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ABSTRACT
There are high technological and software demands associated with conducting Brain–Computer 
Interface (BCI) research. In order to accelerate the development and accessibility of BCIs, it is 
worthwhile to focus on open-source and community desired tooling. Python, a prominent com-
puter language, has emerged as a language of choice for many research and engineering 
purposes. In this article, BciPy, an open-source, Python-based software for conducting BCI research 
is presented. It was developed with a focus on restoring communication using Event-Related 
Potential (ERP) spelling interfaces; however, it may be used for other non-spelling and non-ERP BCI 
paradigms. Major modules in this system include support for data acquisition, data queries, stimuli 
presentation, signal processing, signal viewing and modeling, language modeling, task building, 
and a simple Graphical User Interface (GUI).
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1. Introduction

BCIs are computer-facilitated feedback systems that rely 
on direct, real-time measures of brain activity for inter-
action with other people or machines. These are difficult 
systems to architect due to the multidisciplinary nature 
of the field. Generally, several modules (or logical 
groupings of software functionality) are required to 
encapsulate the major functionality of these complex 
systems. These will include, at minimum, signal acquisi-
tion and processing (feature extraction and translation), 
graphical user interface (GUI), and various helper/uti-
lity modules for file writing and transformations [1]. 
Depending on the focus of the software, it also might 
provide some advanced modeling (signal and language) 
or experiment building functionality. The many dimen-
sions of configuration for BCI systems demand 
a functionally dynamic platform that can integrate new 
functionalities as the field accelerates.

Advances in software development significantly 
move BCI research forward. Open source and free for 
nonprofit software platforms such as BCI2000, BCILAB, 
OpenViBE, Psychtoolbox, PyFF, PsychoPy, and EEGlab 
have accelerated research in the fields of BCI and cog-
nitive neurosciences [2–9] (See Table 1 for comparison 
of software). Despite these tools, there remains a need 
for platforms that meet broader community 

requirements. Preferably, any software used to develop 
and evaluate BCI would be openly distributed and opti-
mized for both research and product distribution [10]. 
The availability of this software is also important, both 
for reproducibility and to accelerate distribution to end- 
users. To better understand the current state of BCI 
software, a more detailed description is provided for 
two major platforms, BCI2000 and OpenViBE.

1.1. BCI software platforms

BCI2000 is one of the best known BCI platforms for 
research [8]. It is built and maintained by the National 
Center for Adaptive Neurotechnology (https://www.neu 
rotechcenter.org/). While not open source, it is free for 
nonprofit and noncommercial usage. The software is 
written in C++ and relies on the orchestration between 
the Source, Signal Processing, User Application, and 
Operator modules for its operation. There are two 
main tutorials which may be used to model other BCI 
cases. These include a Mu Rhythm and P300 Matrix 
speller tutorial. The software is distributed with 
Windows installers, however, use with Linux and OSX 
requires compilation from source code. The release of 
BCPy2000 provided support for Python. This project 
originating from the Max Planck Institute for 
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Biological Cybernetics in 2007 and is included with the 
official BCI2000 binaries.

The second software platform, OpenViBE, is a BCI 
platform hosted by the French Institute for Research in 
Computer Science and Automation (Inria). The soft-
ware may be used to design, acquire, process, and clas-
sify for BCI experimentation and use. Additionally, the 
platform has boosted support for virtual reality integra-
tion. It comes packaged with several standard BCI para-
digms to demo (e.g., P300 and Motor-Imagery). Using 
the Designer, a GUI tool to create an OpenViBE sce-
nario or novel experiments, users are able to design and 
execute paradigms without programming expertise. 
OpenViBE, comparable to BCI2000, is written in C++, 
which may be a limitation for those with limited pro-
gramming experience. There are plugins to write cus-
tom code in MATLAB and Python 2, however they are 
not in a stable, supported condition. The software doc-
umentation lists verified support for Windows and 
Linux operating systems, however OS X is not without 
some potentially advanced configuration.

1.2. BCI programming languages

The speed and accessibility of BCI technology is impor-
tant, both for reproducibility and to help accelerate the 
delivery of end-user systems. Two programming lan-
guages used in the BCI field are MATLAB 
(MathWorks™) and Python.

MATLAB (MathWorksTM) is a common platform 
used for many engineering purposes, including BCI 
research. It utilizes a proprietary language and 
Integrated Development Environment (IDE) released 
first in 1984. The insights gained from this platform 
have been extensive and it remains a popular choice 
for instruction both inside and outside the classroom. 

However, as an environment, MATLAB has drawbacks 
which prevent it from being the ideal platform to dis-
tribute and iterate BCI software tooling. Most critically, 
it is not free. Individual contributors, hobbyists, smaller 
laboratories, and young scientists may be prohibitively 
discouraged from joining the research effort due to the 
platform’s cost. While GNU Octave [11] may be used as 
a free language alternative to execute code generated for 
MATLAB, it does not contain any of the benefits of the 
environment (GUI and IDE) and may be slower in 
execution. Secondly, embedding MATLAB code into 
production-level software is not an easy task, which 
raises concerns regarding end-user product distribu-
tion. Use of the existing distribution tools provided by 
MATLAB require additional financial resources and 
have limited scope. A final concern is speed. While the 
time requirements for BCI control are somewhat flex-
ible, MATLAB is relatively slow and requires advanced 
configuration and multiple sessions in order to provide 
the same multiprocessing features offered by other lan-
guages at lower resource costs. Despite these drawbacks, 
however, MATLAB is easy to use and remains appealing 
to many research groups in conjunction with open- 
source tools, such as Psychtoolbox [2]. To circumvent 
the issues realized by choosing this platform, new tool-
ing should be accessible to a wide array of disciplines 
while maintaining the functionality and flexibility 
needed to research BCIs.

