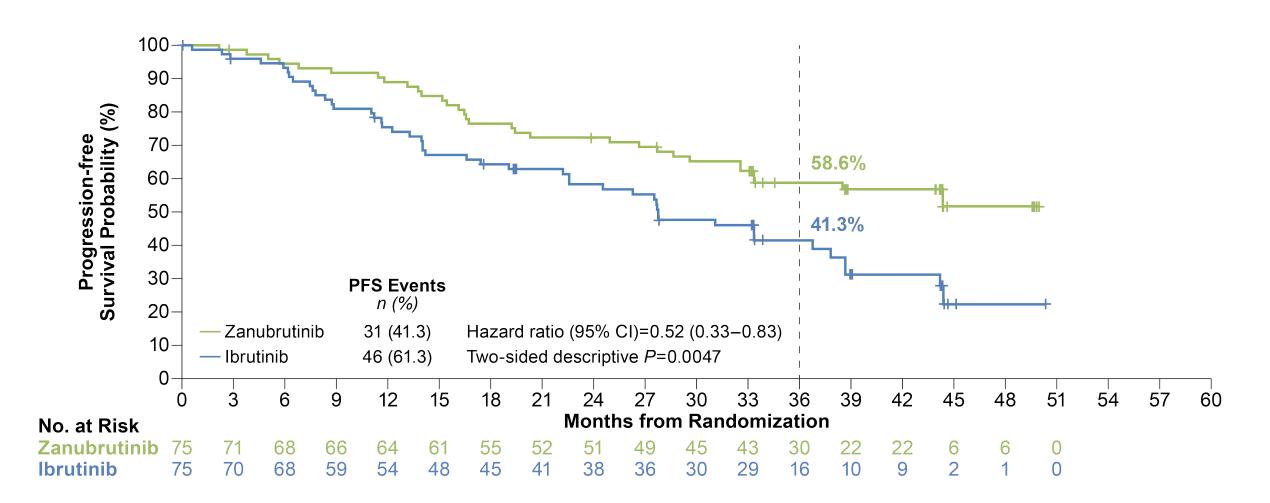
Balanced Demographics and Disease Characteristics

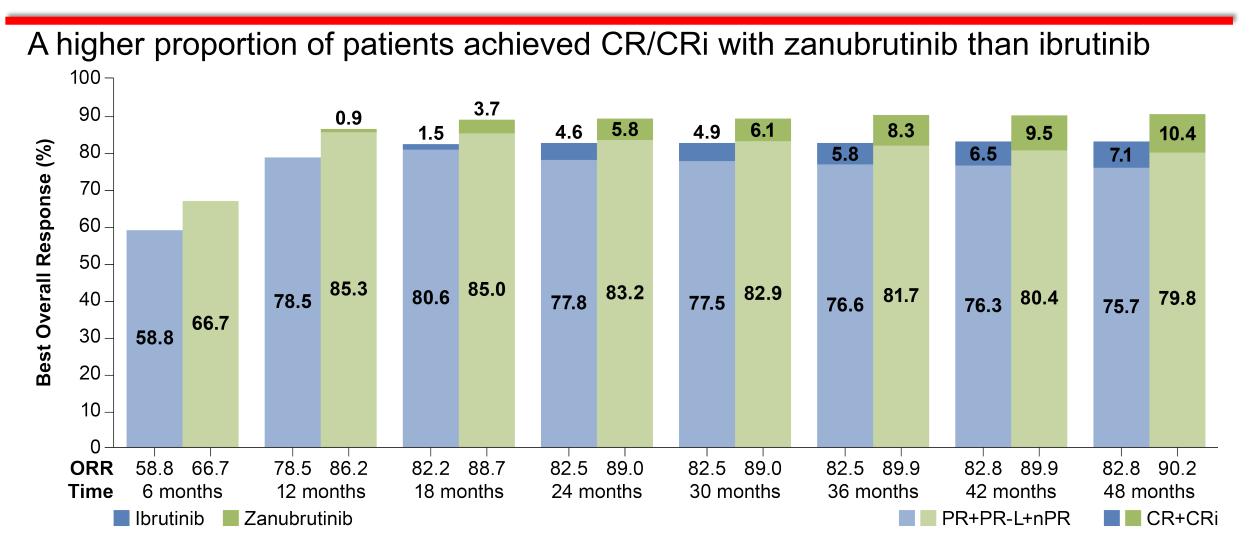
	Zanubrutinib (n=327)	lbrutinib (n=325)
Age, median (range) ≥65 years, n (%)	67 (35-90) 201 (61.5)	68 (35-89) 200 (61.5)
Male, n (%)	213 (65.1)	232 (71.4)
ECOG PS ≥1, n (%)	198 (60.6)	203 (62.5)
Prior lines of systemic therapy, median (range) >3 prior lines, n (%)	1 (1-6) 24 (7.3)	1 (1-12) 30 (9.2)
del(17p) and/or <i>TP53^{mut}</i> , n (%) del(17p) <i>TP53^{mut}</i> without del(17p)	75 (22.9) 45 (13.8) 30 (9.2)	75 (23.1) 50 (15.4) 25 (7.7)
IGHV mutational status, n (%) Mutated Unmutated	80 (24.5) 240 (73.4)	70 (21.5) 241 (74.2)
Complex karyotype ^a	56 (17.1)	70 (21.5)
Bulky disease (≥5 cm), n (%)	145 (44.3)	149 (45.8)

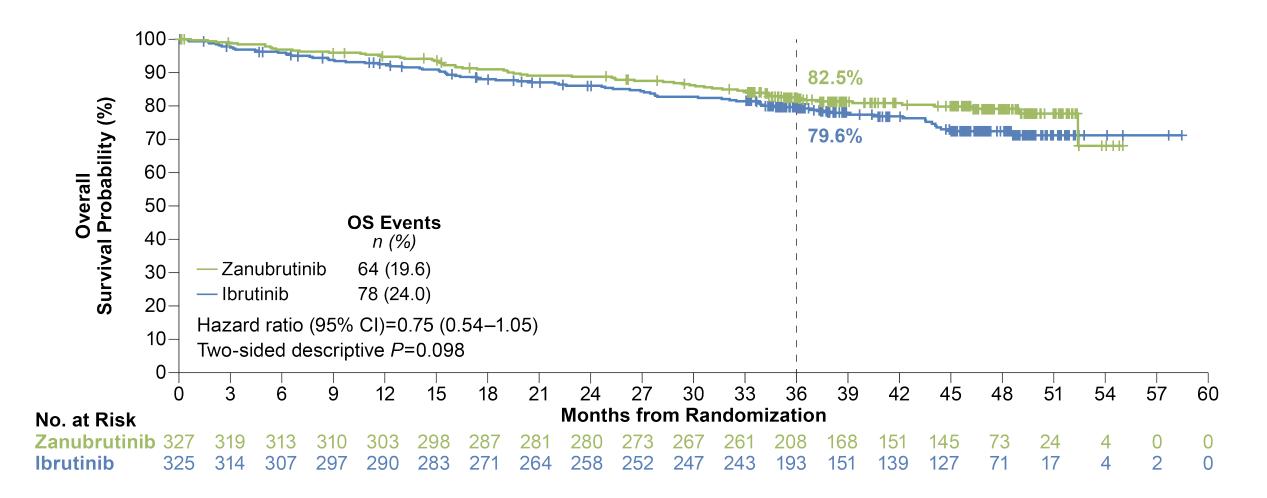

^aComplex karyotype is defined as having \geq 3 abnormalities.

Data cutoff: 15 Sep 2023


Patient Disposition at Extended Follow-up


Zanubrutinib Sustains PFS Benefit Over Ibrutinib At Extended Followup


Improved PFS Was Demonstrated With Zanubrutinib in Patients With del(17p)/TP53^{mut}


Complete Responses Deepen Over Time in Both Arms

Overall Survival at Longer Follow-up

Overall Safety/Tolerability Summary

Zanubrutinib safety profile remained favorable vs ibrutinib

Zanubrutinib (n=324)	lbrutinib (n=324)
38.3 (0.4, 54.9)	35.0 (0.1, 58.4)
320 (98.8)	323 (99.7)
235 (72.5)	251 (77.5)
41 (12.7)	40 (12.3)
165 (50.9)	191 (59.0)
47 (14.5)	59 (18.2)
196 (60.5)	201 (62.0)
64 (19.8)	85 (26.2)
150 (46.3)	180 (55.6)
	(n=324) 38.3 (0.4, 54.9) 320 (98.8) 235 (72.5) 41 (12.7) 165 (50.9) 47 (14.5) 196 (60.5) 64 (19.8)

Adverse Events of Special Interest^a Occurring in ≥2 Patients

		Zanubrutinib (n=324)		lbrutinib (n=324)	
	Any Grade	Grade ≥3	Any Grade	Grade ≥3	
Infection	264 (81.5)	115 (35.5)	260 (80.2)	111 (34.3)	
Opportunistic Infections	8 (2.5)	6 (1.9)	13 (4.0)	5 (1.5)	
COVID-19 Related ^b	145 (44.8)	56 (17.3)	105 (32.4)	38 (11.7)	
Bleeding	142 (43.8)	12 (3.7)	144 (44.4)	13 (4.0)	
Major Hemorrhage	13 (4.0)	12 (3.7)	16 (4.9)	13 (4.0)	
Hypertension	86 (26.5)	53 (16.4)	80 (24.7)	47 (14.5)	
Atrial fibrillation/flutter	22 (6.8)	10 (3.1)	53 (16.4)	16 (4.9)	
Anemia	53 (16.4)	7 (2.2)	59 (18.2)	11 (3.4)	
Neutropenia	100 (30.9)	72 (22.2)	94 (29.0)	72 (22.2)	
Thrombocytopenia	43 (13.3)	12 (3.7)	53 (16.4)	19 (5.9)	
Second primary malignancies	46 (14.2)	26 (8.0)	52 (16.0)	19 (5.9)	

^aPooled MedDRA preferred terms.

^bIncludes preferred terms of COVID-19, COVID-19 pneumonia, and suspected COVID-19.

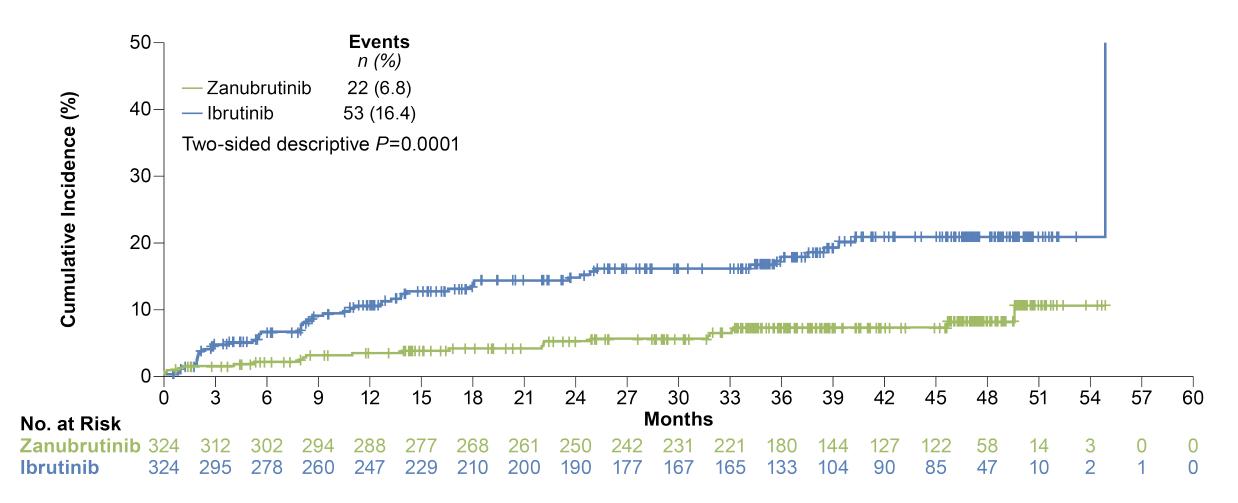
Zanubrutinib Continues to Demonstrate a More Favorable Cardiac Safety Profile Than Ibrutinib

•	Serious cardiac adverse events were
	lower with zanubrutinib vs ibrutinib

- Atrial fibrillation/flutter (3 vs 13)
- Ventricular fibrillation (0 vs 2)
- Ml^a/acute coronary syndrome (3 vs 3)
- Fatal cardiac events^b:
 - Zanubrutinib, n=0 (0%)
 - Ibrutinib, n=6 (1.9%)

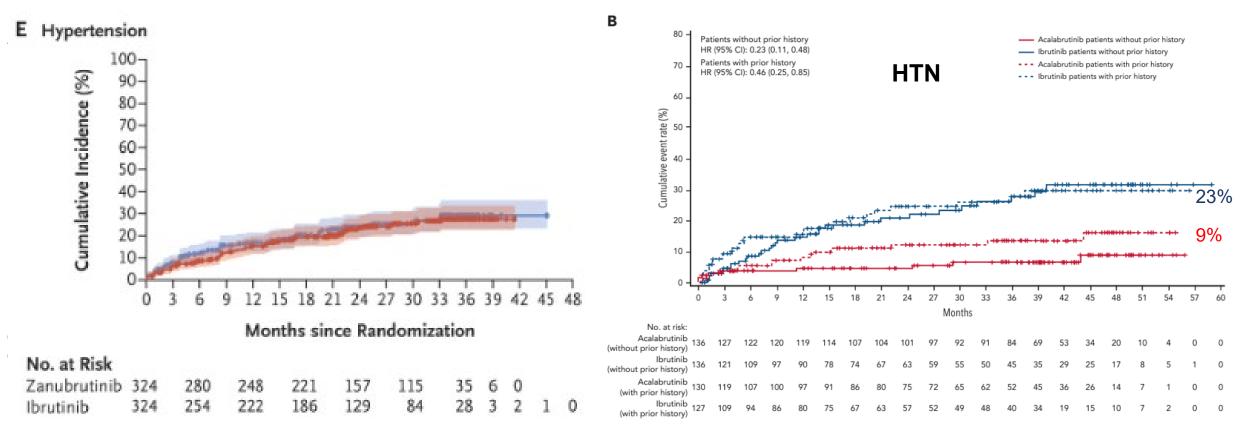
^aIncluding acute MI.

