
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tbci20

Brain-Computer Interfaces

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tbci20

BciPy: brain–computer interface software in
Python

Tab Memmott , Aziz Koçanaoğulları , Matthew Lawhead , Daniel Klee , Shiran
Dudy , Melanie Fried-Oken & Barry Oken

To cite this article: Tab Memmott , Aziz Koçanaoğulları , Matthew Lawhead , Daniel Klee , Shiran
Dudy , Melanie Fried-Oken & Barry Oken (2021): BciPy: brain–computer interface software in
Python, Brain-Computer Interfaces, DOI: 10.1080/2326263X.2021.1878727

To link to this article: https://doi.org/10.1080/2326263X.2021.1878727

Published online: 02 Feb 2021.

Submit your article to this journal

Article views: 18

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tbci20
https://www.tandfonline.com/loi/tbci20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/2326263X.2021.1878727
https://doi.org/10.1080/2326263X.2021.1878727
https://www.tandfonline.com/action/authorSubmission?journalCode=tbci20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tbci20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/2326263X.2021.1878727
https://www.tandfonline.com/doi/mlt/10.1080/2326263X.2021.1878727
http://crossmark.crossref.org/dialog/?doi=10.1080/2326263X.2021.1878727&domain=pdf&date_stamp=2021-02-02
http://crossmark.crossref.org/dialog/?doi=10.1080/2326263X.2021.1878727&domain=pdf&date_stamp=2021-02-02

ARTICLE

BciPy: brain–computer interface software in Python
Tab Memmott a, Aziz Koçanaoğulları b, Matthew Lawheadc, Daniel Kleea, Shiran Dudy d, Melanie Fried-
Okene and Barry Oken a

aDepartment of Neurology and School of Medicine, Oregon Health & Science University, Portland, OR, USA; bDepartment of Electrical and
Computer Engineering, Northeastern University, Boston, MA, USA; cOregon Clinical and Translational Research Institute, Oregon Health and
Science University, Portland, OR, USA; dSchool of Medicine, Oregon Health and Science University, Portland, OR, USA; eThe Institute on
Development and Disability, Oregon Health and Science University, Portland, OR, USA

ABSTRACT
There are high technological and software demands associated with conducting Brain–Computer
Interface (BCI) research. In order to accelerate the development and accessibility of BCIs, it is
worthwhile to focus on open-source and community desired tooling. Python, a prominent com-
puter language, has emerged as a language of choice for many research and engineering
purposes. In this article, BciPy, an open-source, Python-based software for conducting BCI research
is presented. It was developed with a focus on restoring communication using Event-Related
Potential (ERP) spelling interfaces; however, it may be used for other non-spelling and non-ERP BCI
paradigms. Major modules in this system include support for data acquisition, data queries, stimuli
presentation, signal processing, signal viewing and modeling, language modeling, task building,
and a simple Graphical User Interface (GUI).

ARTICLE HISTORY
Received 1 December 2019
Accepted 16 January 2021

KEYWORDS
Electroencephalography;
EEG; Python; BCI; software

1. Introduction

BCIs are computer-facilitated feedback systems that rely
on direct, real-time measures of brain activity for inter-
action with other people or machines. These are difficult
systems to architect due to the multidisciplinary nature
of the field. Generally, several modules (or logical
groupings of software functionality) are required to
encapsulate the major functionality of these complex
systems. These will include, at minimum, signal acquisi-
tion and processing (feature extraction and translation),
graphical user interface (GUI), and various helper/uti-
lity modules for file writing and transformations [1].
Depending on the focus of the software, it also might
provide some advanced modeling (signal and language)
or experiment building functionality. The many dimen-
sions of configuration for BCI systems demand
a functionally dynamic platform that can integrate new
functionalities as the field accelerates.

Advances in software development significantly
move BCI research forward. Open source and free for
nonprofit software platforms such as BCI2000, BCILAB,
OpenViBE, Psychtoolbox, PyFF, PsychoPy, and EEGlab
have accelerated research in the fields of BCI and cog-
nitive neurosciences [2–9] (See Table 1 for comparison
of software). Despite these tools, there remains a need
for platforms that meet broader community

requirements. Preferably, any software used to develop
and evaluate BCI would be openly distributed and opti-
mized for both research and product distribution [10].
The availability of this software is also important, both
for reproducibility and to accelerate distribution to end-
users. To better understand the current state of BCI
software, a more detailed description is provided for
two major platforms, BCI2000 and OpenViBE.