One possible solution to the issues raised above is 
utilization of Python, an open-source, free, high-level 
programming language (Python Software Foundation) 
that makes use of simplified syntax and provides 
a plethora of out of the box tooling. These qualities 
make it ideal for new contributors and seasoned engi-
neers alike. The trade-offs mentioned with using low- 
level languages (such as, C++) usually relate to speed 
and memory usage. These trade-offs are not always 
realized though, as many time-critical functions can 
have lower-level bindings to increase speed and then 
use Python as their declarative interface. NumPy and 
Pandas, highly used libraries for mathematics and data 
science, are ideal examples of this pattern [12–14]. This 
pattern reduces both the complexity of a given subject 
and also barriers of entry for scientists without pro-
gramming expertise. Python has steadily increased in 
popularity in recent years [15] and has been adopted as 
the official language for universities and countrywide 
computer science and science courses. Furthermore, the 
adoption of Python in research and data science fields 
has led to a plethora of open-source libraries and tooling 
options that benefit BCI research.

While experimentation is the focus of BciPy and 
proposed architecture, the rapid development of custom 

Table 1. Comparison of software used in BCI research. 
A breakdown of the primary programming language, python 
compatibility, focus on BCI, presence of all modules needed for 
BCI operation, and contributions within the last year as deter-
mined by last release or commit date. Many of these systems can 
operate on most modern operating systems, however maintain-
ing compatibility with older systems is not guaranteed and 
acquisition devices may not provide drivers for all operating 
systems

Primary 
Language

Python 
Bindings

BCI 
focused

Primary 
BCI 

Modules

Contributions 
within 

last year

BciPy Python yes yes yes yes
BCI2000 C++ yes yes yes yes
OpenViBE C++ yes yes yes yes
PsychoPy Python yes no no yes
Psychtoolbox Matlab yes no no yes
PyFF Python yes no no no
BCILAB Matlab yes yes no yes
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experiments and modules entirely with Python code 
may decrease the time to both functional prototypes 
and end-user systems. The breadth of usability issues 
for various populations may reside outside of algo-
rithms and performance and into the experience 
realm. Utilizing a language which extends to ecosystem 
outside of engineering permits rapid development of 
early systems in more areas. Python is both a preferred 
and more easily understood programming language 
choice for a wider audience; therefore, its use for 
a BCI software offers a major benefit when compared 
to other BCI platforms (See Table 1).

The structure, major functions, and theoretical con-
siderations of the open-source Python-based package, 
BciPy, are described in detail below. BciPy was devel-
oped to provide an alternative avenue for BCI research 
software with functionality that can be used in parallel 
with the various preexisting systems. BciPy was initi-
ally presented at the seventh annual BCI Society meet-
ing (Memmott et al., 2018). This work is not meant to 
replace existing systems described above or outper-
form them; on the contrary, it is presented here as an 
alternate option that will integrate with existing tools 
wherever possible. The primary aim is to reduce the 
barrier for adoption and contribution in the BCI field 
as a whole.

2. Methods and materials

2.1. Architecture

BciPy is written using object-oriented programming, 
a technique that models and partitions truly indepen-
dent parts of an application (Figure 1). This software 
provides several ways to learn about each individual 
module, as well as the higher-level interactions neces-
sary for BCI control. Each module contains unit tests, 
documentation, and demo files. The primary modules 
include Acquisition, Language Modeling, GUI, Signal 
(Processing and Modeling), Task, Display, Feedback 
and Helpers. With the exception of the Helpers module, 
the connector of various modules and convenience 
functions, all modules are described in greater detail 
below. The system timing has been validated as 
a whole and produces acceptable output for BCI use as 
measure via ERP calibration and photodiode testing 
(See Figure 2). This temporal fidelity is made possible 
by the triggers output from the Display, which may be 
used as query parameters to the Acquisition module. 
The modules are also capable of adjusting to system 
offsets, passed in either as arguments or inferred by 
reconciling differences between timestamps generated 
by the Display and those sent to Acquisition. Each 
module is described in more detail below.

Figure 1. BciPy high-level diagram. BciPy high-level diagram of modules and implementation. This graphic demonstrates the 
necessary components for BCI use as well as how BciPy modules are partitioned in the current version. The implementation figure 
splits functionality into Frontend and Backend, in which the observable outputs of BciPy are considered frontward facing (Frontend) 
components.
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2.2. Acquisition

The acquisition module implements a client, which 
interacts with a buffer and file writer to facilitate data 
acquisition, writing, and real-time queries. Temporally 
precise real-time data queries are indispensable to BCI 
research. BciPy, by default, will operate without the use 
of parallel port infrastructure; a common port to send 
relevant triggers to acquisition hardware. Historically, 
the high temporal precision of parallel ports has made 
them ideal for the synchronization of EEG and markers 
of stimuli presentation. However, the majority of new 
computers, both desktop and laptop, do not contain 
parallel ports. Alternatives involve the conversion of 
USB ports to parallel ports using commercial hardware 
devices such as, the LabJack (LabJack Corporation). 
BciPy, instead, relies on Lab Streaming Layer (LSL), 
which contains callbacks which allow investigators to 
label stimuli in relation to continuously acquired data 
[16]. This method is suitable for BCI control as those 
labels are of sufficient quality to leverage for real-time 
data queries. The following will describe the acquisition 
module’s architecture, major modules, and usage in 
greater detail.

