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Some fishing metaphors 
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Some fishing metaphors 

= measurement 
= inference engine 
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Some fishing metaphors 

CLINICAL TRIALS and DESIGNED EXPERIMENTS — 
You go exactly where the fish are and watch them as 
you shoot. Lots of scientific prep and skill required. 
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Some fishing metaphors 

PROSPECTIVE OBSERVATIONAL STUDIES — 
You can’t see directly so you learn to think like a fish. 

Where do they go? What’s their environment like? 
What do they like? Careful attention to season and 

currents (confounding) and lures (quantitative validity) 
as well as good rod and line (methods) are needed. 
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Some fishing metaphors 

SURVEYS and EXPLORATORY STUDIES — 
Row yourself into a fish arena and cast about for 

whatever fish are there. At best you may know about 
the presence of fish but still can’t see them (much). 

Your equipment is usually generic and subpar. 
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Some fishing metaphors 

HIGH-DIMENSIONAL MEASUREMENT GATHERING — 
E.g. “omics”. The expensive industrial version of casting 
off the side of a boat, only worse. Tedious sorting and 

filtering of the fish occupies the bulk of your effort, and 
most of the haul is not the fish you want. The trawling 

net may not even capture the fish you want… 
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Some fishing metaphors 

What does FISHING POWER even mean in this context?? 
Power to catch some “fish”?! The net will do that, by golly. 

 
Nearly everything about this kind of study is going in blind — 
you can’t see the fish, you can’t see what’s happening with 
the net, and you can’t see whether what’s being gathered is 
a good mix of what’s slipping past (but chances are it’s not). 

 
What “power” means here is being able to spot a good fish 
amid the motley collection of other marine odds and ends 
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Data personalities of various omics (and things like omics) 

DATA TYPE 
TYPICAL # OF 

FEATURES BIASES PROBLEMS 

genomics ~1M variant detection depends on context 
lower coverage affects detection 

sequencing errors 
higher coverage increases error rate 

epigenomics ~10-50M accuracy depends on read depth sequencing errors 

interactomics ~1-10M accuracy depends on read depth sequencing errors 

transcriptomics ~1K-10M+ accuracy depends on read depth 
accuracy depends on abundance 

dynamic range depends on context 

proteomics ~10K (targeted) only prespecified proteins 
(untargeted) only abundant proteins 

many missing values 
peptides shared by protein families 

metabolomics ~5K measurement noise sensitivity/drift many unknown/unlabeled features 

giant questionnaires ~100 only responders provide information missing/inconsistent responses 

administrative data ~10-50K only system clients represented 
unknown misclassification errors 

many data entry/coding errors 
broken/compromised linkages 

financial pricing/returns data ~100K+ daily not biased high degree of autocorrelation 

ecological sensor data ~50 minutely measurement noise sensitivity/drift high degree of multicollinearity 
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• Extreme skew 
• Censoring 
• Clumping of values 
• Accuracy varies by location on scale 

GRUNGY 
DATA 

• Variable library size… 
Is it biological?? Who can say 

• Missing feature quantifications…  
Are they below the limit of detection?? Who can say 

• Survey nonresponse… 
Are the responders atypical?? Who can say 

MISSING 
DATA 

Data personalities of various omics (and things like omics) 
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• Extreme skew 
• Censoring 
• Clumping of values 
• Accuracy varies by location on scale 

GRUNGY 
DATA 

• Variable library size… 
Is it biological?? Who can say 

• Missing feature quantifications…  
Are they below the limit of detection?? Who can say 

• Survey nonresponse… 
Are the responders atypical?? Who can say 

MISSING 
DATA 

Imputation and normalization can either add or 
subtract variability, and this shifts power curves. 

 
Burden of missing quantifications varies from feature to 

feature, and this makes power curves volatile. 

Data personalities of various omics (and things like omics) 
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• Extreme skew 
• Censoring 
• Clumping of values 
• Accuracy varies by location on scale 

GRUNGY 
DATA 

• Variable library size… 
Is it biological?? Who can say 

• Missing feature quantifications…  
Are they below the limit of detection?? Who can say 

• Survey nonresponse… 
Are the responders atypical?? Who can say 

MISSING 
DATA Robust methods like median regression or regularized 

regression may be needed, but performance depends 
on burden of problems, and this shifts power curves. 

 
Data transformations that help some features will hurt 
other features, and this makes power curves volatile. 

Data personalities of various omics (and things like omics) 
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Analytical choices do not affect power uniformly 

If you subtract the medians of 
two normal distributions… 

H0 H1 

If you subtract the medians of 
two skewed distributions… 

H0 H1 
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Analytical choices do not affect power uniformly 

If you subtract the medians of 
two normal distributions… 

H0 H1 

If you subtract the medians of 
two skewed distributions… 

H0 H1 

effect size (d) = 0.35 

sample size (n) = 40 



If you subtract the medians of 
two skewed distributions… 

H0 H1 

If you subtract the medians of 
two normal distributions… 

H0 H1 
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Analytical choices do not affect power uniformly 

Standard t-test 
(fine because 

mean ≈ median) 

Nonparametric test has slightly lower power 

Standard t-test (still fine 
because the statistic doesn’t 
care about higher moments) 

Nonparametric 
test has much 
higher power! 



If you subtract the medians of 
two skewed distributions… 

H0 H1 

If you subtract the medians of 
two normal distributions… 

H0 H1 
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Analytical choices do not affect power uniformly 

This is the prior distribution you assume for 
coefficients when you perform a RIDGE REGRESSION! 

 
(interpretable as a Bayesian procedure with 

independent normal priors on all coefficients) 

This is the prior distribution you assume for 
coefficients when you perform a LASSO REGRESSION! 

 
(interpretable as a Bayesian procedure with 

independent Laplace priors on all coefficients) 
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Why multivariate methods fail to be robust in high dimensions 

Recall the basic power calculation for a difference of two means:  

𝑝𝑜𝑤𝑒𝑟 = 1 − 𝛽 ≈ Φ
𝑛𝑟

1 + 𝑟

𝛿

𝜎
− 𝑧𝛼  

𝛿

𝜎
 is the effect size  

n = n1 + n2 is the total sample size 
and r = n2/n1 is the ratio of group sizes 

𝑧𝛼 is the upper αth 
quantile of the 

standard normal 
distribution 

𝜎 =
𝜎1
2

𝑛1
+
𝜎2
2

𝑛2

𝑛1𝑛2

𝑛1+𝑛2
 is a (crudely) pooled standard deviation 
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Why multivariate methods fail to be robust in high dimensions 

Recall the basic power calculation for a difference of two means: 

For a given power tolerance, this implies a total sample size requirement of: 

𝑛𝛿 𝜎 ≈
𝜎

𝛿

2

𝑧𝛽 + 𝑧𝛼
2 1 + 𝑟 2

𝑟
 

sample size is proportional to the 
square of the noise-to-signal ratio 

proportionality factor depends on 
your tolerance for making errors 

𝑝𝑜𝑤𝑒𝑟 = 1 − 𝛽 ≈ Φ
𝑛𝑟

1 + 𝑟

𝛿

𝜎
− 𝑧𝛼  

(scaling to achieve total) 
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Why multivariate methods fail to be robust in high dimensions 

Recall the basic power calculation for a difference of two means:  

For a given power tolerance, this implies a total sample size requirement of: 

BUT DO WE KNOW ANY OF THIS STUFF??! 