1.1. BCI software platforms

BCI2000 is one of the best known BCI platforms for
research [8]. It is built and maintained by the National
Center for Adaptive Neurotechnology (https://www.neu
rotechcenter.org/). While not open source, it is free for
nonprofit and noncommercial usage. The software is
written in C++ and relies on the orchestration between
the Source, Signal Processing, User Application, and
Operator modules for its operation. There are two
main tutorials which may be used to model other BCI
cases. These include a Mu Rhythm and P300 Matrix
speller tutorial. The software is distributed with
Windows installers, however, use with Linux and OSX
requires compilation from source code. The release of
BCPy2000 provided support for Python. This project
originating from the Max Planck Institute for

CONTACT Tab Memmott memmott@ohsu.edu Department of Neurology and School of Medicine, Oregon Health & Science University, 3181 SW Sam
Jackson Rd, Portland, OR 97239, USA

BRAIN-COMPUTER INTERFACES
https://doi.org/10.1080/2326263X.2021.1878727

© 2021 Informa UK Limited, trading as Taylor & Francis Group

http://orcid.org/0000-0001-6143-5057
http://orcid.org/0000-0002-4776-4206
http://orcid.org/0000-0002-7569-5922
http://orcid.org/0000-0002-3781-4273
https://www.neurotechcenter.org/
https://www.neurotechcenter.org/
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/2326263X.2021.1878727&domain=pdf&date_stamp=2021-02-01

Biological Cybernetics in 2007 and is included with the
official BCI2000 binaries.

The second software platform, OpenViBE, is a BCI
platform hosted by the French Institute for Research in
Computer Science and Automation (Inria). The soft-
ware may be used to design, acquire, process, and clas-
sify for BCI experimentation and use. Additionally, the
platform has boosted support for virtual reality integra-
tion. It comes packaged with several standard BCI para-
digms to demo (e.g., P300 and Motor-Imagery). Using
the Designer, a GUI tool to create an OpenViBE sce-
nario or novel experiments, users are able to design and
execute paradigms without programming expertise.
OpenViBE, comparable to BCI2000, is written in C++,
which may be a limitation for those with limited pro-
gramming experience. There are plugins to write cus-
tom code in MATLAB and Python 2, however they are
not in a stable, supported condition. The software doc-
umentation lists verified support for Windows and
Linux operating systems, however OS X is not without
some potentially advanced configuration.

1.2. BCI programming languages

The speed and accessibility of BCI technology is impor-
tant, both for reproducibility and to help accelerate the
delivery of end-user systems. Two programming lan-
guages used in the BCI field are MATLAB
(MathWorks™) and Python.

MATLAB (MathWorksTM) is a common platform
used for many engineering purposes, including BCI
research. It utilizes a proprietary language and
Integrated Development Environment (IDE) released
first in 1984. The insights gained from this platform
have been extensive and it remains a popular choice
for instruction both inside and outside the classroom.

However, as an environment, MATLAB has drawbacks
which prevent it from being the ideal platform to dis-
tribute and iterate BCI software tooling. Most critically,
it is not free. Individual contributors, hobbyists, smaller
laboratories, and young scientists may be prohibitively
discouraged from joining the research effort due to the
platform’s cost. While GNU Octave [11] may be used as
a free language alternative to execute code generated for
MATLAB, it does not contain any of the benefits of the
environment (GUI and IDE) and may be slower in
execution. Secondly, embedding MATLAB code into
production-level software is not an easy task, which
raises concerns regarding end-user product distribu-
tion. Use of the existing distribution tools provided by
MATLAB require additional financial resources and
have limited scope. A final concern is speed. While the
time requirements for BCI control are somewhat flex-
ible, MATLAB is relatively slow and requires advanced
configuration and multiple sessions in order to provide
the same multiprocessing features offered by other lan-
guages at lower resource costs. Despite these drawbacks,
however, MATLAB is easy to use and remains appealing
to many research groups in conjunction with open-
source tools, such as Psychtoolbox [2]. To circumvent
the issues realized by choosing this platform, new tool-
ing should be accessible to a wide array of disciplines
while maintaining the functionality and flexibility
needed to research BCIs.