^bFatal cardiac event (n=6); 1 death (myocardial infarction with ibrutinib) was not listed due to discontinuation due to diarrhea 14 days prior to the fatal event.


Abbreviations: MI, myocardial infarction.

	Zanubrutinib (n=324)	lbrutinib (n=324)
Cardiac adverse events	80 (24.7)	112 (34.6)
Serious cardiac adverse events	11 (3.4)	31 (9.6)
Cardiac adverse events leading to treatment discontinuation	3 (0.9)	15 (4.6)
Ventricular extrasystoles	1 (0.3)	0
Atrial fibrillation/flutter	1 (0.3)	6 (1.9)
Cardiac failure	1 (0.3)	2 (0.6)
Cardiac arrest	0	2 (0.6) ^b
Cardiac failure acute	0	1 (0.3) ^b
Congestive cardiomyopathy	0	1 (0.3) ^b
Myocardial infarction	0	1 (0.3) ^b
Palpitations	0	1 (0.3)
Ventricular fibrillation	0	1 (0.3)

Significantly Fewer Atrial Fibrillation/Flutter Events With Zanubrutinib Than Ibrutinib


Median study follow-up 39.0 months HUNTSMAN CANCER INSTITUTE UNIVERSITY OF UTAH

Comparison to ELEVATE-RR (Acalabrutinib vs. Ibrutinib)

Median follow up 40.9 months

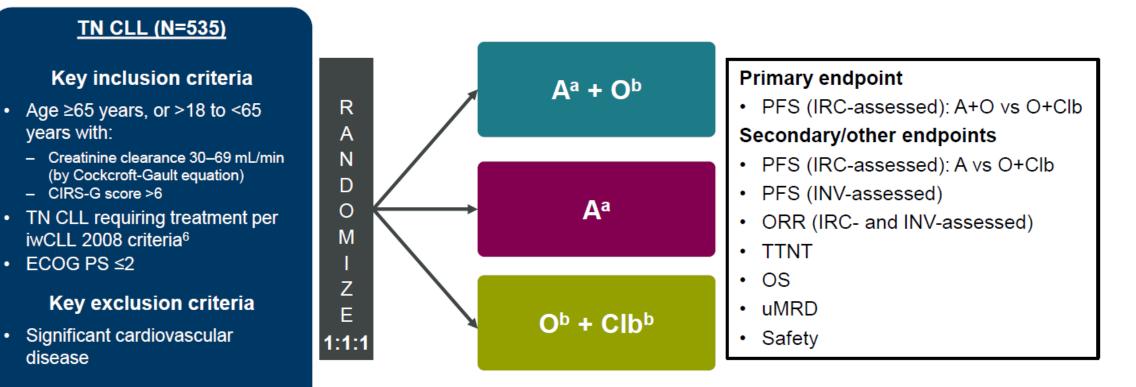
INIVERSITY OF UTAH

- Acala with increased HA and cough; Ibrutinib with worse diarrhea
- No differences in cytopenias

Presentation #636

Acalabrutinib ± Obinutuzumab vs Obinutuzumab + Chlorambucil in Treatment-naive Chronic Lymphocytic Leukemia: 6-Year Follow-up of ELEVATE-TN

Jeff P. Sharman,¹ Miklos Egyed,² Wojciech Jurczak,³ Alan Skarbnik,⁴ Krish Patel,⁵ Ian W. Flinn,⁶ Manali Kamdar,⁷ Talha Munir,⁸ Renata Walewska,⁹ Marie Hughes,¹⁰ Laura Maria Fogliatto,¹¹ Yair Herishanu,¹² Versha Banerji,¹³ George Follows,¹⁴ Patricia Walker,¹⁵ Karin Karlsson,¹⁶ Paolo Ghia,¹⁷ Ann Janssens,¹⁸ Florence Cymbalista,¹⁹ John C. Byrd,²⁰ Emmanuelle Ferrant,²¹ Alessandra Ferrajoli,²² William G. Wierda,²² Veerendra Munugalavadla,²³ Catherine Wangui Wachira,²⁴ Chuan-Chuan Wun,²³ Jennifer A. Woyach²⁰



- Acalabrutinib is a second-generation, potent, highly selective BTKi approved for the treatment of CLL/SLL and previously treated MCL¹⁻³
- Results from the phase 3 ELEVATE-TN study at a median follow-up of 28.3, 46.9, and 58.2 months reported superior efficacy of A±O compared with O+Clb, with an acceptable tolerability profile in patients with TN CLL³⁻⁵
- We report efficacy and safety results of a 74.5-month (~6-year) update of ELEVATE-TN

ELEVATE-TN Study Design

Stratification

del(17p), yes vs no

•

- ECOG PS 0-1 vs 2
- Geographic region

Crossover from O+Clb to A was allowed after IRC-confirmed progression

Note: After interim analysis, PFS assessments were by investigator only.³ All analyses are ad-hoc and *P*-values are descriptive.

ELEVATE-TN 6 Year Update

ΤН

F UTAH

NCT02475681. Data cutoff: March 3, 2023. Patients were enrolled between September 2015 and February 2017.

^aContinued until disease progression or unacceptable toxicity at 100 mg PO BID.

^bTreatments were fixed duration and administered for 6 cycles.

Demographics and baseline characteristics

Characteristic	A+O (n=179)	A (n=179)	O+Clb (n=177)
Age, median (range), y	70 (41–88)	70 (44–87)	71 (46–91)
Male sex	111 (62.0)	111 (62.0)	106 (59.9)
ECOG PS score			
0–1	169 (94.4)	165 (92.2)	167 (94.4)
2	10 (5.6)	14 (7.8)	10 (5.6)
Bulky disease ≥5 cm	46 (25.7)	68 (38.0)	54 (30.5)
Rai stage			
III	47 (26.3)	51 (28.5)	40 (22.6)
IV	38 (21.2)	37 (20.7)	38 (21.5)
Cytogenetic subgroup			
del(17p)	17 (9.5)	16 (8.9)	17 (9.6)
del(17p) and/or mutated TP53	25 (13.9)	23 (12.8)	25 (14.1)
Complex karyotype ^a	28 (15.6)	31 (17.3)	32 (18.1)
Mutated TP53	21 (11.7)	19 (10.6)	21 (11.9)
Unmutated IGHV	103 (57.5)	118 (65.9)	116 (65.5)

Data are n (%) unless otherwise specified.

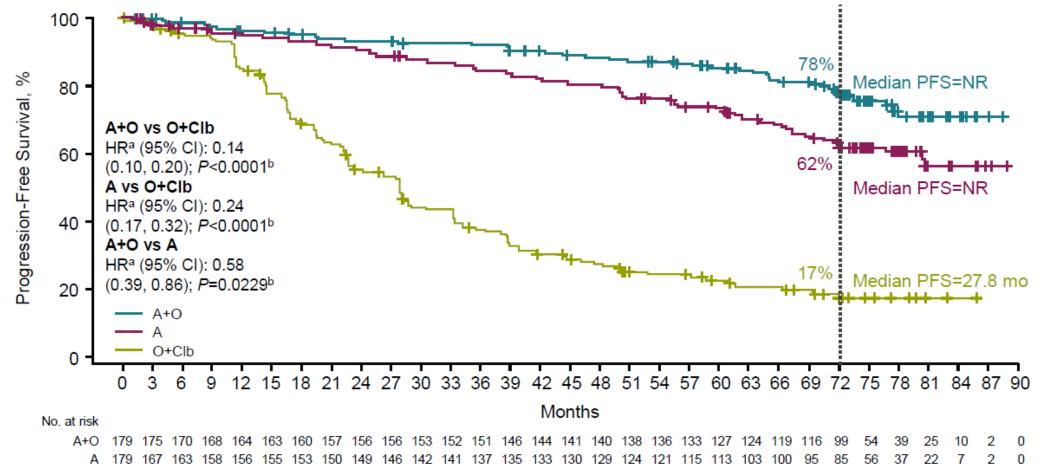
^aPatients with ≥3 abnormalities with at least one structural abnormality excluding inversion of chromosome 9.

Patient disposition

Characteristic	A+O (n=179)	A (n=179)	O+Clb (n=177)
Median study follow-up, mo (range)	74.6 (1.7, 89.0)	74.5 (0.1, 88.8)	73.3 (0.0, 88.8)
Treated with ≥1 dose of study drug	179 (100.0)	178 (99.4)	169 (95.5)
Randomized but not treated	0	1 (0.6)	8 (4.5)
Treatment status ^a			
Ongoing	96 (53.6)	84 (46.9)	0
Completed regimen	-	-	136 (76.8)
Discontinued regimen	83 (46.4)	95 (53.1)	41 (23.2)
Death	5 (2.8)	16 (8.9)	3 (1.7)
AE	38 (21.2)	32 (17.9)	25 (14.1)
Acalabrutinib-related AE	9 (5.0)	13 (7.3)	-
Lost to follow-up	2 (1.1)	1 (0.6)	1 (0.6)
CLL progressive disease	10 (5.6)	25 (14.0)	4 (2.3)
Withdrawal of consent	5 (2.8)	3 (1.7)	6 (3.4)
Investigator's discretion	13 (7.3)	13 (7.3)	0
Other	10 (5.6)	5 (2.8)	2 (1.1)
Data are n (%) unloss otherwise specified			

Crossover to A monotherapy	O+Clb (n=177)
Crossed over	79 (44.6)
Discontinued A monotherapy	32 (40.5)
AE	10 (12.7)
CLL progressive disease	13 (16.5)
Death	3 (3.8)
Withdrawal of consent	1 (1.3)
Investigator's discretion	1 (1.3)
Other	4 (5.1)

ELEVATE-TN 6 Year Update

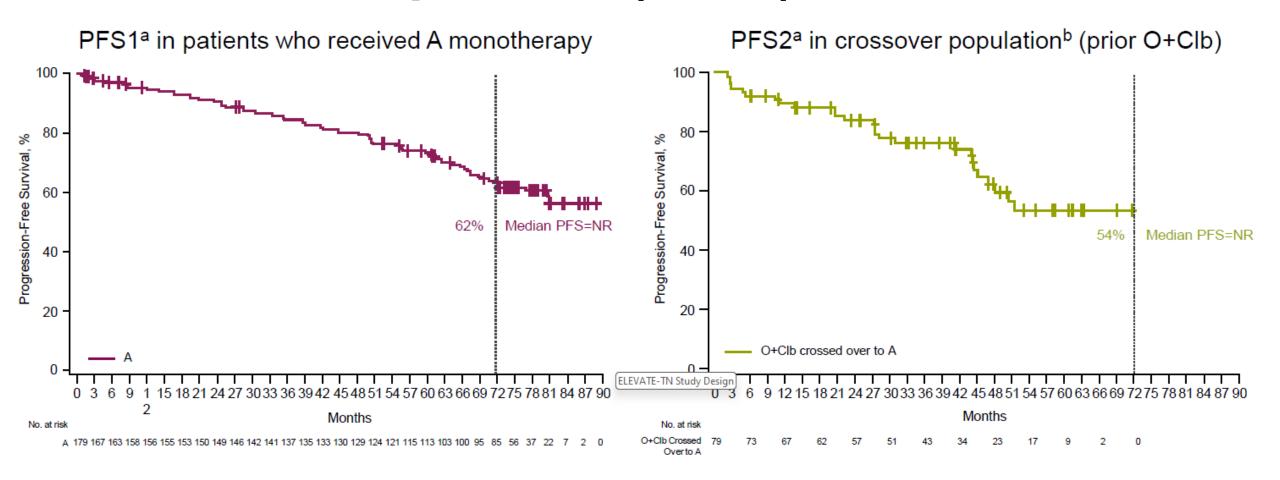

Η

ТАН

Data are n (%) unless otherwise specified.