𝑝𝑜𝑤𝑒𝑟 = 1 − 𝛽 ≈ Φ
𝑛𝑟

1 + 𝑟

𝛿

𝜎
− 𝑧𝛼  

𝑛𝛿 𝜎 ≈
𝜎

𝛿

2

𝑧𝛽 + 𝑧𝛼
2 1 + 𝑟 2

𝑟
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Why multivariate methods fail to be robust in high dimensions 

Recall the basic power calculation for a difference of two means:  

For a given power tolerance, this implies a total sample size requirement of: 

BUT DO WE KNOW ANY OF THIS STUFF??! 

𝑝𝑜𝑤𝑒𝑟 = 1 − 𝛽 ≈ Φ
𝑛𝑟

1 + 𝑟

𝛿

𝜎
− 𝑧𝛼  

𝑛𝛿 𝜎 ≈
𝜎

𝛿

2

𝑧𝛽 + 𝑧𝛼
2 1 + 𝑟 2

𝑟
 

Variance depends on the feature… 
and we may have millions of them! 
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Why multivariate methods fail to be robust in high dimensions 

Recall the basic power calculation for a difference of two means:  

For a given power tolerance, this implies a total sample size requirement of: 

BUT DO WE KNOW ANY OF THIS STUFF??! 

𝑝𝑜𝑤𝑒𝑟 = 1 − 𝛽 ≈ Φ
𝑛𝑟

1 + 𝑟

𝛿

𝜎
− 𝑧𝛼  

𝑛𝛿 𝜎 ≈
𝜎

𝛿

2

𝑧𝛽 + 𝑧𝛼
2 1 + 𝑟 2

𝑟
 

Group difference also depends… 
and could be millions of those too! 
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Why multivariate methods fail to be robust in high dimensions 

Recall the basic power calculation for a difference of two means:  

For a given power tolerance, this implies a total sample size requirement of: 

BUT DO WE KNOW ANY OF THIS STUFF??! 

𝑝𝑜𝑤𝑒𝑟 = 1 − 𝛽 ≈ Φ
𝑛𝑟

1 + 𝑟

𝛿

𝜎
− 𝑧𝛼  

𝑛𝛿 𝜎 ≈
𝜎

𝛿

2

𝑧𝛽 + 𝑧𝛼
2 1 + 𝑟 2

𝑟
 

Apparently we’re supposed to 
“adjust” this somehow too… 
but for millions of things?? 

 
Most of which we don’t 
actually care about…! 
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Why multivariate methods fail to be robust in high dimensions 

Recall the basic power calculation for a difference of two means:  

For a given power tolerance, this implies a total sample size requirement of: 

BUT DO WE KNOW ANY OF THIS STUFF??! 

𝑝𝑜𝑤𝑒𝑟 = 1 − 𝛽 ≈ Φ
𝑛𝑟

1 + 𝑟

𝛿

𝜎
− 𝑧𝛼  

𝑛𝛿 𝜎 ≈
𝜎

𝛿

2

𝑧𝛽 + 𝑧𝛼
2 1 + 𝑟 2

𝑟
 

And for a given sample size n, adjusting α 
down implies adjusting β up… oh brother… 
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Why multivariate methods fail to be robust in high dimensions 

Recall the basic power calculation for a difference of two means:  

For a given power tolerance, this implies a total sample size requirement of: 

BUT DO WE KNOW ANY OF THIS STUFF??! 
Our so-called sample size calculation is UNDERDETERMINED 

 
It needs to be sensitive to all the local conditions applying 
individually to each feature, but we can’t make it that way, 
not just because we don’t know the conditions, but even 
more crucially because the conditions are heterogeneous 

𝑝𝑜𝑤𝑒𝑟 = 1 − 𝛽 ≈ Φ
𝑛𝑟

1 + 𝑟

𝛿

𝜎
− 𝑧𝛼  

𝑛𝛿 𝜎 ≈
𝜎

𝛿

2

𝑧𝛽 + 𝑧𝛼
2 1 + 𝑟 2

𝑟
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Why multivariate methods fail to be robust in high dimensions 

But there’s another problem too, also caused by the high dimensionality of the data: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝛿′Σ−1𝛿 
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Why multivariate methods fail to be robust in high dimensions 

But there’s another problem too, also caused by the high dimensionality of the data: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝛿′Σ−1𝛿 

Btw, increasingly unstable and 
eventually singular as p → n 
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Why multivariate methods fail to be robust in high dimensions 

As you add more features — especially irrelevant ones! — to data with a fixed sample size, 
the observations don’t cluster together (as you’d expect from “adding more information”) 
but rather fan apart and uniformly approach a thin surface inside the data space… 

This phenomenon is known as 
the “curse of dimensionality” 
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Why multivariate methods fail to be robust in high dimensions 

As you add more features — especially irrelevant ones! — to data with a fixed sample size, 
the observations don’t cluster together (as you’d expect from “adding more information”) 
but rather fan apart and uniformly approach a thin surface inside the data space… 

All observations move 
steadily away from the 
centroid of the data — 

in high dimensions, 
no one is typical! 



2024-01-29 OCTRI RESEARCH FORUM 29 

Why multivariate methods fail to be robust in high dimensions 

As you add more features — especially irrelevant ones! — to data with a fixed sample size, 
the observations don’t cluster together (as you’d expect from “adding more information”) 
but rather fan apart and uniformly approach a thin surface inside the data space… 

Even worse, the variance in 
the distances shrinks — 

in high dimensions, everyone 
looks equally weird and 

different from each other! 
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Why multivariate methods fail to be robust in high dimensions 

As you add more features — especially irrelevant ones! — to data with a fixed sample size, 
the observations don’t cluster together (as you’d expect from “adding more information”) 
but rather fan apart and uniformly approach a thin surface inside the data space… 

But paradoxically, you can still use the features 
to separate any subgroup you want, as long as 
the number of features you use is proportional 
to the total (even if that proportion is small!) — 
what matters is not the informativeness but the 
availability of features to explain observations 
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Why multivariate methods fail to be robust in high dimensions 

As you add more features — especially irrelevant ones! — to data with a fixed sample size, 
the observations don’t cluster together (as you’d expect from “adding more information”) 
but rather fan apart and uniformly approach a thin surface inside the data space… 