One possible solution to the issues raised above is
utilization of Python, an open-source, free, high-level
programming language (Python Software Foundation)
that makes use of simplified syntax and provides
a plethora of out of the box tooling. These qualities
make it ideal for new contributors and seasoned engi-
neers alike. The trade-offs mentioned with using low-
level languages (such as, C++) usually relate to speed
and memory usage. These trade-offs are not always
realized though, as many time-critical functions can
have lower-level bindings to increase speed and then
use Python as their declarative interface. NumPy and
Pandas, highly used libraries for mathematics and data
science, are ideal examples of this pattern [12–14]. This
pattern reduces both the complexity of a given subject
and also barriers of entry for scientists without pro-
gramming expertise. Python has steadily increased in
popularity in recent years [15] and has been adopted as
the official language for universities and countrywide
computer science and science courses. Furthermore, the
adoption of Python in research and data science fields
has led to a plethora of open-source libraries and tooling
options that benefit BCI research.

While experimentation is the focus of BciPy and
proposed architecture, the rapid development of custom

Table 1. Comparison of software used in BCI research.
A breakdown of the primary programming language, python
compatibility, focus on BCI, presence of all modules needed for
BCI operation, and contributions within the last year as deter-
mined by last release or commit date. Many of these systems can
operate on most modern operating systems, however maintain-
ing compatibility with older systems is not guaranteed and
acquisition devices may not provide drivers for all operating
systems

Primary
Language

Python
Bindings

BCI
focused

Primary
BCI

Modules

Contributions
within

last year

BciPy Python yes yes yes yes
BCI2000 C++ yes yes yes yes
OpenViBE C++ yes yes yes yes
PsychoPy Python yes no no yes
Psychtoolbox Matlab yes no no yes
PyFF Python yes no no no
BCILAB Matlab yes yes no yes

2 T. MEMMOTT ET AL.

experiments and modules entirely with Python code
may decrease the time to both functional prototypes
and end-user systems. The breadth of usability issues
for various populations may reside outside of algo-
rithms and performance and into the experience
realm. Utilizing a language which extends to ecosystem
outside of engineering permits rapid development of
early systems in more areas. Python is both a preferred
and more easily understood programming language
choice for a wider audience; therefore, its use for
a BCI software offers a major benefit when compared
to other BCI platforms (See Table 1).

The structure, major functions, and theoretical con-
siderations of the open-source Python-based package,
BciPy, are described in detail below. BciPy was devel-
oped to provide an alternative avenue for BCI research
software with functionality that can be used in parallel
with the various preexisting systems. BciPy was initi-
ally presented at the seventh annual BCI Society meet-
ing (Memmott et al., 2018). This work is not meant to
replace existing systems described above or outper-
form them; on the contrary, it is presented here as an
alternate option that will integrate with existing tools
wherever possible. The primary aim is to reduce the
barrier for adoption and contribution in the BCI field
as a whole.

2. Methods and materials

2.1. Architecture

BciPy is written using object-oriented programming,
a technique that models and partitions truly indepen-
dent parts of an application (Figure 1). This software
provides several ways to learn about each individual
module, as well as the higher-level interactions neces-
sary for BCI control. Each module contains unit tests,
documentation, and demo files. The primary modules
include Acquisition, Language Modeling, GUI, Signal
(Processing and Modeling), Task, Display, Feedback
and Helpers. With the exception of the Helpers module,
the connector of various modules and convenience
functions, all modules are described in greater detail
below. The system timing has been validated as
a whole and produces acceptable output for BCI use as
measure via ERP calibration and photodiode testing
(See Figure 2). This temporal fidelity is made possible
by the triggers output from the Display, which may be
used as query parameters to the Acquisition module.
The modules are also capable of adjusting to system
offsets, passed in either as arguments or inferred by
reconciling differences between timestamps generated
by the Display and those sent to Acquisition. Each
module is described in more detail below.