^aTreatment status refers to the period on treatment. For A-containing arms, patients are treated to progression or unacceptable toxicity; treatment period is 6 months fixed duration for O+Clb.

Median PFS was significantly higher for Acontaining arms vs O+Clb



O+Clb 177 163 156 153 139 125 110 100 86 82 67 66 56 49 44 41 38 30 29 28 24 21 21 18 14 8 6 3 1

Median PFS was significantly higher for A+O vs A

^aHazard ratio based on stratified Cox proportional-hazards model. ^b*P*-value based on stratified log-rank test.

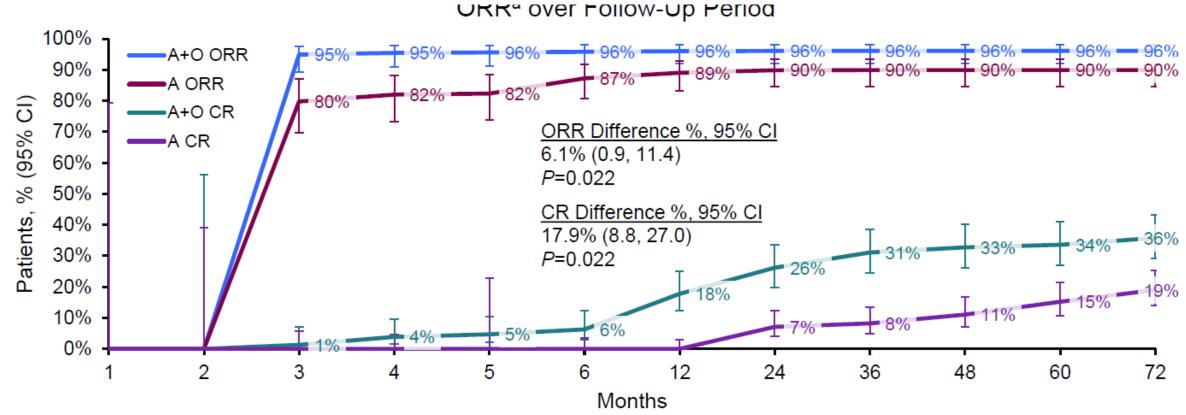
PFS for acalabrutinib monotherapy in frontline and crossover patients (PFS2)

^aPFS1, time to first disease progression or death; PFS2, time to second disease progression or death. ^bAt investigator discretion, crossover from O+Clb to A monotherapy was allowed for patients who had

12 confirmed disease progression.

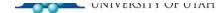
Overall Survival

^aHazard ratio based on stratified Cox proportional-hazards model. ^b*P*-value based on stratified log-rank test.

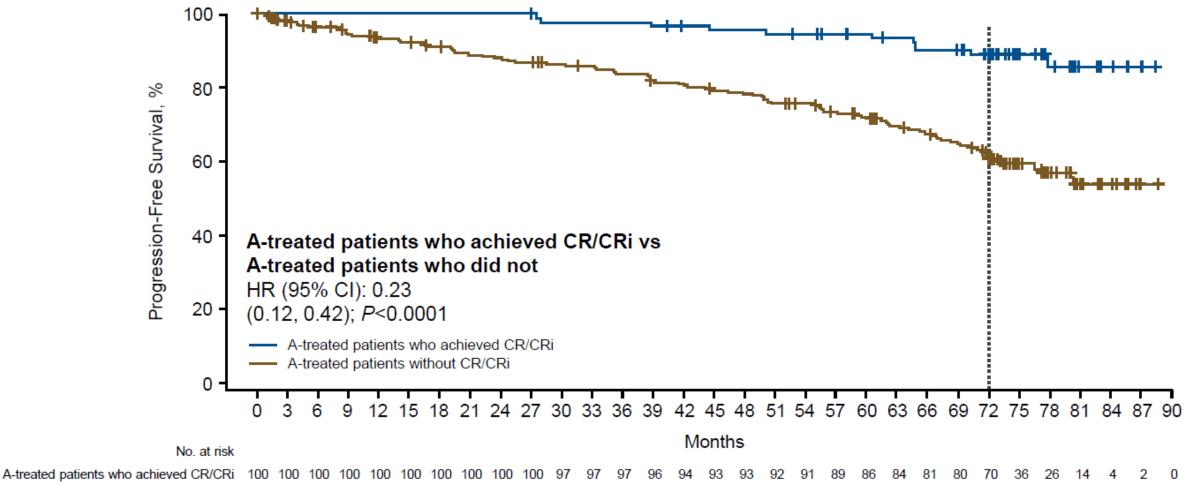

	Incidence	Incidence of Death During Main Study Period			
Death Reason	A+O (n=179)	A (n=179)	O+Clbª (n=177)		
Total deaths	33 (18.4)	43 (24.0)	45 (25.4)		
CLL progressive disease	5 (2.8)	4 (2.2)	4 (2.3)		
Richter transformation	0	1 (0.6)	1 (0.6)		
Other	3 (1.7)	9 (5.0)	13 (7.3)		
Unknown	5 (2.8)	5 (2.8)	5 (2.8)		
AE Preferred term ^b	20 (11.2)	24 (13.4)	22 (12.4)		
COVID-19	3 (1.7)	5 (2.8)	1 (0.6)		
Sepsis	2 (1.1)	1 (0.6)	3 (1.7)		
Pneumonia	2 (1.1)	0	1 (0.6)		
Cerebrovascular accident	2 (1.1)	0	0		

Data are n (%). aIncludes all deaths during main study period and crossover period. bIn ≥2 patients in any treatment group.

ELEVATE-TN 6 Year Update


H

ORR consistently improved over time in acalabrutinib-containing arms



- ORR and CR/CRi rates were significantly higher with A+O and A vs O+Clb (P≤0.0499 for both arms of the analyses)
- ORR and CR/CRi rates were significantly higher with A+O vs A (P=0.022 for both comparisons)

^aORR is defined as achieving CR, CRi, nPR, or PR per the investigator per iwCLL 2008 criteria⁶ at or before initiation of subsequent anticancer therapy. ORR does not include PRL.

Acalabrutinib-treated patients who achieved CR/CRi had longer PFS

A-treated patients without CR/CRi 258 242 233 226 220 218 213 207 205 202 198 196 191 185 183 178 176 170 166 159 154 143 138 131 114 74 50 33 13 2 (

Events of clinical interest

		A+O (n=178)		A (n=179)	
ECI Category ECI Subcategory	Any Grade	Grade ≥3	Any Grade	Grade ≥3	
Cardiac events	49 (27.5)	22 (12.4)	42 (23.5)	21 (11.7)	
Atrial fibrillation	13 (7.3)	3 (1.7)	16 (8.9)	3 (1.7)	
Bleeding	95 (53.4)	12 (6.7)	81 (45.3)	8 (4.5)	
Major bleeding	16 (9.0)	12 (6.7)	10 (5.6)	8 (4.5)	
Hypertension ^a	20 (11.2)	8 (4.5)	20 (11.2)	9 (5.0)	
Infections	147 (82.6)	63 (35.4)	144 (80.4)	50 (27.9)	
SPMs	36 (20.2)	18 (10.1)	35 (19.6)	9 (5.0)	
SPMs excluding non- melanoma skin	24 (13.5)	13 (7.3)	22 (12.3)	7 (3.9)	

Data are n (%).

^aHypertension events were based on Standardized MedDRA query (SMQ) Hypertension (narrow).

Most common any-grade AEs

	A+O (n=178)		A (n=179)	
	Any grade	Grade ≥3	Any grade	Grade ≥3
Diarrhea	78 (43.8)	11 (6.2)	76 (42.5)	1 (0.6)
Headache	72 (40.4)	2 (1.1)	70 (39.1)	2 (1.1)
Arthralgia	64 (36.0)	4 (2.2)	49 (27.4)	2 (1.1)
Neutropenia	61 (34.3)	55 (30.9)	23 (12.8)	21 (11.7)
Fatigue	55 (30.9)	4 (2.2)	43 (24.0)	2 (1.1)
Cough	50 (28.1)	1 (0.6)	45 (25.1)	1 (0.6)
COVID-19	44 (24.7)	16 (9.0)	38 (21.2)	13 (7.3)
Thrombocytopenia	26 (14.6)	15 (8.4)	16 (8.9)	6 (3.4)
Pneumonia	25 (14.0)	13 (7.3)	27 (15.1)	11 (6.1)
Hypertension	17 (9.6)	8 (4.5)	19 (10.6)	9 (5.0)
Syncope ^b	12 (6.7)	9 (5.1)	5 (2.8)	4 (2.2)

Data are n (%).

8

^aAny-grade AEs in ≥30% of acalabrutinib-treated patients or grade ≥3 in ≥5% of acalabrutinib-treated patients.

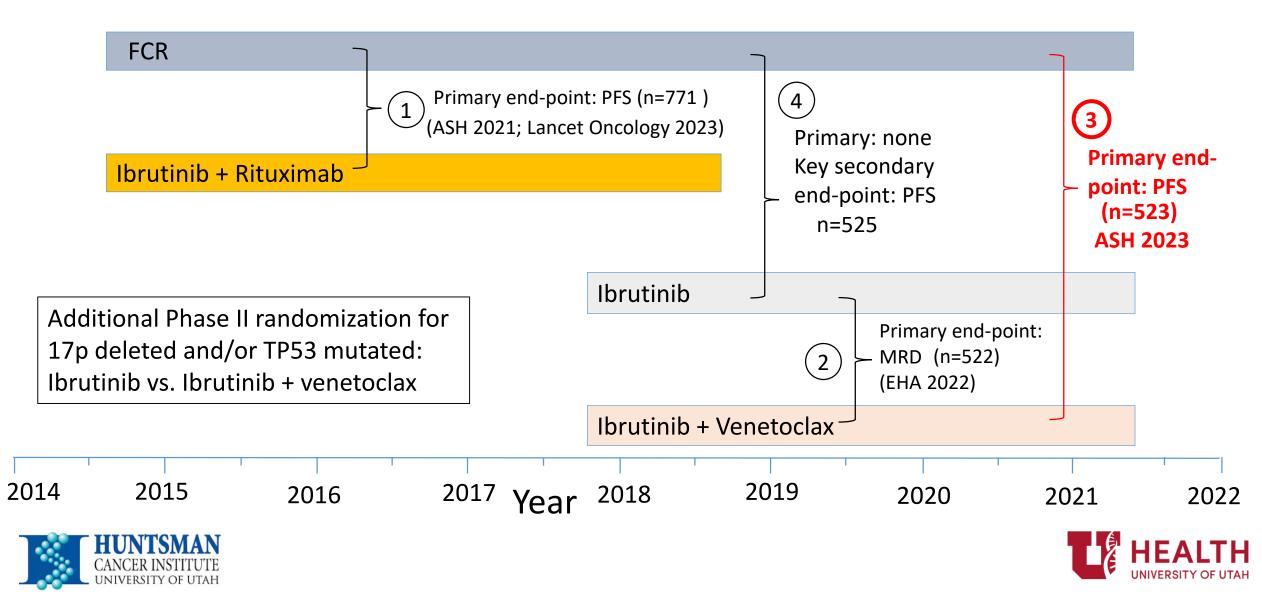
^bCardiac-related syncope events were reported separately.