…and the subgroup distance with 
respect to the selection of features 
only matters if the features p << n 
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Why multivariate methods fail to be robust in high dimensions 

As you add more features — especially irrelevant ones! — to data with a fixed sample size, 
the observations don’t cluster together (as you’d expect from “adding more information”) 
but rather fan apart and uniformly approach a thin surface inside the data space… 

Now we see our sample size calculation is also OVERDETERMINED 
 

We can choose any sample size we like as long as we’re willing to use enough 
features to explain them. Even if we feel we’re being parsimonious (e.g. using 

regularized regression), very high availability of features will always lead to high 
predictability of subgroups (aka overfitting) unless we apply stringent filters 
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Why multivariate methods fail to be robust in high dimensions 

Multivariate thinking in very high dimensions thus leads to a PARADOX 
 
 We can’t choose any globally appropriate sample size due to feature heterogeneity 
 At the same time, any sample size we choose is adequate due to feature availability 
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Why multivariate methods fail to be robust in high dimensions 

Multivariate thinking in very high dimensions thus leads to a PARADOX 
 
 We can’t choose any globally appropriate sample size due to feature heterogeneity 
 At the same time, any sample size we choose is adequate due to feature availability 

We need another approach… 
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So much complexity, so little time 

Multivariate thinking leads to a dead end. We should start thinking distributionally… 

yummy fish yummy fish 

yucky fish 
non-fish 
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So much complexity, so little time 

Multivariate thinking leads to a dead end. We should start thinking distributionally… 

yummy fish yummy fish 

yucky fish 
non-fish 

Let’s suppose that we can reduce 
whatever we want to know to e.g. a 
single coefficient from a regression 
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So much complexity, so little time 

The idea: Fit a finite-mixture model to the association scores. Excess density is exciting! 
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So much complexity, so little time 

The idea: Fit a finite-mixture model to the association scores. Excess density is exciting! 

When there’s zero association, the null 
distribution of z-scores is standard normal 

 
(If the estimate is unconfounded! See Efron 

2010 for ways around that problem) 
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So much complexity, so little time 

The idea: Fit a finite-mixture model to the association scores. Excess density is exciting! 

But the empirical distribution is fatter 
than standard normal… hmm… 
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So much complexity, so little time 

The idea: Fit a finite-mixture model to the association scores. Excess density is exciting! 

Using the identifying assumption that a small window 
around zero is “always null”, we can fit the central 
bulk of the histogram to a normal distribution — 

which should turn out to be 𝜇, 𝜎 ≈ (0,1) 

“0” 
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So much complexity, so little time 

The idea: Fit a finite-mixture model to the association scores. Excess density is exciting! 

Then the excess bulk in each tail 
can be thought of as “non-null”! 
Then the excess bulk in each tail 
can be thought of as “non-null”! 
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So much complexity, so little time 

The idea: Fit a finite-mixture model to the association scores. Excess density is exciting! 

This is the whole idea behind the 
concept of FALSE DISCOVERY RATE 

= fdr(z) 
+ 
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So much complexity, so little time 

The idea: Fit a finite-mixture model to the association scores. Excess density is exciting! 

These cuts represent z-scores where 
the likelihood ratio fnull : fnon-null ≈ 1 

The usual (e.g. Benjamini-Hochberg) 
FDR statistics are estimates of the 

average false discovery rate across all 
features more extreme than a cutoff 
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So much complexity, so little time 

The idea: Fit a finite-mixture model to the association scores. Excess density is exciting! 

In this region, the false discovery 
rate is high (fnull > fnon-null)… …but here the false discovery 

rate is low (fnull < fnon-null) 
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So much complexity, so little time 

Sample size doesn’t alter 
the null distribution at all 

How does sample size impact fdr? 
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So much complexity, so little time 

|effect size| = Lognormal(μ=0.3,σ=2) 

But sample size does alter 
the non-null distribution! 

How does sample size impact fdr? 
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So much complexity, so little time 

But sample size does alter 
the non-null distribution! 

|effect size| = Lognormal(μ=0.3,σ=2) 

How does sample size impact fdr? 



2024-01-29 OCTRI RESEARCH FORUM 48 

So much complexity, so little time 

But sample size does alter 
the non-null distribution! 

|effect size| = Lognormal(μ=0.3,σ=2) 

How does sample size impact fdr? 
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How do we “control” false discoveries? (We actually can’t) 

Concern about false discovery rates is fundamentally a Bayesian idea: 

+ − 

T TP FN FN/T = β 

F FP TN FP/F = α 

FP/+ = FDR FN/− = FOR 
Classical statistical theory says 
to look only at the ROWS — 
Let’s try to limit the rate of 
false assertions we make! Bayesian decision theory says 

to look at the COLUMNS — 
Let’s try not to regret too many 

of the decisions we make! 
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How do we “control” false discoveries? (We actually can’t) 

Concern about false discovery rates is fundamentally a Bayesian idea: 

+ − 

T TP FN FN/T = β 

F FP TN FP/F = α 

FP/+ = FDR FN/− = FOR 

“FOR” = false omission rate 

Classical statistical theory says 
to look only at the ROWS — 
Let’s try to limit the rate of 
false assertions we make! Bayesian decision theory says 

to look at the COLUMNS — 
Let’s try not to regret too many 

of the decisions we make! 
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How do we “control” false discoveries? (We actually can’t) 

Concern about false discovery rates is fundamentally a Bayesian idea: 

+ − 

T TP FN FN/T = β 

F FP TN FP/F = α 

FP/+ = FDR FN/− = FOR 

It means we give up the concept of control by design (e.g. if T = 0 and we declare anything at 
all a “discovery” then our FDR = 100%), but in exchange we assert local control to base 
decisions on the data after we actually observe it. We can be sensitive to the distribution of 
our findings rather than fuss about adding a dirty dish to the Cupboard of Scientific Truths. 
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How do we “control” false discoveries? (We actually can’t) 

I would argue no such Cupboard exists. 
Or if it does, it’s all dirty dishes in there. 

Concern about false discovery rates is fundamentally a Bayesian idea: 

+ − 

T TP FN FN/T = β 

F FP TN FP/F = α 

FP/+ = FDR FN/− = FOR 

It means we give up the concept of control by design (e.g. if T = 0 and we declare anything at 
all a “discovery” then our FDR = 100%), but in exchange we assert local control to base 
decisions on the data after we actually observe it. We can be sensitive to the distribution of 
our findings rather than fuss about adding a dirty dish to the Cupboard of Scientific Truths. 
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How do we “control” false discoveries? (We actually can’t) 

Concern about false discovery rates is fundamentally a Bayesian idea: 

+ − 

T TP FN FN/T = β 

F FP TN FP/F = α 

FP/+ = FDR FN/− = FOR 

It means we give up the concept of control by design (e.g. if T = 0 and we declare anything at 
all a “discovery” then our FDR = 100%), but in exchange we assert local control to base 
decisions on the data after we actually observe it. We can be sensitive to the distribution of 
our findings rather than fuss about adding a dirty dish to the Cupboard of Scientific Truths. 