Figure 1. BciPy high-level diagram. BciPy high-level diagram of modules and implementation. This graphic demonstrates the
necessary components for BCI use as well as how BciPy modules are partitioned in the current version. The implementation figure
splits functionality into Frontend and Backend, in which the observable outputs of BciPy are considered frontward facing (Frontend)
components.

BRAIN-COMPUTER INTERFACES 3

2.2. Acquisition

The acquisition module implements a client, which
interacts with a buffer and file writer to facilitate data
acquisition, writing, and real-time queries. Temporally
precise real-time data queries are indispensable to BCI
research. BciPy, by default, will operate without the use
of parallel port infrastructure; a common port to send
relevant triggers to acquisition hardware. Historically,
the high temporal precision of parallel ports has made
them ideal for the synchronization of EEG and markers
of stimuli presentation. However, the majority of new
computers, both desktop and laptop, do not contain
parallel ports. Alternatives involve the conversion of
USB ports to parallel ports using commercial hardware
devices such as, the LabJack (LabJack Corporation).
BciPy, instead, relies on Lab Streaming Layer (LSL),
which contains callbacks which allow investigators to
label stimuli in relation to continuously acquired data
[16]. This method is suitable for BCI control as those
labels are of sufficient quality to leverage for real-time
data queries. The following will describe the acquisition
module’s architecture, major modules, and usage in
greater detail.

2.2.1. Architecture
The main entry point to the Acquisition module is the
DataAcquisitionClient. This class is responsible for
managing an incoming data stream, processing the
data, and providing an interface for real-time data
queries. The acquisition module makes extensive use
of the multiprocessing libraries included with Python
in order to avoid conflicting with the primary execution
thread. DataAcquisitionClient manages two threads:
one for acquisition and one for processing. The acquisi-
tion thread receives a continual stream of data and
writes that data to a process queue with associated time-
stamps. The process thread monitors the queue and
sends data to both the processor and a Buffer. Data in
the buffer is archived for further queries. Each of these
elements is configurable and together they provide
a great deal of user flexibility.

2.2.2. Hardware interface
One of the configurable parameters associated with
DataAcquisitionClient is the Device code, which
DataAcquisitionClient uses for interfacing with the sys-
tem hardware. BciPy currently includes two device

Figure 2. BciPy session results. (a). Raw Data Results. EEG data were collected using the BciPy system in RSVP Calibration mode using
the Wearable Sensing’s VR300 system. The experiment was conducted on an ASUS Laptop (ASUSTek Computer Inc.) running Windows
10 Pro with 16GB RAM, 1.8 GHz Intel i7-8565 U CPU, and a dedicated 4GB GeForce GTX 1050 graphics card. This demonstrates the
software’s ability to collect ERPs such as the P300 (left), as well as SSVEP (right) as demonstrated using PSD off the presentation rate of
4 Hz on the Oz channel. Model training on this same session’s data resulted in an AUC of .82 indicating good target/nontarget
discrimination (b). Photodiode Results. Data were collected on the same computer and hardware as the session results with
a photodiode attached and triggers sent directly to the acquisition device. The data compare the difference between ten stimuli
times detected by the diode to the time recorded via the trigger file output. For this particular machine, a static system offset of
100 ms is needed to correct the discrepancy in the parameters.json. These static discrepancies result from the hardware themselves
(screen refresh times and graphics card performance).

4 T. MEMMOTT ET AL.

types. The first communicates with EEG Hardware
through a TCP connection. There is a specific driver
for Wearable Sensing Dry Sensor Interface (DSI) head-
sets using this technique. BciPy also supports connec-
tion to hardware using LSL. In addition to reading EEG
data, this driver also reads LSL Marker data and inte-
grates these records for downstream processing.
Supported devices can be queried dynamically through
the acquisition device registry. This function is particu-
larly useful for scripts that want to provide different
command-line options.

2.2.3. Persistence
All data from a session are output to a .csv file for
subsequent processing and analysis. In the client, this
happens as part of processing using the FileWriter
object. However, this detail is a configurable property
of the client. Any class which implements the Processor
interface can function as a surrogate. Data persistence
occurs in an isolated process as a precaution so that
long-running processes do not block real-time data
acquisition.