2.2.1. Architecture
The main entry point to the Acquisition module is the 
DataAcquisitionClient. This class is responsible for 
managing an incoming data stream, processing the 
data, and providing an interface for real-time data 
queries. The acquisition module makes extensive use 
of the multiprocessing libraries included with Python 
in order to avoid conflicting with the primary execution 
thread. DataAcquisitionClient manages two threads: 
one for acquisition and one for processing. The acquisi-
tion thread receives a continual stream of data and 
writes that data to a process queue with associated time-
stamps. The process thread monitors the queue and 
sends data to both the processor and a Buffer. Data in 
the buffer is archived for further queries. Each of these 
elements is configurable and together they provide 
a great deal of user flexibility.

2.2.2. Hardware interface
One of the configurable parameters associated with 
DataAcquisitionClient is the Device code, which 
DataAcquisitionClient uses for interfacing with the sys-
tem hardware. BciPy currently includes two device 

Figure 2. BciPy session results. (a). Raw Data Results. EEG data were collected using the BciPy system in RSVP Calibration mode using 
the Wearable Sensing’s VR300 system. The experiment was conducted on an ASUS Laptop (ASUSTek Computer Inc.) running Windows 
10 Pro with 16GB RAM, 1.8 GHz Intel i7-8565 U CPU, and a dedicated 4GB GeForce GTX 1050 graphics card. This demonstrates the 
software’s ability to collect ERPs such as the P300 (left), as well as SSVEP (right) as demonstrated using PSD off the presentation rate of 
4 Hz on the Oz channel. Model training on this same session’s data resulted in an AUC of .82 indicating good target/nontarget 
discrimination (b). Photodiode Results. Data were collected on the same computer and hardware as the session results with 
a photodiode attached and triggers sent directly to the acquisition device. The data compare the difference between ten stimuli 
times detected by the diode to the time recorded via the trigger file output. For this particular machine, a static system offset of 
100 ms is needed to correct the discrepancy in the parameters.json. These static discrepancies result from the hardware themselves 
(screen refresh times and graphics card performance).
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types. The first communicates with EEG Hardware 
through a TCP connection. There is a specific driver 
for Wearable Sensing Dry Sensor Interface (DSI) head-
sets using this technique. BciPy also supports connec-
tion to hardware using LSL. In addition to reading EEG 
data, this driver also reads LSL Marker data and inte-
grates these records for downstream processing. 
Supported devices can be queried dynamically through 
the acquisition device registry. This function is particu-
larly useful for scripts that want to provide different 
command-line options.

2.2.3. Persistence
All data from a session are output to a .csv file for 
subsequent processing and analysis. In the client, this 
happens as part of processing using the FileWriter 
object. However, this detail is a configurable property 
of the client. Any class which implements the Processor 
interface can function as a surrogate. Data persistence 
occurs in an isolated process as a precaution so that 
long-running processes do not block real-time data 
acquisition.

2.2.4. Data queries
Streaming data are sent to a Buffer object. The Buffer 
keeps a configurable amount of data in memory, and 

periodically stores that data to disk using a backend 
SQLite3 database. The Buffer has an interface for 
executing arbitrary data queries. BufferServer is the 
interface to the buffer and ensures that read and write 
actions to the buffer are asynchronous in order to pro-
tect against race conditions. These data may be accessed 
by giving intuitive commands to the data acquisition 
client described above. The ease of data retrieval is 
a major contribution of this library (See Figure 3).

2.2.5. Development tools
Running a BCI system generally requires access to 
specialized hardware. For development purposes, 
however, these resources are not always readily or 
practically available. The Acquisition module pro-
vides a number of developer tools that allow users 
to simulate various aspects of the system. Principal 
among these is a DataStream module, which simu-
lates streaming EEG data. There are currently two 
kinds of servers provided in this module: a socket 
server and an LSL server. The socket server streams 
data through a socket connection, simulating devices 
that communicate over TCP. The LSL server uses the 
pylsl library to write to an LSL StreamOutlet. By 
default, these servers generate random data, but they 
can also stream data recorded previously by the 

Figure 3. Data acquisition client demo. The data acquisition client is the main BciPy interaction with any external data device. The 
above code snippet demonstrates how to find a device in the registry, start acquisition, query for data, and stop acquisition.
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Acquisition module. Both can be configured to inter-
face with a data generator in order to specify a data 
type.

The object-oriented approach adopted by the acqui-
sition module gives it a very flexible design. Although it 
was developed for BciPy, the module’s extensive 

Figure 4. Data server demo. The DataServer is used to configure a data source, with its unique protocol for interaction, and serve data 
into BciPy. The above code snippet demonstrates how to define the protocol, initialize a data server, and stop it.

Figure 5. Display. The Display module diagram represents the interaction between the larger framework and the display. The 
parameters utilized are dependent on task type, which defines the stimuli type and display elements to be presented on the PsychoPy 
window.
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configurability allows it to potentially be used more 
broadly in other data acquisition scenarios.