Bonferroni-style FWER control means refusing to decide on a set (“fail to reject”) unless all 
rejections for the set are correct (at < α error rate), whereas Tukey-style (“higher criticism”) 
control means accepting a set if at least one rejection is correct. FDR is neither of those. 
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How do we “control” false discoveries? (We actually can’t) 

Concern about false discovery rates is fundamentally a Bayesian idea: 

+ − 

T TP FN FN/T = β 

F FP TN FP/F = α 

FP/+ = FDR FN/− = FOR 

It means we give up the concept of control by design (e.g. if T = 0 and we declare anything at 
all a “discovery” then our FDR = 100%), but in exchange we assert local control to base 
decisions on the data after we actually observe it. We can be sensitive to the distribution of 
our findings rather than fuss about adding a dirty dish to the Cupboard of Scientific Truths. 

Bonferroni-style FWER control means refusing to decide on a set (“fail to reject”) unless all 
rejections for the set are correct (at < α error rate), whereas Tukey-style (“higher criticism”) 
control means accepting a set if at least one rejection is correct. FDR is neither of those. 

FDR is simply a statistic — a local estimate of the proportion of false discoveries among 
some set of discoveries. Not hypothesis-testing but calibration of the z-score distribution. 
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IDEA #1 
 
 Assume a prior probability θ (proportion of the features you think are truly associated) 
 Set β to shoot for a target power (1 − β) 
 Given β, figure out how to adjust α to arrive at a particular (version of) FDR 
 Use β and the adjusted α to estimate sample size for a single feature in the usual way 

Using false discovery rate tolerance to estimate sample size 

Works about like Bonferroni 
correction, just less! 
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IDEA #1 
 
 Assume a prior probability θ (proportion of the features you think are truly associated) 
 Set β to shoot for a target power (1 − β) 
 Given β, figure out how to adjust α to arrive at a particular (version of) FDR 
 Use β and the adjusted α to estimate sample size for a single feature in the usual way 

Using false discovery rate tolerance to estimate sample size 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝛼 =
𝐹𝐷𝑅

1 − 𝐹𝐷𝑅
⋅
𝜃

1 − 𝜃
⋅ 1 − 𝛽  

Probability of detecting a 
proposed effect size at this α 

Odds of a real association: 
Penalty for having a sparse 

population of good features 

Odds of false discovery: 
Tune to some value that 
you’re comfortable with 
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IDEA #1 
 
 Assume a prior probability θ (proportion of the features you think are truly associated) 
 Set β to shoot for a target power (1 − β) 
 Given β, figure out how to adjust α to arrive at a particular (version of) FDR 
 Use β and the adjusted α to estimate sample size for a single feature in the usual way 

Using false discovery rate tolerance to estimate sample size 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝛼 =
𝐹𝐷𝑅

1 − 𝐹𝐷𝑅
⋅
𝜃

1 − 𝜃
⋅ 1 − 𝛽  

This really only makes sense for sparse 
scenarios (θ << 50%) and FDR < 50%. 
Perversely set both odds terms to 1 

and get back an “adjusted α” of 0.8 (!) 
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IDEA #1 
 
 Assume a prior probability θ (proportion of the features you think are truly associated) 
 Set β to shoot for a target power (1 − β) 
 Given β, figure out how to adjust α to arrive at a particular (version of) FDR 
 Use β and the adjusted α to estimate sample size for a single feature in the usual way 

Using false discovery rate tolerance to estimate sample size 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝛼 =
𝐹𝐷𝑅

1 − 𝐹𝐷𝑅
⋅
𝜃

1 − 𝜃
⋅ 1 − 𝛽  

EXAMPLE 
Assume θ=10% (we doubt that too much of the panel is truly relevant) 
and 1 − β = 80% and set FDR=10% with the goal of being moderately but 
not overly stringent. The formula gives adjusted α=0.0099, which is 
nearly equivalent to the very weak Bonferroni adjustment of α’ = 0.05/5. 
So powering in the usual way for a single association is equivalent to 
making the assumption that if 10% of our features have that magnitude 
of association, then our decision rule accepting 10% false discoveries will 
work for us as long as we do a FWER correction for 5 tests, regardless of 
the actual size of the panel. 
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IDEA #1 
 
 Assume a prior probability θ (proportion of the features you think are truly associated) 
 Set β to shoot for a target power (1 − β) 
 Given β, figure out how to adjust α to arrive at a particular (version of) FDR 
 Use β and the adjusted α to estimate sample size for a single feature in the usual way 

Using false discovery rate tolerance to estimate sample size 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝛼 =
𝐹𝐷𝑅

1 − 𝐹𝐷𝑅
⋅
𝜃

1 − 𝜃
⋅ 1 − 𝛽  

The downside is that this is pretty gimmicky. It’s quite difficult to justify the assumption that 
we can accurately guess what fraction of our data feature panel will have true associations 
of significant magnitude. For dense scenarios (e.g. θ ≈ 50%), stringent FDR rules are needed 
to arrive at reasonable values, and the formula ignores the curse of dimensionality by 
claiming the penalty for assuming 100K associated genes in a panel of 1M is qualitatively no 
different than assuming 1 associated outcome among a total of 10 that you’ll check. 
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IDEA #1 
 
 Assume a prior probability θ (proportion of the features you think are truly associated) 
 Set β to shoot for a target power (1 − β) 
 Given β, figure out how to adjust α to arrive at a particular (version of) FDR 
 Use β and the adjusted α to estimate sample size for a single feature in the usual way 

Using false discovery rate tolerance to estimate sample size 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝛼 =
𝐹𝐷𝑅

1 − 𝐹𝐷𝑅
⋅
𝜃

1 − 𝜃
⋅ 1 − 𝛽  

The downside is that this is pretty gimmicky. It’s quite difficult to justify the assumption that 
we can accurately guess what fraction of our data feature panel will have true associations 
of significant magnitude. For dense scenarios (e.g. θ ≈ 50%), stringent FDR rules are needed 
to arrive at reasonable values, and the formula ignores the curse of dimensionality by 
claiming the penalty for assuming 100K associated genes in a panel of 1M is qualitatively no 
different than assuming 1 associated outcome among a total of 10 that you’ll check. 