Conclusions

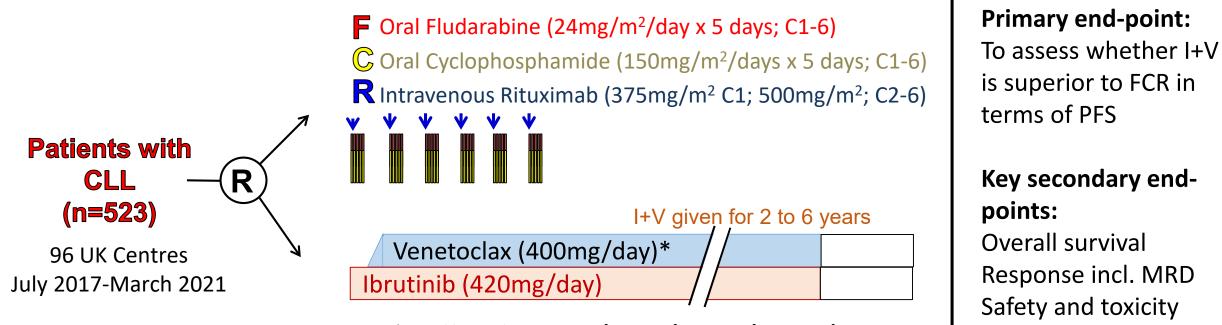
- Extended follow up of ALPINE to median 39m continued to show ~10% benefit of zanubrutinib over ibrutinib.
 - Increased CR rates
 - Decreased toxicities, especially Afib and sudden cardiac deaths, but not HTN
- Extended 6-year follow up of ELEVATE-TN continue to show improvement in PFS for A-arms vs. O-ChI arm (HR 0.14 for O-A; HR 0.24 for A).
 - O-A superior to A for PFS (78% vs. 62%)
 - Small trend towards superior OS in O-A arm, but don't think this will pan out with longer follow up.
 - Increased toxicities with O-A: all grade bleeding, neutropenia, thrombocytopenia; grade ≥3 infections, SPMs and diarrhea.

Combination Targeted Therapies for Frontline CLL

Ibrutinib Plus Venetoclax with MRD-Directed Duration of Treatment Is Superior to FCR and Is a New Standard of Care for Previously Untreated CLL: Report of the Phase III UK NCRI


Peter Hillmen, David Cairns, Adrian Bloor, David Allsup, Kate Cwynarski, Andrew Pettitt, Shankara Paneesha, Christopher Fox, Toby Eyre, Francesco Forconi, Nagah Elmusharaf, Ben Kennedy, John Gribben, Nicholas Pemberton, Oonagh Sheehy, Gavin Preston, Anna Schuh, Dena Howard, Anna Hockaday, Sharon Jackson, Natasha Greatorex, Sean Girvan, Sue Bell, Julia M Brown, Nichola Webster, Surita Dalal, Ruth de Tute, Andrew Rawstron, Piers EM Patten, Talha Munir on behalf of the NCRI CLL Subgroup.

Abstract No: 631, Oral Presentation, ASH Annual Meeting Sunday, December 10th 2023

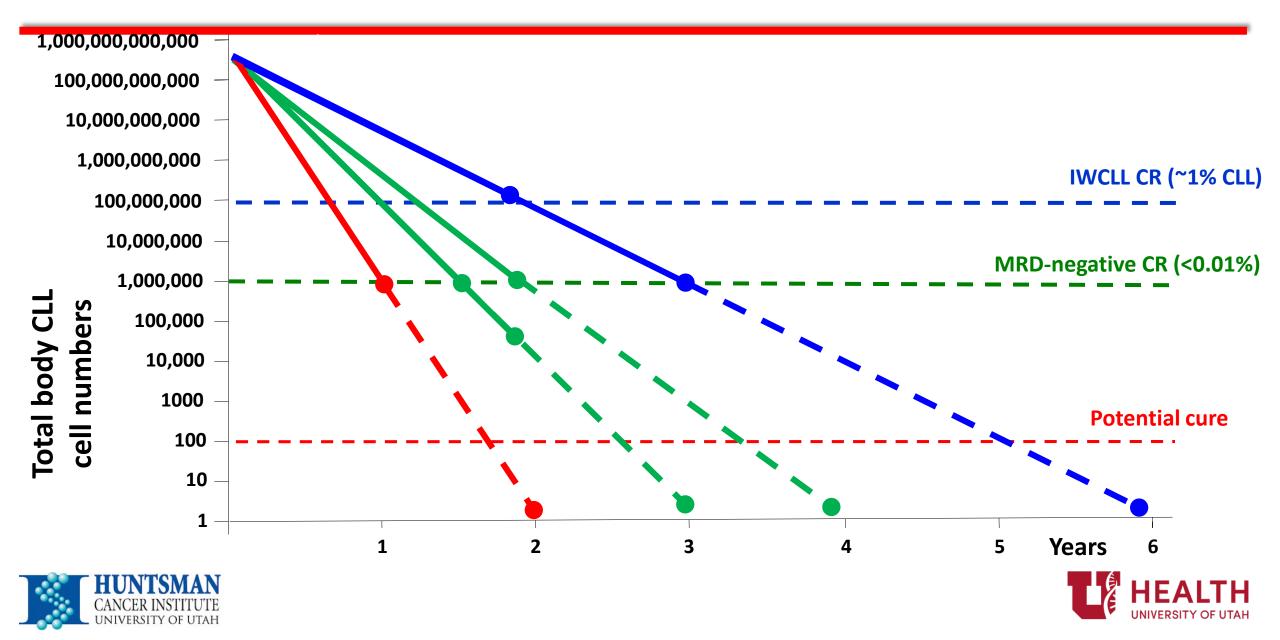


Adaptive design of Flair

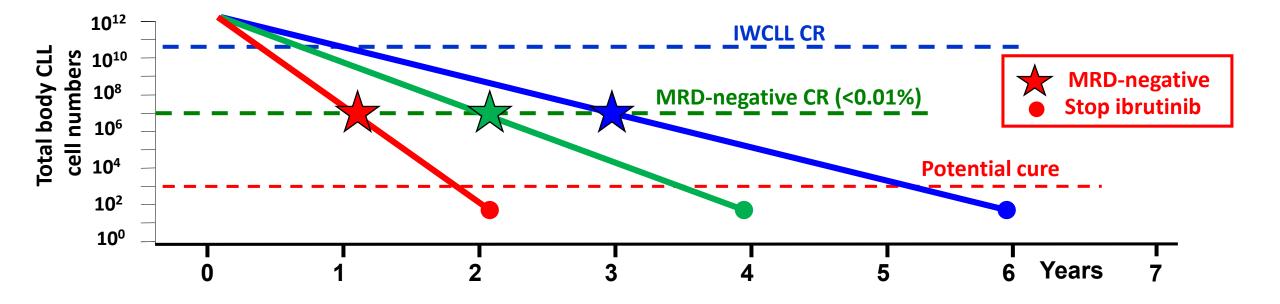
Flair +V: Trial design

*, weekly escalation 20mg \rightarrow 50mg \rightarrow 100mg \rightarrow 200mg \rightarrow 400mg

Key Inclusion Criteria:


- Previously untreated CLL requiring therapy by IWCLL criteria
- Considered fit for FCR
- ≤75 years old

Key Exclusion Criteria:

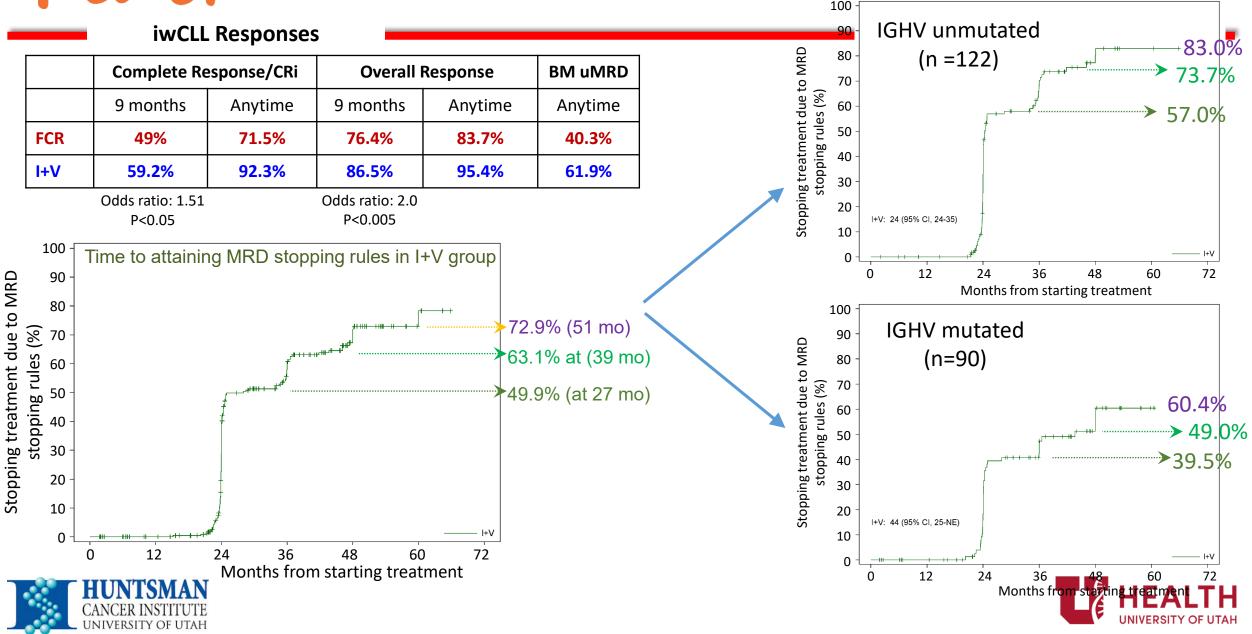

Prior therapy for CLL; History of Richter's transformation; >20% TP53 deletion by FISH; Concomitant warfarin (or equivalent) Symptomatic cardiac failure or angina

MRD-guided duration of I+V in FLAIR

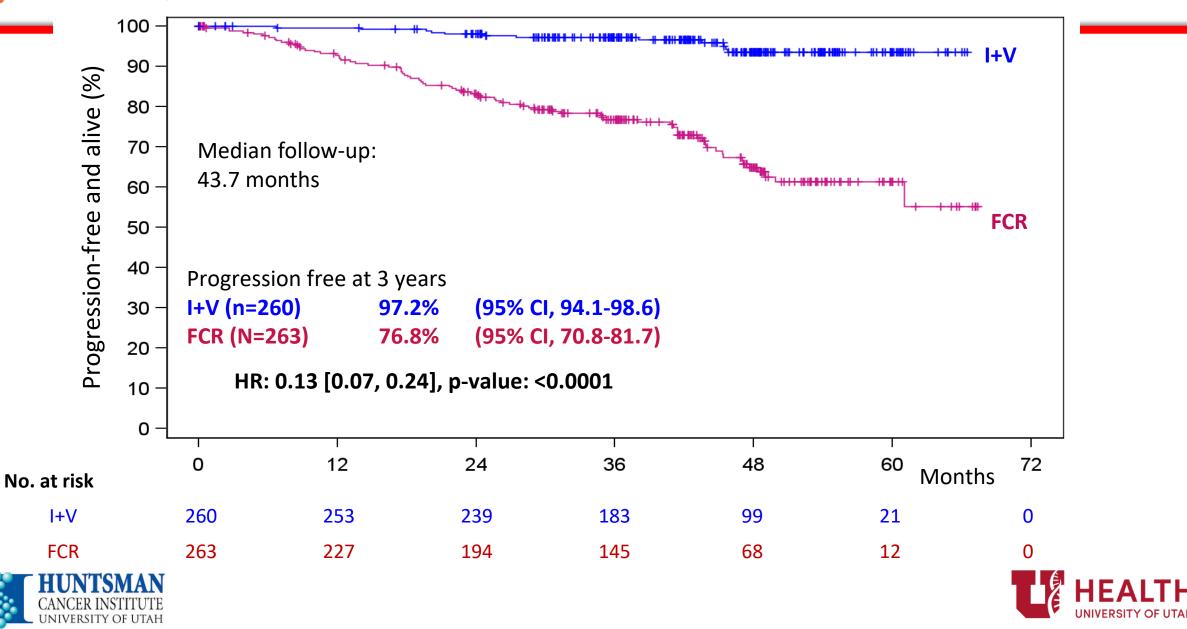
Stopping rules for ibrutinib + venetoclax in