2.2.4. Data queries
Streaming data are sent to a Buffer object. The Buffer
keeps a configurable amount of data in memory, and

periodically stores that data to disk using a backend
SQLite3 database. The Buffer has an interface for
executing arbitrary data queries. BufferServer is the
interface to the buffer and ensures that read and write
actions to the buffer are asynchronous in order to pro-
tect against race conditions. These data may be accessed
by giving intuitive commands to the data acquisition
client described above. The ease of data retrieval is
a major contribution of this library (See Figure 3).

2.2.5. Development tools
Running a BCI system generally requires access to
specialized hardware. For development purposes,
however, these resources are not always readily or
practically available. The Acquisition module pro-
vides a number of developer tools that allow users
to simulate various aspects of the system. Principal
among these is a DataStream module, which simu-
lates streaming EEG data. There are currently two
kinds of servers provided in this module: a socket
server and an LSL server. The socket server streams
data through a socket connection, simulating devices
that communicate over TCP. The LSL server uses the
pylsl library to write to an LSL StreamOutlet. By
default, these servers generate random data, but they
can also stream data recorded previously by the

Figure 3. Data acquisition client demo. The data acquisition client is the main BciPy interaction with any external data device. The
above code snippet demonstrates how to find a device in the registry, start acquisition, query for data, and stop acquisition.

BRAIN-COMPUTER INTERFACES 5

Acquisition module. Both can be configured to inter-
face with a data generator in order to specify a data
type.

The object-oriented approach adopted by the acqui-
sition module gives it a very flexible design. Although it
was developed for BciPy, the module’s extensive

Figure 4. Data server demo. The DataServer is used to configure a data source, with its unique protocol for interaction, and serve data
into BciPy. The above code snippet demonstrates how to define the protocol, initialize a data server, and stop it.

Figure 5. Display. The Display module diagram represents the interaction between the larger framework and the display. The
parameters utilized are dependent on task type, which defines the stimuli type and display elements to be presented on the PsychoPy
window.

6 T. MEMMOTT ET AL.

configurability allows it to potentially be used more
broadly in other data acquisition scenarios.

2.3. Display

A visual display is implemented which relies on the
PsychoPy Display Window. These windows may be
used with either the pyglet or pygame Python stimuli
libraries, but the base display uses pyglet. The purpose
of the Display is to present stimuli with high temporal
resolution given the available hardware and return any
useful timing or stimuli properties. An example of how
to build the base classes for a new BCI paradigm may be
observed from the porting of Rapid Serial Visual
Presentation (RSVP) [17]. RSVP Display is used to pre-
sent stimuli on the screen in a fixed position and
sequential manner. The RSVP paradigm, a P300-based
speller, has been developed and evaluated using older
MATLAB-based software [18–20]. The children of the
Display base classes must contain a display window and,
depending on the Task type, construct various stimuli
and display elements vital to the experiment.

2.4. Graphical User Interface (GUI)

The GUI interfaces are provided for use by researchers
(See Figure 1). These GUIs are meant to register modes
of operation and tasks, as well as provide a method of
editing registered parameters without editing those files
directly. Information regarding the two interfaces cur-
rently available when using BciPy are provided.

2.4.1. BCI interface
A simple GUI allows users to easily select registered
tasks and edit operating parameters such as, presenta-
tion rate or selecting acquisition devices. It is built using
WxPython and all modes of operation in BciPy are
registered in this view. Currently, only the RVSP
Interface is provided with, out of the box, working task
implementations. However, once a paradigm is added to
the task registry (See Task) it will appear in the correct
GUI location. The parameter editing functionality is not
dependent on task, but instead the location and correct
JSON format of the parameters file.

2.4.2. RSVP interface
All RSVP tasks (see Task section below) registered in the
task registry for RSVP are accessible via the GUI (Figure
6). The GUI also provides two quick link buttons for the
training of EEG models after an experiment (Calculate
AUC) and editing of parameters. The parameters are
stored in a JavaScript Object Notation (JSON) format
with value, type, recommended values, and help text

information. This format allows for easy presentation,
loading and saving by the user in the GUI. The sup-
ported parameter types for setting in the GUI are string,
float, integer, boolean, and directory and file paths. If
recommended values are provided, a dropdown will
appear for easy user selection of those values. This
may also prevent user’s from selecting values that are
not yet supported.