2.3. Display

A visual display is implemented which relies on the 
PsychoPy Display Window. These windows may be 
used with either the pyglet or pygame Python stimuli 
libraries, but the base display uses pyglet. The purpose 
of the Display is to present stimuli with high temporal 
resolution given the available hardware and return any 
useful timing or stimuli properties. An example of how 
to build the base classes for a new BCI paradigm may be 
observed from the porting of Rapid Serial Visual 
Presentation (RSVP) [17]. RSVP Display is used to pre-
sent stimuli on the screen in a fixed position and 
sequential manner. The RSVP paradigm, a P300-based 
speller, has been developed and evaluated using older 
MATLAB-based software [18–20]. The children of the 
Display base classes must contain a display window and, 
depending on the Task type, construct various stimuli 
and display elements vital to the experiment.

2.4. Graphical User Interface (GUI)

The GUI interfaces are provided for use by researchers 
(See Figure 1). These GUIs are meant to register modes 
of operation and tasks, as well as provide a method of 
editing registered parameters without editing those files 
directly. Information regarding the two interfaces cur-
rently available when using BciPy are provided.

2.4.1. BCI interface
A simple GUI allows users to easily select registered 
tasks and edit operating parameters such as, presenta-
tion rate or selecting acquisition devices. It is built using 
WxPython and all modes of operation in BciPy are 
registered in this view. Currently, only the RVSP 
Interface is provided with, out of the box, working task 
implementations. However, once a paradigm is added to 
the task registry (See Task) it will appear in the correct 
GUI location. The parameter editing functionality is not 
dependent on task, but instead the location and correct 
JSON format of the parameters file.

2.4.2. RSVP interface
All RSVP tasks (see Task section below) registered in the 
task registry for RSVP are accessible via the GUI (Figure 
6). The GUI also provides two quick link buttons for the 
training of EEG models after an experiment (Calculate 
AUC) and editing of parameters. The parameters are 
stored in a JavaScript Object Notation (JSON) format 
with value, type, recommended values, and help text 

information. This format allows for easy presentation, 
loading and saving by the user in the GUI. The sup-
ported parameter types for setting in the GUI are string, 
float, integer, boolean, and directory and file paths. If 
recommended values are provided, a dropdown will 
appear for easy user selection of those values. This 
may also prevent user’s from selecting values that are 
not yet supported.

2.4.3. Signal viewer
BciPy GUI features an integrated Signal Viewer (See 
Figure 7). This GUI component allows clinicians and 
researchers to monitor EEG signals during an experi-
ment to ensure that device connections are stable for 
consistent data quality.

The Viewer is configured either through the general 
Configuration UI or manually in the parameters file. If 
selected, the Viewer will launch during the initialization 
of the data acquisition module in a new GUI window. 
The module detects the usage of multiple monitors and 
will appear in the secondary monitor so that it does not 
interfere with the main experiment. By default, all active 
channels are displayed. However, the Viewer has con-
trols to toggle the visibility of any channel. Channel 
information is provided to the viewer, so it can work 
for any device supported by BciPy. There are additional 
controls to adjust the duration of data displayed on the 
screen simultaneously and to toggle filtering. Viewing 
can be paused at any time. Restarting from a paused 
state will refresh the display with the most recent data.

In addition to its use during an experiment, the 
Signal Viewer can be run from the command line to 
replay a raw data file from a previously captured BciPy 
session. This modality exposes some additional options 
for usage.

The Signal Viewer has a modular architecture, which 
results in a great deal of flexibility. The GUI is imple-
mented as a WxPython Frame that streams data from 
any object that uses a DataSource interface. The Viewer 
is also parameterized with a DeviceInfo object, which 
provides information on sampling rate and which chan-
nels to use. Internally, the Viewer uses this metadata to 
determine how frequently to query any data sources for 
new data and to determine what channel information to 
expect.

Several data sources are provided in the module, 
including an LSL data source and a FileDatasource. 
The LSL DataSource is used during live experiments 
while the FileDataSource is used for data replay pur-
poses. Additionally, the Viewer module integrates with 
the data acquisition module by implementing a custom 
Processor that starts the viewer in its own process. It can 
optionally filter these incoming data using the filters 

BRAIN-COMPUTER INTERFACES 7



provided by the Signal module (See signal filtering sec-
tion below).

Many devices come with their own proprietary soft-
ware. However, use of proprietary tools often limits 
access to these devices, which cannot be run concur-
rently with other software. Other devices currently 
available may also have outdated or non-existent soft-
ware. The BciPy Signal Viewer allows users to have 
a consistent experience across devices to ensure good 
data quality.

2.5. Language model

Language modeling is important for the functionality of 
many spelling applications, including the single letter 
BCI RSVP paradigm where the Bayesian fusion of EEG 
and language model evidence improves speed and accu-
racy of letter typing [20]. The language model (LM) 

component is aimed at both improving the quality of 
the predictions of the system and reducing the runtime 
it takes to compose a message with the system. The 
general concept, as explained in earlier work [21], is to 
provide information about common patterns in 
a language which will help direct the system toward 
predictions of likely symbols, given previous decisions. 
This section explores architecture, the types of LM 
modules, and how to employ them within the BciPy 
library.