FCR vs I+V: Baseline Characteristics

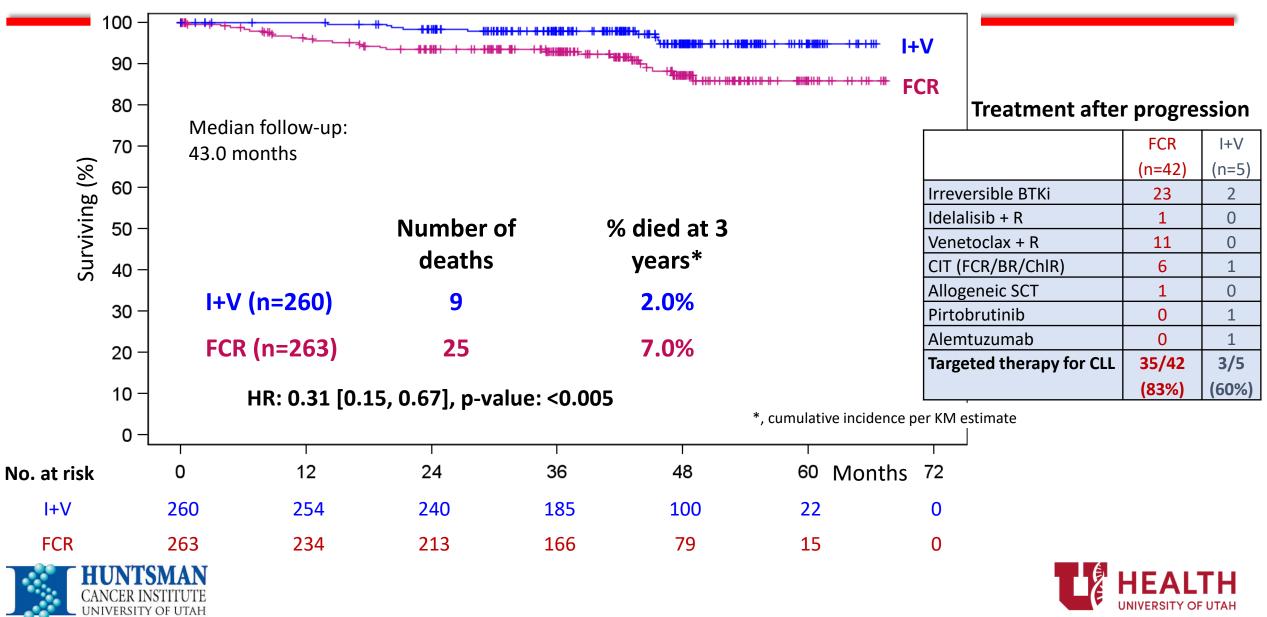
		FCR (n=263)	lbrutinib +venetoclax (n=260)	Total (n=523)
Age	Median (yr)	62	62	62
	>65 years	82 (31.2%)	81 (31.2%)	163 (31.2%)
Gender	Male	187 (71.1%)	186 (71.5%)	373 (71.3%)
Binet stage	Prog A or B	152 (57.8%)	151 (58.1%)	303 (57.9%)
	С	111 (42.2%)	109 (41.9%)	220 (42.1%)
Duration of CLL prior to randomisation	Median (mo)	33.7	37.9	35.8
B symptoms	Yes	121 (46.5%)	128 (49.2%)	249 (47.9%)



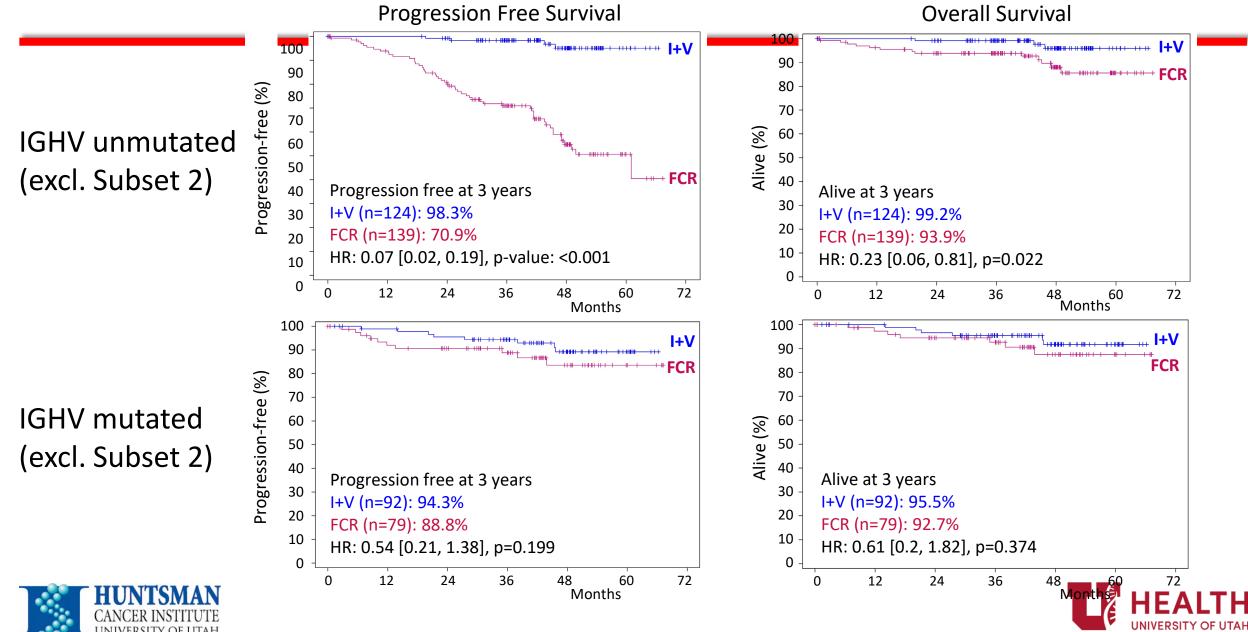
FCR vs I+V: Prognostic markers


		FCR (n=263)	lbrutinib+venetoclax (n=260)	Total (n=523)*
IGHV	Mutated (excl subset 2)	79 (30%)	92 (35.8%)	171 (32.7%)
	Unmutated (excl subset 2)	139 (52.8%)	124 (47.7%)	261 (49.9%)
	Ig Stereotype Subset 2	13 (4.9%)	13 (5%)	26 (5%)
	Not available	32 (12.2%)	31 (11.9%)	63 (12%)
FISH Hierarchy	17p deletion*	0 (0%)	1 (0.4%)	1 (0.2%)
	11q deletion	50 (19%)	45 (17.3%)	95 (18.2%)
	Trisomy 12	29 (11%)	57 (21.9%)	86 (16.4%)
	Normal	69 (26.2%)	52 (20%)	121 (23.1%)
	13q deletion	100 (38%)	87 (33.5%)	187 (35.8%)
	Failed/incomplete	15 (5.7%)	18 (6.9%)	33 (6.3%)
UNIVERSITY OF UTAH	* Pat	tients with >20% 17p	deleted cells were exclud	ded. UNIVERSITY

iwCLL response and MRD stopping rules



Floir Primary end-point: PFS for FCR versus I+V



Overall Survival in FCR versus I+V

Outcome by IGHV mutation status

Serious Adverse Events & malignancies

SAEs, by MedDRA System organ class

	Number of participa	nts reporting ≥1 SAE
	FCR	I+V
	(n=239)	(n=252)
Infections and infestations	45 (18.8%)	56 (22.2%)
Blood and lymphatic system disorders	74 (31%)	13 (5.2%)
Cardiac disorders	1 (0.4%)	27 (10.7%)
Gastrointestinal disorders	19 (7.9%)	9 (3.6%)
General disorders and administration site conditions	12 (5%)	4 (1.6%)
Neoplasms benign, malignant and unspecified (including cysts and polyps)	5 (2.1%)	6 (2.4%)
Metabolism and nutrition disorders	0 (0%)	10 (4%)
Respiratory, thoracic and mediastinal disorders	6 (2.5%)	4 (1.6%)
Musculoskeletal and connective tissue disorders	3 (1.3%)	6 (2.4%)
Skin and subcutaneous tissue disorders	5 (2.1%)	4 (1.6%)
Nervous system disorders	2 (0.8%)	5 (2%)
Eye disorders	0 (0%)	6 (2.4%)

Secondary malignancies (SM)		
	FCR	I+V
ncidence rate of cancers	5.4	2.6
er 100 person-years	(5 11 5 68) (2.40, 2.79)
95% Cls)	(3.11) 3.00	, (2.10) 2.70
	FCR	I+V
BCC/SCC	16	13
MDS/AML	8	1
Lymphoma	5	3
Prostate/urological	5	1
Lung	3	0
GI	3	1
Breast	1	1
Melanoma	1	1
Myeloma	1	0
Endocrine	0	1
Other	5	2
Total patients*	39	17
*, some patients had mor	re than on <mark>e S</mark> l	UNIVERSITY OF

Flair Safety and Toxicity: Deaths

- 31 deaths have occurred in the safety population. 23 from FCR participants and 8 from I+V.
- 7 deaths have been assessed as related to treatment (6 FCR; 1 I+V)
- 13 deaths were related to SAEs or SUSARs (8 FCR; 5 I+V)
- 2 of the 3 cardiac deaths in the I+V arm occurred after treatment was completed (35 days and 411 days later)

	FCR	I+V 📕
Infection	7	1
Sudden/Cardiac	2	3
COVID-19	2	2
Richter's transformation	2	1
Non-haem malignancy	2	1
Allogeneic SCT – infection	1	0
Allogeneic SCT – GvHD	1	0
Disease progression	1	0
Hemorrhage	1	0
Lymphoma	1	0
Treatment related MDS/BMF	3	0
Total:	23	8

FLAIR Conclusions

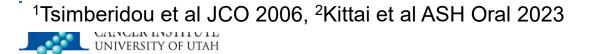
- Majority of patients treated with IV combination will achieve uMRD (10⁻⁴) by 24 months.
 - ~20-25% improvement in uMRD rates if treated to 4-5 years
 - Unmutated *IGHV* patients more readily achieved uMRD than mutated (83% vs. 60.4%)
- Unanswered questions
 - Is it really necessary to treat twice as long beyond initial detection of uMRD
 - Especially when the standard is moving towards $\leq 10^{-6}$ MRD detection
 - Is combination really better than sequential?
 - Could use of second generation BTKi in combo with venetoclax improve outcomes and safety?
 - Randomized phase IIIs: MAJIC, Beigene

Frontline IV combination not ready for prime time in the US yet.

Awaiting future confirmatory trials.

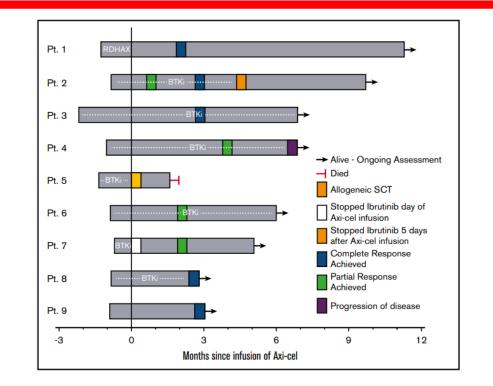
Richter's Transformation

Anti-CD19 Chimeric Antigen Receptor T-Cell Therapy for Richter's Transformation: An International Multicenter Retrospective Study


Adam S Kittai, MD, David A. Bond, MD, Ying Huang, MS, MA, Seema A Bhat, MD, Emily Blyth, B.Med(Hons), FRACP, FRCPA, PhD, John C. Byrd, MD, Julio C Chavez, MD, Matthew S. Davids, MD, MMSc, Jamie P Dela Cruz, Mark R Dowling, MBBS, PhD, Caitlyn Duffy, Carrie I Ho, MD, Caron A Jacobson, MD, MMSc, Samantha M. Jaglowski, MD, MPH, Nitin Jain, MD, Kevin H Lin, MD, Christine McCarthy, BS, Erin M Parry, MD, PhD, Manoj Rai, MD, Kerry A Rogers, MD, Aditi Saha, MBBS, Levanto Schachter, DO, MS, Hamish Scott, MD, Jayastu Senapati, MD, MBBS, DM, Mazyar Shadman, MD, MPH, Tanya Siddiqi, MD, Deborah M. Stephens, DO, Vinay Vanguru, MBBS, FRACP, FRCPA, William G. Wierda, MD, PhD, Omer Zulfa, MD, Jennifer A. Woyach, MD and Philip A. Thompson, MBBS

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute 0101000 100001 10000

Introduction – RT is a disease of unmet need


- Richter's transformation (RT) is defined as the transformation of CLL into an aggressive lymphoma, typically Large B-cell Lymphoma (LBCL).¹
- No standard of care treatment options, as survival is measured in months.
- Outcomes of patients with RT that has developed on small molecule inhibitors with no prior chemotherapy remains poor.²
 - Median overall survival 8.2 months
- Therefore, RT represents a true area of unmet need.