2.4.3. Signal viewer
BciPy GUI features an integrated Signal Viewer (See
Figure 7). This GUI component allows clinicians and
researchers to monitor EEG signals during an experi-
ment to ensure that device connections are stable for
consistent data quality.

The Viewer is configured either through the general
Configuration UI or manually in the parameters file. If
selected, the Viewer will launch during the initialization
of the data acquisition module in a new GUI window.
The module detects the usage of multiple monitors and
will appear in the secondary monitor so that it does not
interfere with the main experiment. By default, all active
channels are displayed. However, the Viewer has con-
trols to toggle the visibility of any channel. Channel
information is provided to the viewer, so it can work
for any device supported by BciPy. There are additional
controls to adjust the duration of data displayed on the
screen simultaneously and to toggle filtering. Viewing
can be paused at any time. Restarting from a paused
state will refresh the display with the most recent data.

In addition to its use during an experiment, the
Signal Viewer can be run from the command line to
replay a raw data file from a previously captured BciPy
session. This modality exposes some additional options
for usage.

The Signal Viewer has a modular architecture, which
results in a great deal of flexibility. The GUI is imple-
mented as a WxPython Frame that streams data from
any object that uses a DataSource interface. The Viewer
is also parameterized with a DeviceInfo object, which
provides information on sampling rate and which chan-
nels to use. Internally, the Viewer uses this metadata to
determine how frequently to query any data sources for
new data and to determine what channel information to
expect.

Several data sources are provided in the module,
including an LSL data source and a FileDatasource.
The LSL DataSource is used during live experiments
while the FileDataSource is used for data replay pur-
poses. Additionally, the Viewer module integrates with
the data acquisition module by implementing a custom
Processor that starts the viewer in its own process. It can
optionally filter these incoming data using the filters

BRAIN-COMPUTER INTERFACES 7

provided by the Signal module (See signal filtering sec-
tion below).

Many devices come with their own proprietary soft-
ware. However, use of proprietary tools often limits
access to these devices, which cannot be run concur-
rently with other software. Other devices currently
available may also have outdated or non-existent soft-
ware. The BciPy Signal Viewer allows users to have
a consistent experience across devices to ensure good
data quality.

2.5. Language model

Language modeling is important for the functionality of
many spelling applications, including the single letter
BCI RSVP paradigm where the Bayesian fusion of EEG
and language model evidence improves speed and accu-
racy of letter typing [20]. The language model (LM)

component is aimed at both improving the quality of
the predictions of the system and reducing the runtime
it takes to compose a message with the system. The
general concept, as explained in earlier work [21], is to
provide information about common patterns in
a language which will help direct the system toward
predictions of likely symbols, given previous decisions.
This section explores architecture, the types of LM
modules, and how to employ them within the BciPy
library.

2.5.1. Architecture
The language model component acts independently of
the rest of the BciPy system. The reason for this inde-
pendence is to enable a ‘plug and play’ mode that facil-
itates easy switching when a new LM module is
developed or iteratively refined. The client’s interface
(found in the main script) for the two current LMs (see

Figure 6. RSVP keyboard GUI. The RSVPKeyboard GUI provides an easy interface to execute and configure a registered BciPy Task for
RSVP. To start, a user may edit parameters, calculate AUC of a previous session, or enter a user ID. A user ID is required to start an
experiment and is used to label the data folder with a timestamp for a session. After entering a user ID or selecting a previous user ID
(as extracted from the data folder location in the parameters file), an experiment type may be chosen.

8 T. MEMMOTT ET AL.

below) employs the same encapsulation layer, while still
allowing the two LMs for minor changes in some of
their functionality. The different LMs are encapsulated
into a lightweight docker image [22], to which queries
are sent from the main BCI script. The communication
between the main script (the client) and the dockerized
LM module (the server) is through a TCP/IP protocol
with appropriate abstraction layers on both ends.