2.5.1. Architecture
The language model component acts independently of 
the rest of the BciPy system. The reason for this inde-
pendence is to enable a ‘plug and play’ mode that facil-
itates easy switching when a new LM module is 
developed or iteratively refined. The client’s interface 
(found in the main script) for the two current LMs (see 

Figure 6. RSVP keyboard GUI. The RSVPKeyboard GUI provides an easy interface to execute and configure a registered BciPy Task for 
RSVP. To start, a user may edit parameters, calculate AUC of a previous session, or enter a user ID. A user ID is required to start an 
experiment and is used to label the data folder with a timestamp for a session. After entering a user ID or selecting a previous user ID 
(as extracted from the data folder location in the parameters file), an experiment type may be chosen.
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below) employs the same encapsulation layer, while still 
allowing the two LMs for minor changes in some of 
their functionality. The different LMs are encapsulated 
into a lightweight docker image [22], to which queries 
are sent from the main BCI script. The communication 
between the main script (the client) and the dockerized 
LM module (the server) is through a TCP/IP protocol 
with appropriate abstraction layers on both ends.

2.5.2. Prefix language model
The concept of the Prefix Language Model (PreLM) [23] is 
to predict the next symbol (e.g., a letter, but this approach 
can be applied to any symbol set), given the history of 
symbols the user has typed. The model retrieves its pre-
diction from a lattice that contains likely patterns of letters 
with associated probabilities. For example, given that the 

user’s history is `T’, the system returns a ranked list of the 
most likely next letters to continue the given history.

2.5.3. Online contextual language model
The Online Contextual LM (OCLM) is described in [23] 
and is constructed to incorporate several sources of 
information, such as the history of likely evidence typed 
by the user (containing possibly more than a single letter 
per time step), common letter patterns, and common 
word paths in the language. While this approach may 
result in a slightly longer runtime, it provides higher 
quality of predictions as described in the previous paper.

2.5.4. Interface
The system allows the user to define an LM module of 
choice, which is then propagated through the rest of the 

Figure 7. BciPy signal viewer. The BciPy Signal Viewer displays data being served from BciPy for quality inspection before and/or 
during an experiment. Each available channel to BciPy is presented by default but may be removed from viewer by clicking the check 
boxes at the bottom with corresponding channel names. Clicking the Start button will start the stream data to the viewer that can be 
set at 2, 5, or 10 second update intervals. The dropdown on the bottom right allows for configuration of display window to desired 
length. Additionally, there are autoscaling and filtering checkboxes for convenient display configuration. The filter used in this viewer 
is the default bandpass filter used by all Tasks.
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system. As a result, the user only needs to ensure that 
the LM image is found on their computer. Internally, 
the major commands remain the same for both module 
types, since both go through the same encapsulation 
layer on the client’s end that communicates with the 
docker image, as mentioned previously.

OCLM can provide not only a ranked list of letters, 
but also a ranked list of words that the user is currently 
in the middle of typing. For both modules, the letters 
and the words are sent back to the client with their 
corresponding probabilities.

2.5.5. Usage
Demonstration scripts for both model types are found 
in the language model module in a demo directory.

In the PreLM demo code shown in Figure 9, the 
following steps are taken: instantiating an LM object; 
getting priors for no history; getting priors to accumu-
lated history; and resetting the LM object to delete the 
history of the model and enable a fresh start without 
regenerating the object, which would require generating 
a new docker instance.

The OCLM demo code in Figure 10 demonstrates 
similar steps: instantiating an LM object; determining 
n-best candidate; getting priors for no history; (not 
presented generating evidence); sending evidence 
along with the type of desired output (letter/word) to 
the object to get updated priors; and finally, a resetting 
step, similar to resetting in the PreLM.

2.6. Signal

2.6.1. Signal process
The signal process module contains data filters and 
decomposition functions. These processing modules 

are necessary for making use of EEG signals for BCI 
control.

2.6.2. Filtering
Several data filters are available for use. The primary 
method, bandpass, implements a Butterworth Filter that 
accepts arguments for high/low cutoff and filter order. 
Additionally, a text filter representing filter parameters 
created in a legacy MATLAB version of the system was 
implemented to retain backwards compatibility with the 
older, verified RSVP Keyboard system [24]. The inter-
face for interacting with these filters is simple and opti-
mized for use with EEG (See Figure 11). While these 
base filtering implementations are provided, other filters 
may be added and leveraged.

2.6.3. Decomposition
The decomposition module implements down-
sampling and a power spectral density (PSD) 
method, allowing for extraction of discrete fre-
quency bands, plotting of spectra, and relative 
power band calculations. Two decomposition 
method types are available for use in the current 
version: Welch’s and Multitaper. To use the PSD 
function, raw data, frequency band of interest 
(e.g., 1–10 Hz), data sampling rate, data window 
length (e.g., 500 ms), and PSD method type are 
required as arguments. Consumers of this method 
may set a Boolean of plot = True to visualize the 
resultant PSD output during experiment building. 
The default is set to False, as plotting would be 
distracting during real-time operation. 
Additionally, a Boolean flag may be passed to 
return PSD as a relative calculation to the full 
spectrum.