EXAMPLE (continued) 
Having obtained adjusted α=0.0099, now we need to assume that 10% of 
our features will at minimum have some appreciable magnitude of 
association. Since we’re assuming some sparsity going in, choosing 
something modest like Cohen’s d=0.3 may be acceptable (albeit unlikely 
to actually pan out). Calculating sample size for that yields n≈525 needed. 
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Using false discovery rate tolerance to estimate sample size 

IDEA #2 
 
 Assume a prior probability θ (proportion of the features you think are truly associated) 
 Use θ to convert FDR and FOR into α and β 
 Use α and β to estimate sample size for a single feature in the usual way 

Hey, it’s the same table! 
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Using false discovery rate tolerance to estimate sample size 

IDEA #2 
 
 Assume a prior probability θ (proportion of the features you think are truly associated) 
 Use θ to convert FDR and FOR into α and β 
 Use α and β to estimate sample size for a single feature in the usual way 

𝛼 =
𝐹𝐷𝑅

1 − 𝐹𝑂𝑅 − 𝐹𝐷𝑅
⋅
𝜃 − 𝐹𝑂𝑅

1 − 𝜃
 

𝛽 =
𝐹𝑂𝑅

1 − 𝐹𝑂𝑅 − 𝐹𝐷𝑅
⋅
1 − 𝐹𝐷𝑅 − 𝜃

𝜃
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Using false discovery rate tolerance to estimate sample size 

IDEA #2 
 
 Assume a prior probability θ (proportion of the features you think are truly associated) 
 Use θ to convert FDR and FOR into α and β 
 Use α and β to estimate sample size for a single feature in the usual way 

𝛼 =
𝐹𝐷𝑅

1 − 𝐹𝑂𝑅 − 𝐹𝐷𝑅
⋅
𝜃 − 𝐹𝑂𝑅

1 − 𝜃
 

𝛽 =
𝐹𝑂𝑅

1 − 𝐹𝑂𝑅 − 𝐹𝐷𝑅
⋅
1 − 𝐹𝐷𝑅 − 𝜃

𝜃
 

EXAMPLE 
Assume θ=20% (we’re somewhat hopeful our omics will offer something) 
and we don’t want to miss too much of what’s there, so we set FOR=5% 
(note that FOR < θ and 1 − FDR > θ are required for the conversion to 
work sensibly), but in compensation we’re willing to accept FDR=20%. 
The formulas magically give α=0.05 and β=0.20. So powering in the usual 
way for a single association is equivalent to making the assumption that 
20% of our features will have that magnitude of association, and that our 
decision rule accepting 20% false discoveries will lead to only 5% of our 
omissions being true associations. 
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Using false discovery rate tolerance to estimate sample size 

IDEA #2 
 
 Assume a prior probability θ (proportion of the features you think are truly associated) 
 Use θ to convert FDR and FOR into α and β 
 Use α and β to estimate sample size for a single feature in the usual way 

𝛼 =
𝐹𝐷𝑅

1 − 𝐹𝑂𝑅 − 𝐹𝐷𝑅
⋅
𝜃 − 𝐹𝑂𝑅

1 − 𝜃
 

𝛽 =
𝐹𝑂𝑅

1 − 𝐹𝑂𝑅 − 𝐹𝐷𝑅
⋅
1 − 𝐹𝐷𝑅 − 𝜃

𝜃
 

This is pretty gimmicky too. It’s difficult to arrive at combinations of α and β that will fly with 
grant reviewers, and (as with IDEA #1) even more difficult to justify the assumption that we 
can accurately guess what fraction of our data feature panel will show associations of 
significant magnitude. For realistically sparse scenarios (e.g. θ < 10%), stringent FDR rules 
are needed to arrive at reasonable values. 
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Using false discovery rate tolerance to estimate sample size 

IDEA #2 
 
 Assume a prior probability θ (proportion of the features you think are truly associated) 
 Use θ to convert FDR and FOR into α and β 
 Use α and β to estimate sample size for a single feature in the usual way 

𝛼 =
𝐹𝐷𝑅

1 − 𝐹𝑂𝑅 − 𝐹𝐷𝑅
⋅
𝜃 − 𝐹𝑂𝑅

1 − 𝜃
 

𝛽 =
𝐹𝑂𝑅

1 − 𝐹𝑂𝑅 − 𝐹𝐷𝑅
⋅
1 − 𝐹𝐷𝑅 − 𝜃

𝜃
 

This is pretty gimmicky too. It’s difficult to arrive at combinations of α and β that will fly with 
grant reviewers, and (as with IDEA #1) even more difficult to justify the assumption that we 
can accurately guess what fraction of our data feature panel will show associations of 
significant magnitude. For realistically sparse scenarios (e.g. θ < 10%), stringent FDR rules 
are needed to arrive at reasonable values. 

EXAMPLE (continued) 
Having obtained α=0.05 and β=0.20, now we need to assume that 20% of 
our features will at minimum have some appreciable magnitude of 
association. However, something like Cohen’s d=0.5 is not going to fly! 
There’s basically no way 20% of any omics panel will be that predictive; 
maybe d=0.2 is more realistic (altho probably still optimistic). Calculating 
sample size for that yields n≈800 needed. 
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Using false discovery rate tolerance to estimate sample size 

Surely we can do better!? Those first ideas are easy but arguably dorky. 
Here’s IDEA #3 
 
 Simulate some “data” that looks like what we expect 
 Parse the simulated finite mixture into components and calculate fdr values 
 Calculate the expected false discovery rate 𝐸𝑛𝑜𝑛−𝑛𝑢𝑙𝑙 𝑓𝑑𝑟  across non-null components 

 If this value is large, the features we want are mostly hiding amongst the nulls 
 If this value is small, the features we want are mostly separated from the nulls 

 𝐸𝑛𝑜𝑛−𝑛𝑢𝑙𝑙 𝑓𝑑𝑟 < 𝑓𝑑𝑟𝑐𝑢𝑡𝑜𝑓𝑓 reflects a scenario where power is good 

(i.e. the “excess density” according to our cutoff is mostly outside the null density) 
 Iteratively adjust the sample size in the simulations until you obtain this! 
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Using false discovery rate tolerance to estimate sample size 

Surely we can do better!? Those first ideas are easy but arguably dorky. 
Here’s IDEA #3 
 
 Simulate some “data” that looks like what we expect 
 Parse the simulated finite mixture into components and calculate fdr values 
 Calculate the expected false discovery rate 𝐸𝑛𝑜𝑛−𝑛𝑢𝑙𝑙 𝑓𝑑𝑟  across non-null components 

 If this value is large, the features we want are mostly hiding amongst the nulls 
 If this value is small, the features we want are mostly separated from the nulls 

 𝐸𝑛𝑜𝑛−𝑛𝑢𝑙𝑙 𝑓𝑑𝑟 < 𝑓𝑑𝑟𝑐𝑢𝑡𝑜𝑓𝑓 reflects a scenario where power is good 

(i.e. the “excess density” according to our cutoff is mostly outside the null density) 
 Iteratively adjust the sample size in the simulations until you obtain this! 