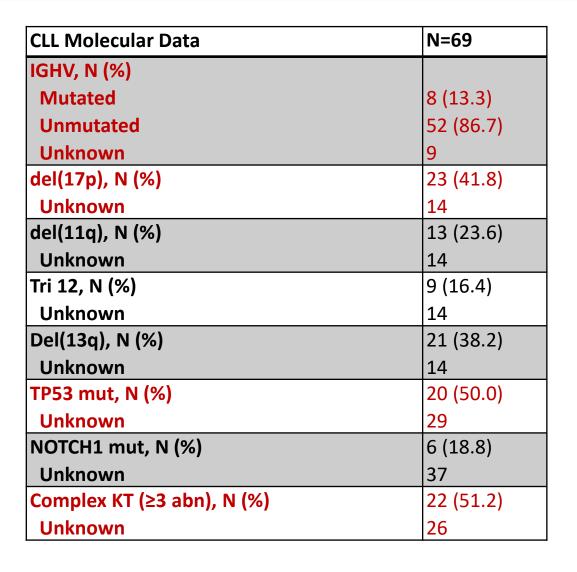
Background – Anti-CD19 CART for RT

- Anti-CD19 CAR T-cell therapy (CD19 CART) has revolutionized the way we treat LBCL.
- RT was mostly excluded from clinical trials with CD19 CART.
- We published our experience treating patients with RT with axicabtagene ciloleucel showing impressive response rates.¹

Given unclear durability, and limited number of patients in this study we performed a large international retrospective study to determine efficacy and safety of CAR19 for RT.

Methods

- International multicenter retrospective study of patients with RT who received FDA approved CD19 CART
 - Including axi-cel, tisa-cel, liso-cel, and brexu-cel
- 12 academic centers in the US and Australia
- RT defined as patients with LBCL with preceding or concurrently diagnosed CLL
- PFS and OS measured from date of CD19 CART
- Cox regression model used to associate prognostic factors with OS



Baseline CLL Characteristics

CLL Treatment History	N=69
Prior Chemo for CLL, N (%)	39 (56.5)
Prior BTKi for CLL, N (%)	44 (63.8)
Prior Ven for CLL, N (%)	23 (33.3)
Prior Allo-SCT for CLL, N (%)	3 (4.4)
Prior CART for CLL, N (%)	1 (1.4)
Median # of CLL TRMT prior to RT	2 (0-10)
De novo RT (0 TRMT for CLL), N (%)	12 (17.4)

52

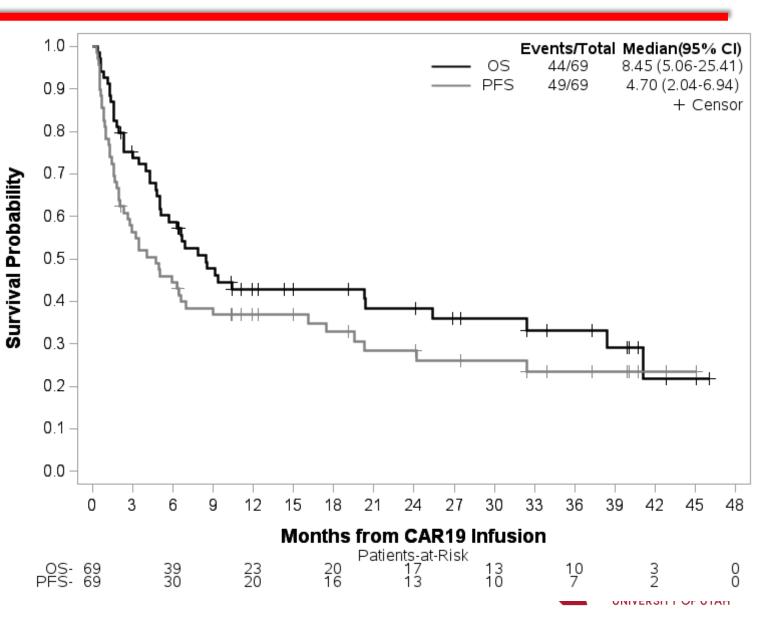
Median years from CLL dx to RT - 6 (0-28)

Baseline RT Characteristics

RT Characteristics and TRMT	N=69
Age at RT Dx, median (range)	63 (26-80)
Clonal relationship to CLL, N (%)	
Related	23 (100)
Unknown	46
Complex KT (≥3 abn) at RT, N (%)	19 (65.5)
Unknown	40
del17p (RT), N (%)	12 (41.4)
Unknown	40
TP53 mut (RT), N (%)	14 (58.3)
Unknown	45
NOTCH1 mut (RT), N (%)	4 (21.1)
Unknown	50
MYC translocation, N (%)	8 (20.0)
Unknown	29
Median Ki-67 (%)	80 (40-100)
Unknown	9
Prior BTKi alone or in combo for RT	46 (66.7)
Prior Ven alone or in combo for RT	35 (50.7)
Prior BTKi or Ven for RT or CLL, N (%)	58 (84%)

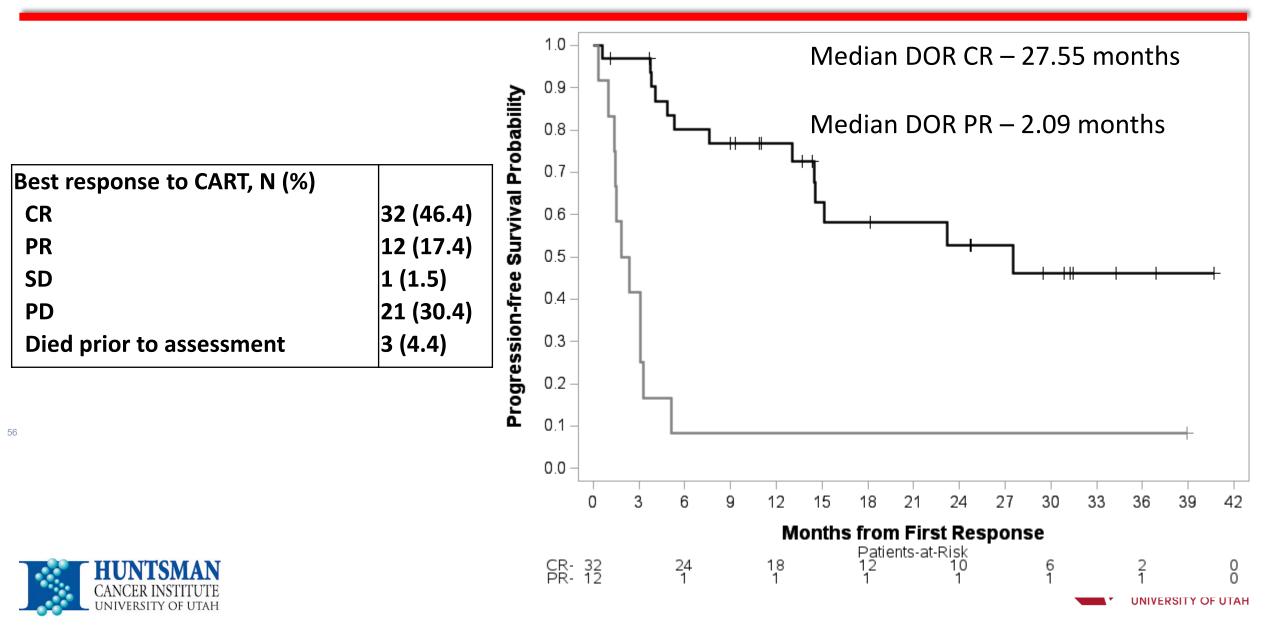
RT Characteristics collected at CAR19

RT at CART Baseline Characteristics and TRMT	N=69
Median age at CART infusion	64 (27-80)
Median months from RT dx to CART	7.3 (0.4-65.6)
Median # TRMT for RT prior to CART	2 (0-7)
Median Total # of prior TRMT	4 (1-15)
Received bridging, N (%)	59 (85.5)
CAR-T product given, N (%)	
Axi-cel ¹	45 (65.2)
Liso-cel	7 (10.1)
Tisa-cel	17 (24.6)
Median days from Apheresis to CART infusion	34 (24-100)
Concurrent BTKi therapy, N (%)	31 (44.9)
Median LDH prior to CART	258 (96-2878)
Median largest LN (cm) prior to CART	3.5 (0.7-16)
Unknown	9
Median highest SUV on PET prior to CART	14.8 (3-50.6)
Unknown	7



Progression free and Overall survival

Median follow-up in months (range) - 24.13 (2.14-46.02)


	N=69
PFS from CART Infusion	
Number of events	49
Median in months (95% CI)	4.70 (2.04-6.94)
OS from CART Infusion	
Number of events	44
Median in months (95% CI)	8.45 (5.06-25.41)

OS from RT Diagnosis	
Number of events	44
55 Median in months (95% CI)	29.4 (15.7-33.5)
Median follow-up (range)	36.1 (8.2-82.9)

Duration of response by CR or PR

Safety Outcomes

	N=69
Cause of Death (N=44), N (%)	
Disease	32 (72.7)
Non-disease	12 (27.3)
Non-relapse Mortality from CART	
Infusion, % (95% CI)	
Number of events	12
3-month estimate	7.3% (2.7-15.0)
6-month estimate	10.3% (4.5-18.9)
12-month estimate	13.4% (6.5-22.8)

- Recent ASH report of NRM in Axi-Cel treated patients
 - ~4.5% in 12 months
 - 14.5% overall

CAR-T Outcomes	N=69
Grade 3-4 neutropenia, N (%)	60 (87.0)
Grade 3-4 thrombocytopenia, N (%)	49 (71.0)
Febrile neutropenia, N (%)	46 (66.7)
CRS max grade, N (%)	
0	8 (11.6)
1	24 (34.8)
2	26 (37.7)
3	9 (13.0)
4	2 (2.9)
ICANS max grade, N (%)	
0	23 (33.8)
1	12 (17.7)
2	8 (11.8)
3	17 (25.0)
4	8 (11.8)
Unknown	1
Grade 3-4 infection, N (%)	14 (20.3)

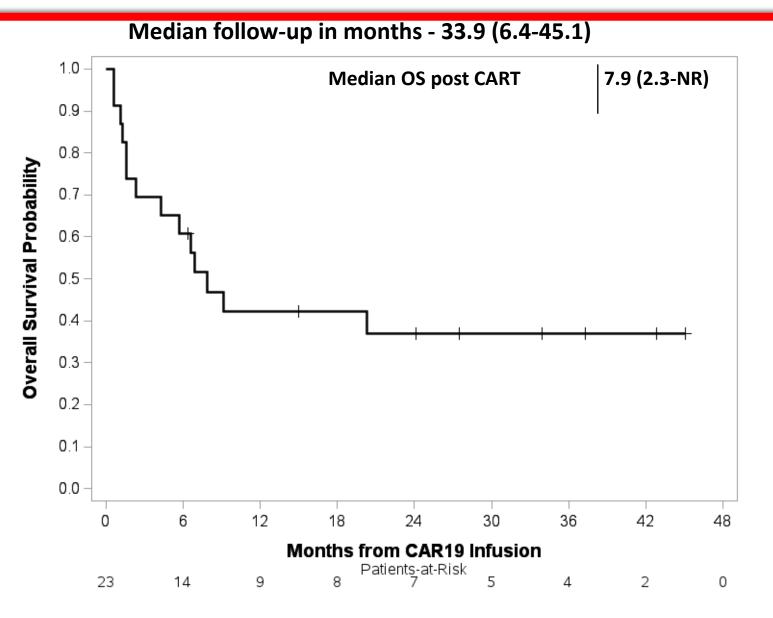
MVA for OS – Independent prognostic factors

	Univariable Models		Multivariable Model	
	HR (95% CI)	p-value	HR (95% CI)	p-value
# prior lines of therapy for RT prior to CART	1.33 (1.05-1.70)	0.02	1.58 (1.23-2.03)	0.0004
Total prior lines of therapy	1.18 (1.04-1.35)	0.01		
Ki-67, 10% higher	1.29 (1.03-1.60)	0.03	1.49 (1.20-1.87)	0.0004
LDH, 2-fold increase	1.84 (1.36-2.49)	<.0001	1.91 (1.35-2.69)	0.0002