Figure 8. Language model architecture. This illustrates the process of the system from the language model perspective. First, the raw 
EEG is processed to enhance the underlying signal, then, it is sent over to the LM module which, along with the signal information and 
the language patterns information, computes a list of likely priors and sends them back to the system. Finally, the system computes 
the posterior distribution and makes a decision with regard to the user’s symbol of intent. Technically, the communication is done 
through abstraction layers, containing basic functionality such as state_update, recent_priors, reset, and init, all of which are invoked 
by the client. The next sections describe the types of LM modules that have been developed.
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2.7. Signal modeling
In the system, user intent is detected in a Bayesian 
fashion that performs posterior probability updates. 
The updates require a likelihood assessment between 
the stimuli and the user intent. σ;ϕ; andε are used to 
denote user intent, stimuli and EEG evidence, respec-
tively. After each stimulus presentation the system 
updates the belief over all possible σ’s as the following: 

p σjϕ; εð Þ ¼ p σð Þ
pðεjσ;ϕÞ

pðεjϕÞ
(1) 

To update the belief over the user intent, the system 
searches for the presence of an event-related potential 
(ERP), an anomaly in the EEG sequence. Each sequence 
contains multiple symbols being presented and hence 
results in a list of (multichannel) evidence and a list of 
corresponding labels. In the sequence, each stimulus letter 
has a fixed-known location and hence one can assign 
a label to each position. For simplicity, within this section 
positional argument t over the stimuli is used. The 

evidence set is denoted with ε ¼ ε1; ε2; � � � ; εTf g as εt 2

R C�N (where C;N denotes number of channels and 
signal length, respectively), stimuli set with ϕ ¼
ϕ1; ϕ2; � � � ;ϕTf g and the label sequence with , ¼

,1; ,2; � � � ; ,Tf g where ,t 2 0; 1f g. The position t has 
the corresponding label is ,t ¼ δϕt ;σ ; The label becomes 1 
where the letter presented at location t is the user intent 
and 0 otherwise. Therefore, ,t ¼ 1 coincides with the ERP 
presence. This notation allows us to write the following: 

p εtjσ;ϕtð Þ ¼
p εtj, ¼ 1ð Þ

p εtj, ¼ 0ð Þ

�
if σ ¼ ϕt
otherwise 

Signal modeling is responsible for generating the like-
lihoods, in words the likelihood of evidence resulting 
from the label sequence pðεj,Þ. In this application each 
evidence chunk is assumed to be independent of each 
other conditioned on the labels. This allows one to 
simplify the update defined in (1) for estimates that 
appear in the stimuli as the following: 

Figure 9. Prefix language model demo. An example of how to initialize and retrieve inferences from the Prefix Language Model.
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Figure 10. Online contextual language model demo. An example of how to initialize and retrieve inferences from the Online 
Contextual Language Model. The evidence variable represents the normalized likelihoods of the EEG signal over the sequences needed 
to type (also referred to as epochs). These epochs are integrated into the language model to provide a language model probability 
distribution for the next epoch. Evidence is a list of lists (representing the epochs already presented) of tuples (each indicating the 
symbol and probability across the symbol set). Please refer to the demo code in the source repository for more information.

Figure 11. Signal filtering demo. Data filtering is a critical part of BCI use. The above snippet demonstrates a common data filtering 
pipeline. It is started by generating some random data and then defining sampling rate and filter parameters. Next, there is a call to 
the notch and bandpass filters.
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p σjϕ; εð Þ / p σð Þ
p εtj, ¼ 1ð Þ

p εtj, ¼ 0ð Þ
whereϕt ¼ σ (2) 

The reader may refer to previous work for more 
details [25].

In this application, the signal modeling is tasked to 
return likelihoods for evidence pðεtj,t ¼ 1Þ, 
pðεtj,t ¼ 0Þ, conditioned on positive and negative 
classes, respectively. In order to extract that informa-
tion, there is a pipeline of models which is explained in 
three sub-sections; Feature extraction, dimensionality 
reduction and generative model. The scikit-learn library 
[26] is used in this implementation and hence follow the 
conventions of the package. Let x; y denote data and 
label sets, respectively. Each module to be presented 
includes the following properties:

● fit x; yð Þ: given a data and label sequence, fits the 
model

● transform xð Þ: given a data sequence, returns trans-
formation based on fitted model

● fit_transform x; yð Þ: given a data and label 
sequence, fits the model and returns transforma-
tion based on the fitted model.

2.7.1. Feature extraction
In order to extract features, principal components along 
each channel data are obtained with a channel-wise prin-
cipal component analysis (PCA) approach. To extract the 
components, a channel-specific PCA matrix AcMc�N is 
learned for channel c using the corresponding evidence 
set εc

1; εc
2; � � � ; εc

T
� �

of the channel. Each channel PCA 
matrix further used to reduce the dimensionality of the 
corresponding channel c. To incorporate all channel infor-
mation at a position t, the feature vector is formed as the 
following: 

f t ¼ A1ε1
t ;A2ε2

t ; . . . ;ACεC
t

� �T
2 R d 

Observe that d ¼
P

c
Mc. For simplicity of the application, 

this feature vector is assumed to be Gaussian. The sim-
plest representation can be represented using the quad-
ratic decision boundary between such feature vectors and 
the built-in method is discussed in the following section.