EXAMPLE 
For the simulations we did above, let’s try this! In those, we simulated 
1000 features with a 9:1 split of null:non-null features, and in the latter 
the median effect size was 0.3 (with large variance). As a sanity check, we 
also tried it with the 100% null simulation and got expected fdr of 1 as we 
should. Values were > 10% for sample sizes n < 1000 (including one at 
n=250 not shown, with expected fdr of 0.37), suggesting that n≈1000 is 
needed if we want to use fdr = 10% as a cutoff for discoveries there. 
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E[fdr] = 1 

Using false discovery rate tolerance to estimate sample size 
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E[fdr] = 0.73 

Using false discovery rate tolerance to estimate sample size 
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E[fdr] = 0.46 

Using false discovery rate tolerance to estimate sample size 
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E[fdr] = 0.09 

Using false discovery rate tolerance to estimate sample size 
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What about a fully Bayesian approach? 

What thinking distributionally means is that we don’t have to view the high-dimensional 
dataset as a bunch of different things. We can view it as one thing — an average feature — 
that has a distribution attached to it. 
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What about a fully Bayesian approach? 

What thinking distributionally means is that we don’t have to view the high-dimensional 
dataset as a bunch of different things. We can view it as one thing — an average feature — 
that has a distribution attached to it. 

For the purpose of estimating sample size, it’s the average feature that’s most relevant to us. 
We also don’t want to pretend that every associated feature has the same effect size; that 
the average one has some particular effect size is a more natural assumption. 
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What about a fully Bayesian approach? 

What thinking distributionally means is that we don’t have to view the high-dimensional 
dataset as a bunch of different things. We can view it as one thing — an average feature — 
that has a distribution attached to it. 

For the purpose of estimating sample size, it’s the average feature that’s most relevant to us. 
We also don’t want to pretend that every associated feature has the same effect size; that 
the average one has some particular effect size is a more natural assumption. 

We can also define “average” however we like via choice of prior distribution. For example, 
use the same reasoning as for the identifying assumption in the finite-mixture analysis of a 
small “null window” near zero where only null associations live, we can say that any z-score 
too close to zero is automatically discounted. 
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What about a fully Bayesian approach? 

What thinking distributionally means is that we don’t have to view the high-dimensional 
dataset as a bunch of different things. We can view it as one thing — an average feature — 
that has a distribution attached to it. 

For the purpose of estimating sample size, it’s the average feature that’s most relevant to us. 
We also don’t want to pretend that every associated feature has the same effect size; that 
the average one has some particular effect size is a more natural assumption. 

We can also define “average” however we like via choice of prior distribution. For example, 
use the same reasoning as for the identifying assumption in the finite-mixture analysis of a 
small “null window” near zero where only null associations live, we can say that any z-score 
too close to zero is automatically discounted. 

Also, from a Bayesian point of view a two-sided alternative hypothesis makes little sense. 
Placing more prior weight near zero is a more natural way to express directional uncertainty. 
Once we have observed a direction, the power we care about is the power to assign high 
probability to the observed direction relative to the opposite direction. 
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What about a fully Bayesian approach? 

The most natural Bayesian analogue to study power is (pre)posterior risk — your (expected) 
uncertainty (under e.g. squared-error loss) after having seen and analyzed the data. 
Adopting the posterior variance of the association as the posterior risk is IDEA #4 
 
 Assume a normal-normal model: 𝑝 𝛿|𝑦 ~𝑁 𝛿|𝜃, 1 + 𝑟 2𝜎2 𝑛𝑟 ⋅ 𝑁 𝜃|𝜇𝛿 , 𝜏

2  
 Calculate the posterior risk given assumptions for (σ, τ) 
 Figure out how the posterior risk varies as a function of n 
 Justify a particular value of posterior risk (lower is better!) and target n to achieve that 
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What about a fully Bayesian approach? 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑟𝑖𝑠𝑘 ≈ 𝜎𝛿
2|𝑦 =

1

1
𝜏2
+
𝑛
𝜎2

𝑟
1 + 𝑟 2

 

𝑛 ≈
𝜎

𝜎𝛿|𝑦

2

1 −
𝜎𝛿|𝑦

𝜏

2 +
1 + 𝑟 2

𝑟
 

The most natural Bayesian analogue to study power is (pre)posterior risk — your (expected) 
uncertainty (under e.g. squared-error loss) after having seen and analyzed the data. 
Adopting the posterior variance of the association as the posterior risk is IDEA #4 
 
 Assume a normal-normal model: 𝑝 𝛿|𝑦 ~𝑁 𝛿|𝜃, 1 + 𝑟 2𝜎2 𝑛𝑟 ⋅ 𝑁 𝜃|𝜇𝛿 , 𝜏

2  
 Calculate the posterior risk given assumptions for (σ, τ) 
 Figure out how the posterior risk varies as a function of n 
 Justify a particular value of posterior risk (lower is better!) and target n to achieve that 

sample size is proportional to the square of the ratio 
of sampling noise to posterior parameter uncertainty 

(no mention of “error rates” — irrelevant! the 
uncertainty captures everything we need to know) 

proportionality factor depends on how large our prior 
uncertainty was — if we were already pretty close so 

that τ ≈ σδ|y then we don’t need more research, but if 
we were far off as τ >> σδ|y then we need a lot more 

(same scaling to total as before) 
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What about a fully Bayesian approach? 

The most natural Bayesian analogue to study power is (pre)posterior risk — your (expected) 
uncertainty (under e.g. squared-error loss) after having seen and analyzed the data. 
Adopting the posterior variance of the association as the posterior risk is IDEA #4 
 
 Assume a normal-normal model: 𝑝 𝛿|𝑦 ~𝑁 𝛿|𝜃, 1 + 𝑟 2𝜎2 𝑛𝑟 ⋅ 𝑁 𝜃|𝜇𝛿 , 𝜏

2  
 Calculate the posterior risk given assumptions for (σ, τ) 
 Figure out how the posterior risk varies as a function of n 
 Justify a particular value of posterior risk (lower is better!) and target n to achieve that 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑟𝑖𝑠𝑘 ≈ 𝜎𝛿
2|𝑦 =

1

1
𝜏2
+
𝑛
𝜎2

𝑟
1 + 𝑟 2

 

𝑛 ≈
𝜎

𝜎𝛿|𝑦

2

1 −
𝜎𝛿|𝑦

𝜏

2 +
1 + 𝑟 2

𝑟
 

Doesn’t depend on the data (y)! 
Normal-normal model is nice this way 

As τ grows large, the calculation 
approaches the usual frequentist one 

(where the size of σδ|y we demand was 
specified as a function of α and β) 
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What about a fully Bayesian approach? 