Summary of patients with Clonally-Related disease

	N=23
Age at CLL Diagnosis, median (range)	56 (37-69)
# of CLL therapies prior to RT, median (range)	2 (0-10)
De novo RT, N (%)	4 (17.4)
Years from CLL diagnosis to RT, median (range)	7 (1-18)
Age at CART infusion, median (range)	66 (42-80)
Months from RT diagnosis to CART, median (range)	5.5 (1.7-65.6)
# therapies for RT prior to CART, median (range)	2 (1-7)
Total number of prior therapies, median (range)	4 (2-15)

Best response to CAR-T (Lugano 2014), N (%)	
CR	11 (47.8)
PR	11 (47.8) 2 (8.7)
SD	0 (0)
PD	9 (39.1)
Died prior to assessment	1 (4.4)



OS plot for Clonally Related

60

NIVERSITY OF UTAH

Conclusions

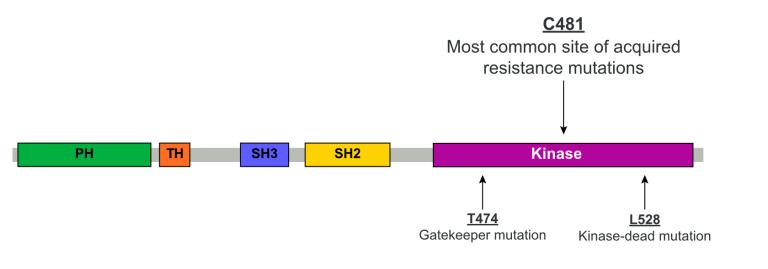
- This is the largest cohort of pts with RT to receive CD19 CART.
- Heavily pretreated group 84% exposed to either BTKi or BCL2i, with 4 total prior lines of TRMT.
- Median OS from CAR19 was 8.5 months in this study.
- Median DOR from CAR19 for those patients that attained a CR was 27.55 months.
- Higher number of prior therapies is associated with worse OS.
 - Earlier use of CD19 CART in the RT disease course may be warranted.
- Prospective clinical trials ongoing.

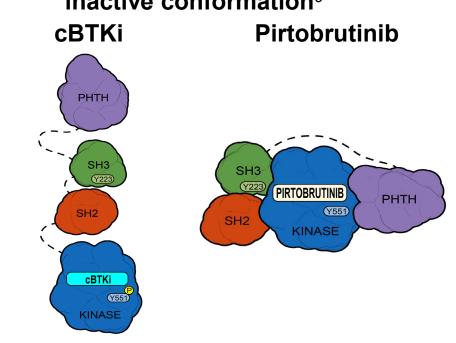
Resistance Mutations in CLL

Genomic Evolution and Resistance during Pirtobrutinib Therapy in Covalent BTK-Inhibitor (cBTKi) Pre-treated Chronic Lymphocytic Leukemia Patients: Updated Analysis from the BRUIN Study

<u>Jennifer R. Brown¹</u>, Sai Prasad Desikan², Bastien Nguyen³, Helen Won³, Shady I. Tantawy², Samuel C. McNeely⁴, Narasimha Marella³, Kevin Ebata³, Jennifer A. Woyach⁵, Krish Patel⁶, Constantine S. Tam⁷, Toby A. Eyre⁸, Chan Y. Cheah^{9,10}, Nirav N. Shah¹¹, Paolo Ghia¹², Wojciech Jurczak¹³, Minna Balbas³, Binoj Nair³, Paolo Abada³, Chunxiao Wang⁴, Denise Wang³, Lindsey E. Roeker¹⁴, Varsha Gandhi², William G. Wierda²

¹Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA; ²University of Texas MD Anderson Cancer Center, Houston, TX, USA; ³Loxo@Lilly, Indianapolis, IN, USA; ⁴Eli Lilly and Company, Indianapolis, IN, USA; ⁵The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA; ⁶Swedish Cancer Institute, Seattle, WA, USA; ⁷Alfred Health and Monash University, Melbourne, Victoria, AUS; ⁸Oxford University Hospitals NHS Foundation Trust, Oxford, UK; ⁹Linear Clinical Research, Nedlands, AUS; ¹⁰Sir Charles Gairdner Hospital, Nedlands, AUS; ¹¹Medical College of Wisconsin, Milwaukee, WI, USA; ¹²Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Italy; ¹³ Maria Sklodowska-Curie National Research Institute of Oncology, Krakow, Poland; ¹⁴Memorial Sloan Kettering Cancer Center, New York, NY, USA

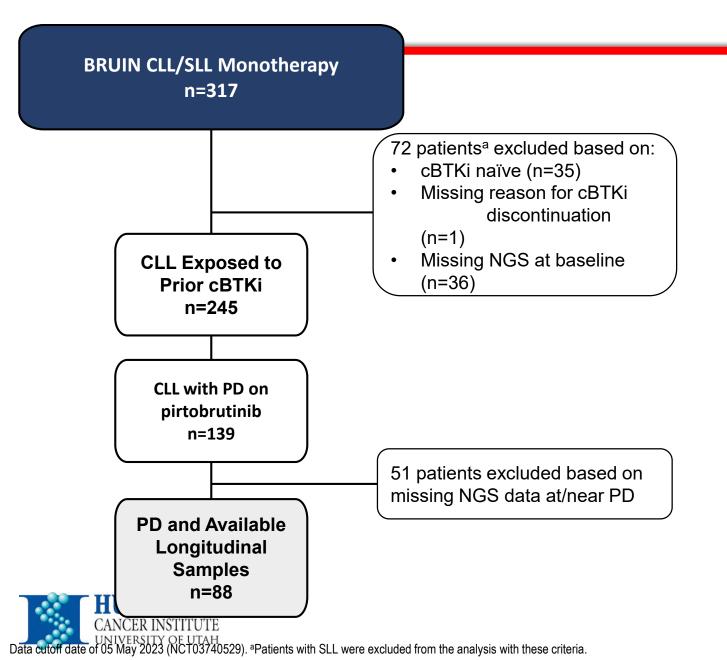




Pirtobrutinib Non-covalent Binding Inhibits both WT and C481-mutated BTK

BTK sites with known cBTKi resistance mutations

Pirtobrutinib may stabilize BTK in a closed inactive conformation⁹


- The majority of patients discontinue covalent BTK inhibitors (cBTKi) due to intolerance or progression^{1,2,3}
- BTK C481 substitutions are the most common resistance mechanism to cBTKi^{4,5,6}
- Acquired mutations have been identified in a limited number of patients treated with pirtobrutinib^{7,8}

Inactive conformation of BTK by pirtobrutinib:

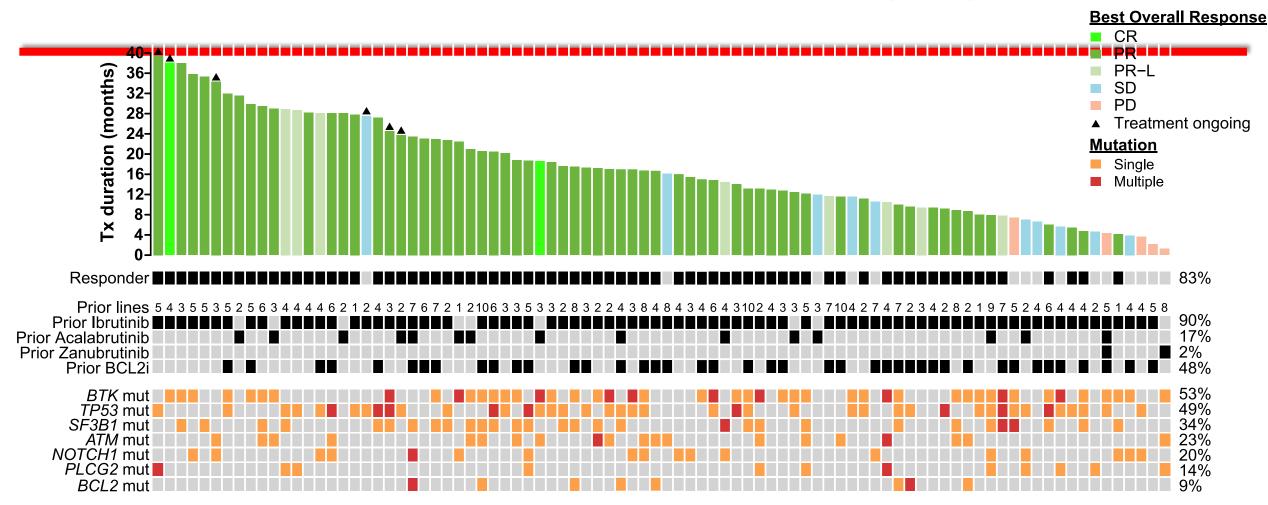
- blocks access to upstream kinases and phosphorylation of Y551
- inhibits both WT and C481-mutant BTK with equal low nM potency^{7,9}
- may inhibit kinase-independent BTK signaling⁹

¹Woyach et al. J Clin Oncol. 2017. ²Barr et al. Blood Adv. 2022. ³Byrd et al. ASH Annual Meeting. 2022. ⁴Estupinan et al. Leukemia. 2021. ⁵Handunnetti et al. ASH Annual Meeting. 2019. ⁶Blombery et al. Blood Advances. 2022. ⁷Wang et al. NEJM. 2022 ⁸Naeem et al. Blood Advances. 2023. ⁹Gomez et al. Blood. 2023.

Study Design & Methods

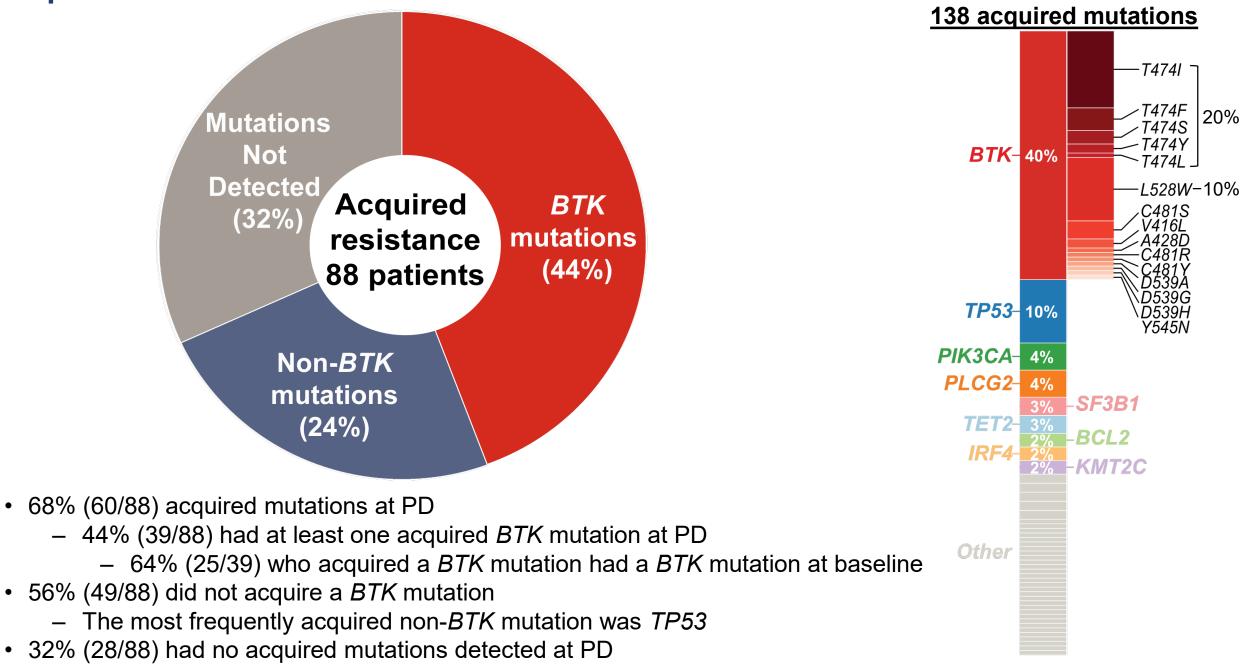
- Next-generation sequencing (NGS) of paired baseline and progression PBMC samples from 88 cBTKi pre-treated CLL patients who progressed on pirtobrutinib
- Targeted NGS (5% VAF limit of detection [LoD]) gene list (all exons, 74 genes):
 - <u>BTK, PLCG2</u>, <u>TP53</u>, ABL1, APC, ARID1A, ATM, BAP1, BCL2, BCL6, BRAF, BRD4, CARD11, CCND1, CCND3, CD79A, CD79B, CDK4, CDKN2A, CDKN2B, CREBBP, EP300, EPHA7, ERBB3, EZH2, FAS, FGFR1, FLT1, FOXP1, GNA13, GRIN2A, GSK3B, HRAS, IKZF1, IRF4, JAK1, JAK2, KDR, KIT, KLHL6, KMT2C, KMT2D, KRAS, MAP2K1, MED12, MEF2B, MTOR, MYC, MYD88, NFKBIA, NOTCH1, NOTCH2, NRAS, NTRK1, PDGFRA, PIK3CA, PIK3CG, PIK3R1, PIK3R2, PRDM1, PRKDC, PTEN, RAF1, RB1, ROS1, SF3B1, SMARCA4, SOCS1, STAT3, SYK, TET2, TNFAIP3, TNFRSF14, XPO1
- 79 baseline PBMC samples were resequenced using a more sensitive assay (LoD ~ 0.5% VAF) to assess the presence of pre-existing *BTK* mutations