2.7.2. Dimensionality reduction
Feature vector is passed through a regularized discrimi-
nant analysis (RDA) to obtain one-dimensional repre-
sentation. The model is specifically tailored to improve 
the intent selection by discriminating target and non- 
target representations. For more detailed information, 
the reader may refer to Friedman’s work [27]. RDA 
modifies quadratic decision boundary between classes 

using two hyperparameters; λ 2 0; 1½ �, γ 2 0; 1½ � for 
shrinkage and regularization. Shrinkage balances class 
conditioned covariances with the overall mean sub-
tracted covariance. As λ! 1; both classes share the 
covariance and hence decision boundary becomes linear. 
As γ! 1 both conditional covariances converge to cir-
cular covariance. Each of the hyper-parameters are 
selected with cross-validating the area under receiver 
operating characteristics curve (AUC = AUroC).

RDA returns a log-likelihood log p , ¼ 1jf tð Þð Þ 2 R , 
log pð, ¼ 0jf tð ÞÞ 2 R and the log-likelihood ratio score 
st ¼ log pð, ¼ 1jf tÞÞ � log pð, ¼ 0jf tð Þð Þ number for 
each trial where st 2 R . By design, st > 0 if the stimulus 
was the user’s intent and st < 0 otherwise.

2.7.3. Generative model
To perform the posterior update presented in (2) p εj,ð Þ

is needed, which is calculated along class conditional 
likelihood distributions p εtj,tð Þ. These likelihoods are 
estimated from training data where label assignment is 
already known using kernel density estimates (KDEs) 
with Gaussian kernels around each log-likelihood score 
point st. These models are tasked to provide the condi-
tional likelihoods p εtj,t ¼ 1ð Þ, p εtj,t ¼ 0ð Þ during the 
inference for the update presented in (2).

Use-case: The pipeline requires the evidence ε and 
label , to train model parameters. The pipeline is visua-
lized in Figure 12. Each model in the pipeline can be 
used independently by their own methods. To give an 
example, the code in Figure 13 defines RDA, fits a mean 
and a covariance with fixed λ 2 0; 1½ �, γ 2 0; 1½ � and 
outputs the transform, defined as z.

Hyperparameters are set using the cross-validation. 
The cross-validation optimizes hyperparameters to 
maximize area under receiver operation characteristics 
curve for all the validation sets. Cross-validation accepts 
x; y as training samples, the entire model and element to 
be optimized (See Figure 14).

In the proposed pipeline presented, the element to be 
optimized is RDA with required parameters which is the 
first element.

Each of the functionalities are presented with their 
own demo files within the demo folder inside ‘machine 
learning (mach_learning)’ subdirectory.

2.8. Feedback

The feedback module provides functionality for both audi-
tory and visual feedback types. The module may be used in 
a Task and inherit a Display to present stimuli. However, it 
may also be used independently. Visual feedback uses 
PsychoPy visual and core modules to administer and con-
figure visual feedback stimuli. Users can build on top of 
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visual feedback to administer progress, alertness, attention, 
and other context-based feedback during an experiment 
without complicating their main display or task logic. 
Additionally, using the Python library python- 
sounddevice, built on top of PortAudio [28], auditory 
feedback may also be administered. The 
RSVPInterSequenceFeedbackCalibration task is an exam-
ple of visual feedback being used in conjugation with EEG 

frequency activity to focus attention during a calibration 
session [29].

2.9. Task

BciPy implements its own Task module, which is the 
basis for experimental design and where the modules 
connect to form operational meaning. A Task at its base 

Figure 12. Signal model processing pipeline. Signal Processing pipeline for likelihood generation. At a high level, reshaped data is sent 
through the pipeline to undergo Channel-Wise PCA, RDA, and finally KDE. The output is then returned to the system to make decisions 
on.

Figure 13. Signal modeling regularized discriminant analysis demo. An example of how to initialize the BciPy Regularized Discriminant 
Analysis class and use it to transform data, where x is reshaped data and y are labels.

Figure 14. Signal modeling cross-validation demo. An example of how to initialize the BciPy Cross-Validation class and use it to 
validate inferences. The inputs are as follows: x is reshaped data, y is the data labels, model is a trained model, and opt_el is element to 
optimize on. A user may also optionally specify the number of folds and define the split type.
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level must contain implementation-specific settings, 
a unique name, and a method of execution. All tasks 
programmed into the task registry are accessible via the 
GUI. These tasks can be used to accomplish the closed- 
loop BCI control (See Figure 15) needed for many BCI 
experiments. Currently, tasks to calibrate, spell, and 
provide feedback in an RSVP paradigm [24] are 
included with the base classes for utilization. For exam-
ple, the RSVP copy phrase task utilizes all modules to 
collect, query, and save data, retrieve language and sig-
nal inference, display stimuli and ultimately provide 
spelling ability.

3. Inquiry

3.1. System requirements

This software requires a graphics card capable of 
OpenGl support and an operating system which com-
plies resources-wise with the libraries used by BciPy, 
particularly PsychoPy. BciPy uses only Python 3, as 
support for Python 2 reached end of support from the 
Python Software Foundation in January 2020. 
Currently, the system can install on most modern 
Windows and Mac OS. Manual installation of some 
dependencies will be required for Linux installation. 
New computers should be tested for timing before for-
mal experimentation. Any blocking applications such 
as, some Antivirus software must be configured to 
cease during BciPy operation. Additionally, when 

configuring new systems, especially gaming laptops, it 
may require disabling power save mode. This is because 
the laptop may, in order to save battery life, default to 
the onboard graphics card instead of the performance 
graphics card needed for timing resolution. For the 
purpose of evaluating a new BciPy system, there are 
scripts provided in the repository for visualizing the 
offset of triggers and raw data, as well as some docu-
mentation on how to remedy common issues, either in 
real-time or offline. These resources, along with tradi-
tional photodiode assessments recommended above, 
should be used when starting new experiments or pre-
paring new hardware for use.