The most natural Bayesian analogue to study power is (pre)posterior risk — your (expected) 
uncertainty (under e.g. squared-error loss) after having seen and analyzed the data. 
Adopting the posterior variance of the association as the posterior risk is IDEA #4 
 
 Assume a normal-normal model: 𝑝 𝛿|𝑦 ~𝑁 𝛿|𝜃, 1 + 𝑟 2𝜎2 𝑛𝑟 ⋅ 𝑁 𝜃|𝜇𝛿 , 𝜏

2  
 Calculate the posterior risk given assumptions for (σ, τ) 
 Figure out how the posterior risk varies as a function of n 
 Justify a particular value of posterior risk (lower is better!) and target n to achieve that 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑟𝑖𝑠𝑘 ≈ 𝜎𝛿
2|𝑦 =

1

1
𝜏2
+
𝑛
𝜎2

𝑟
1 + 𝑟 2

 

𝑛 ≈
𝜎

𝜎𝛿|𝑦

2

1 −
𝜎𝛿|𝑦

𝜏

2 +
1 + 𝑟 2

𝑟
 

EXAMPLE 
In the simulations we did above, we assumed a typical effect size of 0.3, 
so if the standard error is about 15% of the standard deviation then a 
95% confidence interval would just touch zero, but the Bayes factor for 
such a tight decision is at most 4:1, which feels risky. We would prefer 
our posterior risk to feel something more like the confidence level, e.g. 
Bayes factor of 20:1 or more. That means we want our standard error at 
least 30-50% smaller, such as 5-10% of the standard deviation at most; 
let’s pick 8%. We’ll assume the variance of effect sizes across all effects is 
much larger than the standard error of any single effect. If we have equal 
group sample sizes this gives n≈625 as the recommended total. 
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What about a fully Bayesian approach? 

The most natural Bayesian analogue to study power is (pre)posterior risk — your (expected) 
uncertainty (under e.g. squared-error loss) after having seen and analyzed the data. 
Adopting the posterior variance of the association as the posterior risk is IDEA #4 
 
 Assume a normal-normal model: 𝑝 𝛿|𝑦 ~𝑁 𝛿|𝜃, 1 + 𝑟 2𝜎2 𝑛𝑟 ⋅ 𝑁 𝜃|𝜇𝛿 , 𝜏

2  
 Calculate the posterior risk given assumptions for (σ, τ) 
 Figure out how the posterior risk varies as a function of n 
 Justify a particular value of posterior risk (lower is better!) and target n to achieve that 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑟𝑖𝑠𝑘 ≈ 𝜎𝛿
2|𝑦 =

1

1
𝜏2
+
𝑛
𝜎2

𝑟
1 + 𝑟 2

 

𝑛 ≈
𝜎

𝜎𝛿|𝑦

2

1 −
𝜎𝛿|𝑦

𝜏

2 +
1 + 𝑟 2

𝑟
 

This is sorta Bayesian but feels pretty simplistic. All we’re really saying is that we want all of 
the standard errors to be quite small relative to the standard deviations. Nothing about 
effect sizes or estimated discovery probability that reviewers will want to hear about. 
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What about a fully Bayesian approach? 

A more principled Bayesian approach is to find an expression for expected power at a given 
sample size and then vary the sample size to see where expected power gets good enough. 
The expectation can be with respect to our prior belief that an observed effect of given size 
will have the correct sign. (This may vary with the size! More on that later.) 
That’s IDEA #5 
 
 Assume a normal prior distribution for δ given a location: 𝑝 𝛿|𝜃 ~𝑁 𝛿|𝜃, 𝜏2  
 Calculate the expected power at δ for a given α and n, assuming δ=θ with variance τ2 

 Vary n (you could also vary α for fixed n, as with FDR approaches) to find good power 
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What about a fully Bayesian approach? 

A more principled Bayesian approach is to find an expression for expected power at a given 
sample size and then vary the sample size to see where expected power gets good enough. 
The expectation can be with respect to our prior belief that an observed effect of given size 
will have the correct sign. (This may vary with the size! More on that later.) 
That’s IDEA #5 
 
 Assume a normal prior distribution for δ given a location: 𝑝 𝛿|𝜃 ~𝑁 𝛿|𝜃, 𝜏2  
 Calculate the expected power at δ for a given α and n, assuming δ=θ with variance τ2 

 Vary n (you could also vary α for fixed n, as with FDR approaches) to find good power 

Wait, we’re still caring about α??! Yes 
— that’s because we’re still describing 

frequentist power, just going about it in 
a Bayesian way, factoring in uncertainty 

A thorn in our side is we don’t know how to pick this. 
But we can use normal distribution theory! If δ is 
normal with mean θ >0 and standard deviation τ, 

then the z-score for a realized value δ0 is z0=(δ0−θ)/τ; 
choosing δ0=0 gives z0=−θ/τ or equivalently τ=−θ/z0 
where z0=Φ-1(P(δ<δ0=0)), so we can estimate τ by 

guessing how often δ would be negative 
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What about a fully Bayesian approach? 

A more principled Bayesian approach is to find an expression for expected power at a given 
sample size and then vary the sample size to see where expected power gets good enough. 
The expectation can be with respect to our prior belief that an observed effect of given size 
will have the correct sign. (This may vary with the size! More on that later.) 
That’s IDEA #5 
 
 Assume a normal prior distribution for δ given a location: 𝑝 𝛿|𝜃 ~𝑁 𝛿|𝜃, 𝜏2  
 Calculate the expected power at δ for a given α and n, assuming δ=θ with variance τ2 

 Vary n (you could also vary α for fixed n, as with FDR approaches) to find good power 

𝐸𝑃 𝑝𝑜𝑤𝑒𝑟 𝛼, 𝑛, 𝑟 ≈  Φ
𝑛𝑟

1 + 𝑟

𝛿

𝜎
− 𝑧𝛼 𝑑𝑃 𝛿|𝜃  

= Φ
𝛿 − 𝑧𝛼𝜎

′

𝜎′2 + 𝜏2
 After some algebra… closed-form! 

𝜎′
2
=
𝜎2

𝑛

1 + 𝑟 2

𝑟
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What about a fully Bayesian approach? 

Trying out IDEA #5… 

θ = 0.3 

τ = 0.15 

σ = 1 

α = 0.05 

r = 1 
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What about a fully Bayesian approach? 

Trying out IDEA #5… 

θ = 0.3 

τ = 0.15 

σ = 1 

α = 0.05 

r = 1 

Always overoptimistic 

Too pessimistic at smaller 
sample sizes and too 

optimistic at larger ones 

Strikes a nice balance.. and 
agrees approximately with FDR 
rule at typical power targets! 
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What about a fully Bayesian approach? 

Trying out IDEA #5… 

Note that we’re not actually doing 
anything special! But the mere allowing 
of some uncertainty in the association 

automatically “adjusts” things intuitively 

θ = 0.3 

τ = 0.15 

σ = 1 

α = 0.05 

r = 1 



2024-01-29 OCTRI RESEARCH FORUM 87 

What about a fully Bayesian approach? 