Baseline Characteristics & Response

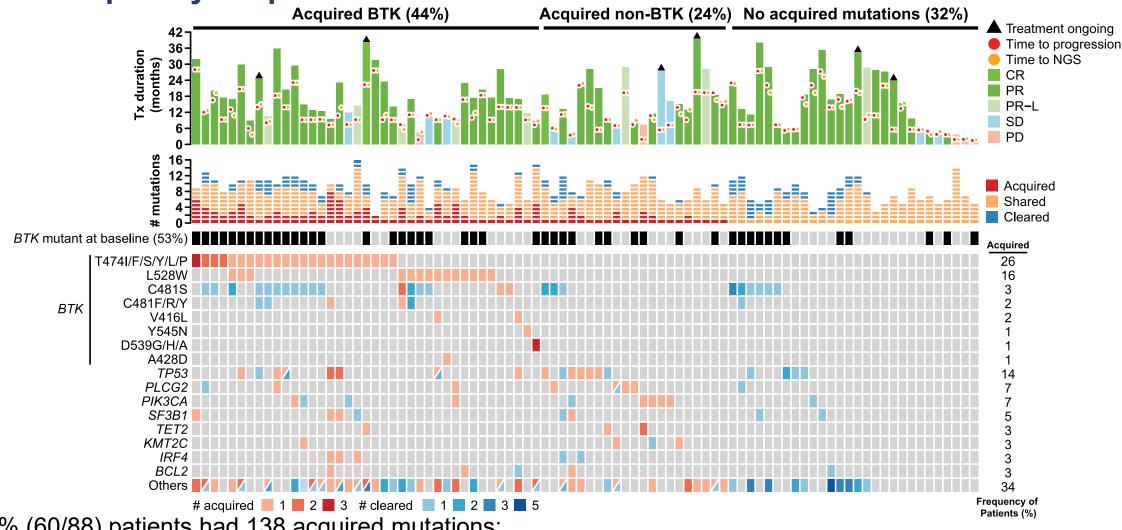

Characteristics	Overall n=245	Patients with PD and Longitudinal Samples n=88
Median Age, years (range)	69 (36-88)	69 (36-86)
Female, n (%)	78 (32)	32 (36)
ECOG , n (%)		
0	126 (51)	43 (49)
1	103 (42)	41 (47)
2	16 (7)	4 (5)
Median time on treatment , Months (range)	19 (0.20-49)	16 (1.2-39)
Median number of prior lines of systemic therapy, n (range)	4 (1-11)	4 (1-10)
Median number of prior cBTKi , n (range)	1 (1-5)	1 (1-4)
Reason for prior cBTKi discontinuation ^a , n (%)		
Disease progression Toxicity/ Other	181 (74) 64 (26)	75 (85) 13 (15)

Patients with documented PD may be allowed to continue study treatment if the patient is tolerating study drug and, in the opinion of the Investigator, the patient is deriving clinical benefit from continuing study treatment. ^aIn the event more than one reason was noted for discontinuation, disease progression took priority.

Characteristics	Overall n=245	Patients with PD and Longitudinal Samples n=88
Prior therapy, n (%)		
cBTK inhibitor		
Ibrutinib	218 (89)	79 (90)
Acalabrutinib	40 (16)	15 (17)
Zanubrutinib	7 (3)	2 (2)
Chemotherapy	199 (81)	75 (85)
CD20 antibody	217 (89)	79 (90)
BCL2 inhibitor	113 (46)	42 (48)
PI3K inhibitor	61 (25)	21 (24)
CAR-T	15 (6)	8 (9)
Pirtobrutinib Efficacy	Overall n=245	Patients with PD and Longitudinal Samples n=88
Overall Response Rate ^b , % (95%Cl)	82 (76-86)	83 (73-90)
Best Response, n (%)		
CR	5 (2)	2 (2)
PR	176 (72)	63 (72)
PR-L	19 (8)	8 (9)
SD	26 (11)	10 (11)
PD	8 (3)	5 (6)
NE	11 (4)	0 (0)

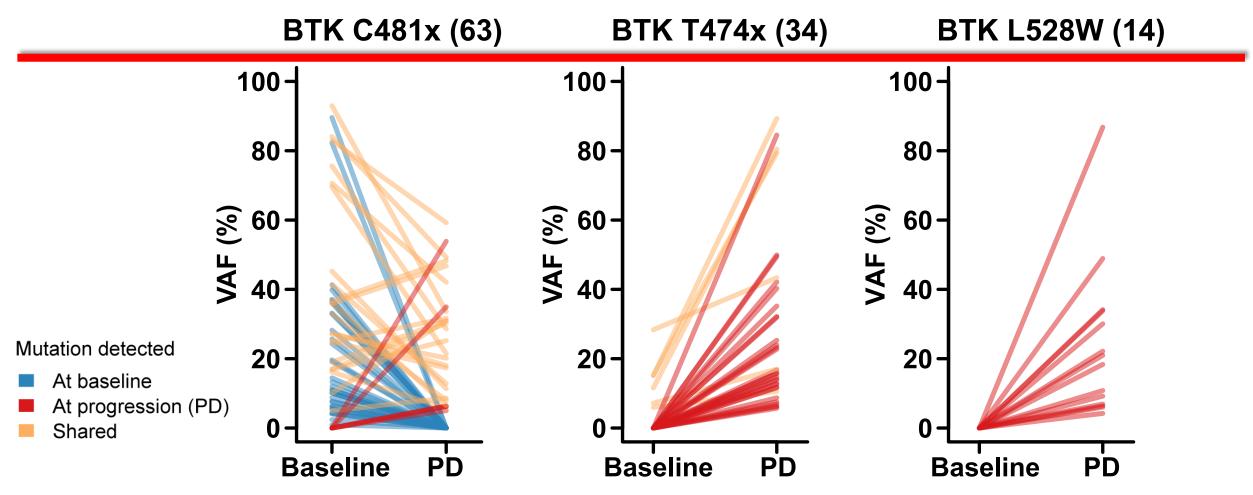

^bORR includes patients with a best response of CR, PR, and PR-L. Response status per iwCLL 2018 according to independent review committee assessment.

Baseline Genomics in Patients with PD on Pirtobrutinib (n=88)

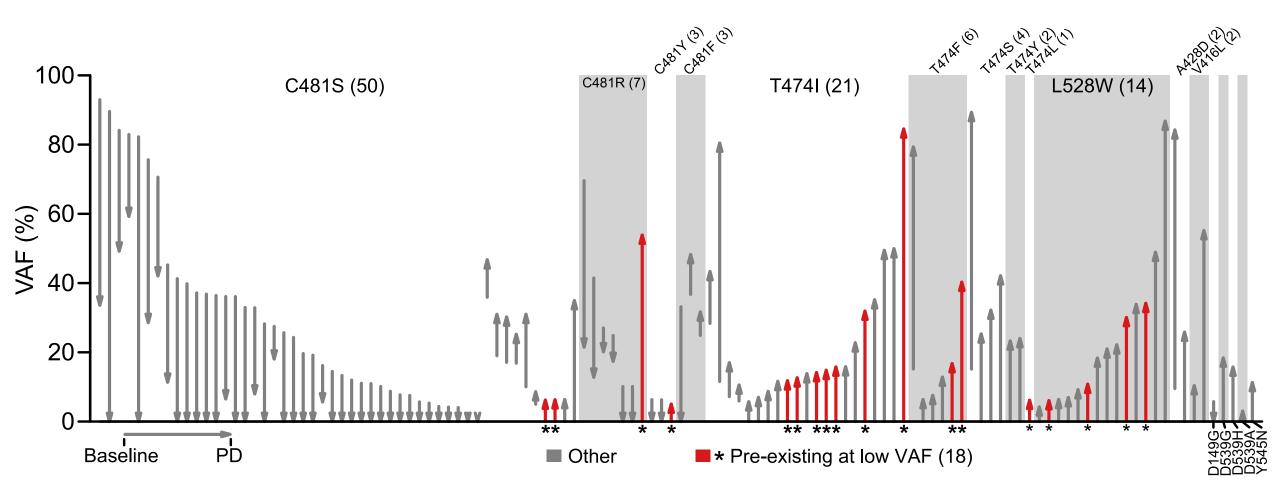


- The most common mutations detected at baseline were BTK (53%), TP53 (49%), SF3B1 (34%), ATM (23%), NOTCH1 (20%), PLCG2 (14%), BCL2 (9%)
- Pirtobrutinib demonstrated efficacy, with an ORR of 83% (73/88)
 - Baseline genomic features did not predict response to pirtobrutinib treatment

Acquired Mutations were Detected at PD in 68% of Patients

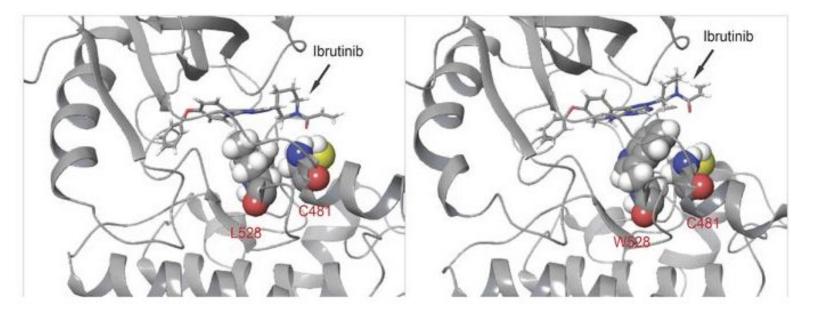


Most Frequently Acquired Mutations on Pirtobrutinib Treatment


- 68% (60/88) patients had 138 acquired mutations: •
 - 28% had a single acquired mutation and 40% had multiple acquired mutations (up to 8)
 - 30% had a single acquired BTK mutation and 14% had multiple acquired BTK mutations
 - 14% had TP53, 7% had PLCG2, 7% had PIK3CA, 3% BCL2 (all had prior venetoclax)
- 51% (24/47) had clearance of BTK mutations

The Majority of *BTK* Acquired Mutations were T474x and L528W

- Decrease/clearance of C481x^a clones observed at progression in 84% (36/43) patients (clearance = 23/43, 53%)
- BTK C481S/Y/R, T474x^a, L528W, other kinase mutations arose at/near progression (55 mutations in 39 patients, VAF range 3-86%)
- ORR was similar across groups regardless of the acquired *BTK* mutation (T474x, 22/23, 96%; L528W; 11/14, 79%)
 UNIVERSITY OF UTAH


37% of BTK Acquired Mutations Pre-exist at Low VAF at Baseline

- Among 49^a mutations, 18 (37%) acquired BTK mutations [T474I (7), L528W (4), T474F (2), C481S (2), C481Y, C481R, T474] were pre-existing at low VAF at baseline (VAF range; 0.2 5.6%)
- ORR was similar among patients with pre-existing T474x (13/14, 93%), L528W (3/4, 75%)

^a49 BTK acquired mutations in 79/88 patients with available baseline PBMCs re-sequenced using a more sensitive assay (LoD ~ 0.5%). Baseline *BTK* mutations detected by either standard and/or sensitive assay.

cBTKi Rechallenge Probably not Possible

Net change in binding free energy: W528 VS L528: 7.8+/-0.1 (kcal/mol)

Questions

• Thank you