3.2. Release and contribution

BciPy is hosted on PyPi and pip installable [30]. 
The code is hosted on GitHub and can be 
accessed using the following link: https://github. 
com/CAMBI-tech/BciPy. To use the provided 
RSVP implementation, the user will need to git 
clone or download the repository and follow the 
README instructions for local usage. 
Contributors are invited to the repository. The 
Code of Conduct will be enforced, utilizing the 
Contributor Covenant v1.4.1, listed at the root of 
the repository to encourage a safe development 
environment. It is currently distributed under 
a BSD license. Please refer to the LICENSE.txt in 
the repository for more information.

Figure 15. Closed-loop BciPy control. Closed-loop control diagram of BciPy. The blue and yellow entities indicate BciPy modules, and 
green/red boxes are user interaction or criteria checks. Starting at the leftmost side, a user starts a BciPy GUI (such as RSVPKeyboard. 
py), selects experimental parameters, and begins a session via the main entry point bci_main.py at the root of the project. After 
passing requisite parameters to bci_main.py, the Task starts with Acquisition and Display running in parallel processes. After 
a presentation sequence, data is piped through signal processing and modeling, and (optionally) Language Modeling to decide on 
what to do next. The Task, having implemented some decision-making criteria, then decides the next presentation sequence or to 
discontinue sequencing. Each loop results in written data, checking of criteria, and formation of new stimuli or ending the session. If 
stopping criteria are met, Acquisition and Display are stopped in their parallel processes, data are written, and the user is directed back 
to the GUI.
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4. Discussion

Brain–computer interface technology is a rapidly grow-
ing enterprise that has the potential to augment our lives 
in many ways. For individuals with severe disabilities, 
BCIs may replace or restore useful functions such as 
control of computer, robotic arms, prostheses, wheel-
chairs or communication devices [31]. For those who 
are searching for enhancements, BCIs have the potential 
to improve alertness and attention or augment standard 
levels of functioning, such as gaming speed [32]. 
However, successful translation of this technology for 
practical applications has remained elusive [33]. The 
effective interaction between the user’s intent and 
a system’s performance is facilitated by dependable 
BCI software. The demands on precise, accurate, time- 
sensitive signal acquisition and processing increase as 
system expectations expand. In this regard, it is critical 
that BCI technologies are built with a functionally 
dynamic platform that can integrate additions and new 
functionalities as the field accelerates. BciPy moves the 
state of BCI research forward by providing functionally 
dynamic development tools in Python. The technologi-
cal requirements for BCI research are immense. As 
additional functions are proposed, it is essential that 
accessible tooling be obtainable by the larger field. 
BciPy may not suit all BCI applications, but its flexibility 
and potential make it a top candidate for further 
developments.

BciPy was designed and built with a research com-
munity in mind. This requires that users have an under-
standing of Python, their OS, and how to empirically 
evaluate a new system before beginning an experiment. 
For example, if potential users choose to add custom 
complex processing code along with the available mod-
ules, it should be known there are differences in the way 
Python handles some lower-level functionality (e.g. 
multiprocessing) between OS. One solution would be 
to provide a pre-baked BciPy OS image, likely by 
extending a Linux distribution, with the settings already 
configured and software with timing validators 
included. This would facilitate faster installation and 
use of the software without advanced knowledge of the 
OS pre-installed on computers. While there may be 
general interest in maintaining software across all 
major commercially available OS for accessibility rea-
sons, it comes at a cost and risk for systems that rely 
heavily on the direct use of hardware (graphics card, 
RAM) in real-time. That cost is reflected in the slowing 
of progress in other areas of software in order to patch 
or circumvent intricacies of commercial systems which 
are not made for experimental purpose.

Another challenge of presenting BciPy through 
a research lens is that this is not out-of-the-box suitable 
for end-users or groups without some programming 
expertise. There is no interface for typing selection or 
free form typing. While a GUI is provided with some 
easy to use functionality, it is not an application. Future 
developments can be envisioned to extend this library, 
with a product perspective where the end-user’s engage-
ment and usability of the system are measurable along-
side performance. Applications with other experiment 
generation tools, such as PsychoPy, could reduce the 
programming needs required to start simple experi-
ments. As the community and its contributors grow, 
responses will be provided to those needs first and 
foremost.

These early releases are meant to lay the foundations 
needed for all BCI research, with some implementations 
as examples as they are developed. This should make 
adoption for paradigms not currently implemented 
lower than if starting from scratch or using some of 
the software described in Table 1. For instance, we’ve 
presented many tools to operate event-related BCI para-
digms, particularly for spelling, however more work 
would need to be done for robotic control. From an 
accessibility and software engineering perspective, 
future contributions that bridge existing research soft-
ware will be particularly beneficial to future releases. 
Moreover, improvements that allow for greater OS 
compatibility and easier calibration of stimuli timing 
are needed. There remain hurdles in setting up new 
commercial machines to be performant for BCI use. 
Additionally, tools needed to test timing at the start of 
an experiment, such as a photodiode, may be difficult to 
operate if not included in a commercial set. There is 
ongoing work to release debug and visualization tools to 
help diagnose timing and other critical aspects to BCI 
operation.
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