The last idea didn’t actually take things far enough. What we really should do is calculate an 
expectation of expected power, where on top of averaging over uncertainty in effect size 
estimates, we also average over uncertainty in the range of effect sizes across the features. 
This is our (final) IDEA #6 
 
 Assume a distribution for the effect sizes across features 
 Assume a distribution for the within-feature uncertainty in the effect (e.g. confounding) 
 Assume a distribution for the per-feature standard deviation in each group 
 Assume a distribution for the per-feature sample size loss (missing data) in each group 
 Integrate over everything and report expected power for the entire experiment 
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What about a fully Bayesian approach? 

The last idea didn’t actually take things far enough. What we really should do is calculate an 
expectation of expected power, where on top of averaging over uncertainty in effect size 
estimates, we also average over uncertainty in the range of effect sizes across the features. 
This is our (final) IDEA #6 
 
 Assume a distribution for the effect sizes across features 
 Assume a distribution for the within-feature uncertainty in the effect (e.g. confounding) 
 Assume a distribution for the per-feature standard deviation in each group 
 Assume a distribution for the per-feature sample size loss (missing data) in each group 
 Integrate over everything and report expected power for the entire experiment 

      𝑃𝑜𝑤𝑒𝑟 𝐻 𝛿, 𝜏, 𝜎1, 𝜎2, 𝑛1
−, 𝑛2

− 𝑑𝑃(𝛿, 𝜏, 𝜎1, 𝜎2, 𝑛1
−, 𝑛2

−) 

Essentially this (ugh) 
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What about a fully Bayesian approach? 

IDEA #6 is very difficult to implement analytically, but easy to simulate… 

features = 1000 

      δ  ~ |N(0.3,5)| 

 sign(δ) ~ Bernoulli(0.5) 

      τ  = 0.10 

      σ1 ~ √(0.5+χ
2(5)) 

      σ2 ~ √(0.5+χ
2(5)) 

      n1 = 20 

      n2 = 30 

      n1- ~ [Uniform(-10,0)] 

      n2- ~ [Uniform(-20,0)] 

      α  = 0.05 
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What about a fully Bayesian approach? 

IDEA #6 is very difficult to implement analytically, but easy to simulate… 

n ≈ 50 n ≈ 100 n ≈ 200 n ≈ 400 
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What about a fully Bayesian approach? 

In fact, PASS has a set of modules (“Assurance”) that will do this! (In fewer dimensions…) 
As a test of principle, I applied it to some real proteomics data (8952 peptides) that I have: 
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What about a fully Bayesian approach? 

In fact, PASS has a set of modules (“Assurance”) that will do this! (In fewer dimensions…) 
As a test of principle, I applied it to some real proteomics data (8952 peptides) that I have: 

With the (median) sample 
sizes we actually used 
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What about a fully Bayesian approach? 

In fact, PASS has a set of modules (“Assurance”) that will do this! (In fewer dimensions…) 
As a test of principle, I applied it to some real proteomics data (8952 peptides) that I have: 

Doubling the sample sizes 
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A few interesting approaches that we didn’t cover 

 Harmonic-mean p-value averaging 
https://www.pnas.org/doi/10.1073/pnas.1814092116 
 

 Sequential approaches (run a few at a time, then run more, etc) 
Stuart & Ord Ch24 
 

 Bayesian LASSO 
Hastie et al Ch3 
 

 Bayesian expected utility 
Carlin & Louis p117f 
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Some final thoughts and tips… 

 Collect pilot data if at all possible! You need some understanding of the measurement 
characteristics (overall variance, average reliability, distributional features like skew, etc) 
 People who perform omics measurements professionally will often have past 

datasets lying around that they can share with you to help you get a sense of this 

 It rarely makes sense to run omics with sample sizes smaller than n ≈ hundreds. 
Reliability tends to be very poor, normalization is usually critical, and a lot of missing data 
can quickly ruin the integrity of smaller studies, even if the missingness is random 
 Even in pilot settings, n ≈ 50-100 should be considered a bare minimum, and you 

shouldn’t expect to learn much about any scientific hypothesis 

 Be open and honest about your uncertainty! These kinds of studies are often exploratory, 
and should be approached with that mindset. You’re trying to justify the informativeness 
of the data you’ll collect, not to assert that it will lead to any firm conclusions 
 “Informative” means you can learn something from it. That something doesn’t have 

to be the answer to your scientific question. Usually it will just be a nudge or a jolt 

 In the strictest sense, “power” is not well-defined in high-dimensional settings. The best 
you can do is provide a range of power possibilities over some domain of uncertainty 
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• Measurement: Theory and Practice (2004) by Hand 
Careful but readable theoretic treatment of the philosophy of measurement and quantitative validity — HIGHLY RECOMMENDED 

• Alternative Methods of Regression (1993) by Birkes, Dodge 
Robust approaches to regression analysis that carry less risk in noisy or high-dimensional settings 

• Introduction to Modern Nonparametric Statistics (2004) by Higgins 
Useful practical survey of rank-based methods in various (including multivariate; Chapter 6) settings and bootstrapping (Chapter 8) 

• Statistical Power Analysis for the Behavioral Sciences, 2e (1988) by Cohen 
Classical discussion of power and sample-size estimation with much good practical advice 

• Kendall’s Advanced Theory of Statistics, Volume 2: Classical Inference and Relationship, 5e (1991) by Stuart, Ord 
Chapters 21-25 give detailed treatment of power for inference, including discussion of sequential and nonparametric procedures 

• The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2e (2009) by Hastie, Tibshirani, Friedman 
Excellent theoretical survey of statistical methods applicable in high-dimensional settings 

• Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction (2010) by Efron 
Theoretical treatment of false discovery rate estimation and its application to inference in high-dimensional settings 

• Computer Age Statistical Inference: Algorithms, Evidence, and Data Science (2016) by Efron, Hastie 
Applications-oriented synthesis of the above two books 

• Bayesian Data Analysis, 3e (2013) by Gelman, Carlin, Stern, Dunson, Vehtari, Rubin 
The go-to textbook for modern applied Bayesian methods 

• Bayes and Empirical Bayes Methods for Data Analysis, 2e (2000) by Carlin, Louis 
Practical treatment of Bayesian procedures from the perspective of relating frequentist performance to decision-theoretic risk 

• PASS (Power Analysis & Sample Size) Software (2024) 
Implements a broad plethora of sample-size estimation procedures (https://www.ncss.com/software/pass/) 

• Harmonization of quality metrics and power calculation in multi-omic studies, Nature Communications 11:3092 (2020) 
Describes their MultiPower software and considerations for omics power analysis (https://doi.org/10.1038/s41467-020-16937-8) 

FURTHER READING… 