2.5.2. Prefix language model
The concept of the Prefix Language Model (PreLM) [23] is
to predict the next symbol (e.g., a letter, but this approach
can be applied to any symbol set), given the history of
symbols the user has typed. The model retrieves its pre-
diction from a lattice that contains likely patterns of letters
with associated probabilities. For example, given that the

user’s history is `T’, the system returns a ranked list of the
most likely next letters to continue the given history.

2.5.3. Online contextual language model
The Online Contextual LM (OCLM) is described in [23]
and is constructed to incorporate several sources of
information, such as the history of likely evidence typed
by the user (containing possibly more than a single letter
per time step), common letter patterns, and common
word paths in the language. While this approach may
result in a slightly longer runtime, it provides higher
quality of predictions as described in the previous paper.

2.5.4. Interface
The system allows the user to define an LM module of
choice, which is then propagated through the rest of the

Figure 7. BciPy signal viewer. The BciPy Signal Viewer displays data being served from BciPy for quality inspection before and/or
during an experiment. Each available channel to BciPy is presented by default but may be removed from viewer by clicking the check
boxes at the bottom with corresponding channel names. Clicking the Start button will start the stream data to the viewer that can be
set at 2, 5, or 10 second update intervals. The dropdown on the bottom right allows for configuration of display window to desired
length. Additionally, there are autoscaling and filtering checkboxes for convenient display configuration. The filter used in this viewer
is the default bandpass filter used by all Tasks.

BRAIN-COMPUTER INTERFACES 9

system. As a result, the user only needs to ensure that
the LM image is found on their computer. Internally,
the major commands remain the same for both module
types, since both go through the same encapsulation
layer on the client’s end that communicates with the
docker image, as mentioned previously.

OCLM can provide not only a ranked list of letters,
but also a ranked list of words that the user is currently
in the middle of typing. For both modules, the letters
and the words are sent back to the client with their
corresponding probabilities.

2.5.5. Usage
Demonstration scripts for both model types are found
in the language model module in a demo directory.

In the PreLM demo code shown in Figure 9, the
following steps are taken: instantiating an LM object;
getting priors for no history; getting priors to accumu-
lated history; and resetting the LM object to delete the
history of the model and enable a fresh start without
regenerating the object, which would require generating
a new docker instance.

The OCLM demo code in Figure 10 demonstrates
similar steps: instantiating an LM object; determining
n-best candidate; getting priors for no history; (not
presented generating evidence); sending evidence
along with the type of desired output (letter/word) to
the object to get updated priors; and finally, a resetting
step, similar to resetting in the PreLM.

2.6. Signal

2.6.1. Signal process
The signal process module contains data filters and
decomposition functions. These processing modules

are necessary for making use of EEG signals for BCI
control.

2.6.2. Filtering
Several data filters are available for use. The primary
method, bandpass, implements a Butterworth Filter that
accepts arguments for high/low cutoff and filter order.
Additionally, a text filter representing filter parameters
created in a legacy MATLAB version of the system was
implemented to retain backwards compatibility with the
older, verified RSVP Keyboard system [24]. The inter-
face for interacting with these filters is simple and opti-
mized for use with EEG (See Figure 11). While these
base filtering implementations are provided, other filters
may be added and leveraged.

2.6.3. Decomposition
The decomposition module implements down-
sampling and a power spectral density (PSD)
method, allowing for extraction of discrete fre-
quency bands, plotting of spectra, and relative
power band calculations. Two decomposition
method types are available for use in the current
version: Welch’s and Multitaper. To use the PSD
function, raw data, frequency band of interest
(e.g., 1–10 Hz), data sampling rate, data window
length (e.g., 500 ms), and PSD method type are
required as arguments. Consumers of this method
may set a Boolean of plot = True to visualize the
resultant PSD output during experiment building.
The default is set to False, as plotting would be
distracting during real-time operation.
Additionally, a Boolean flag may be passed to
return PSD as a relative calculation to the full
spectrum.

Figure 8. Language model architecture. This illustrates the process of the system from the language model perspective. First, the raw
EEG is processed to enhance the underlying signal, then, it is sent over to the LM module which, along with the signal information and
the language patterns information, computes a list of likely priors and sends them back to the system. Finally, the system computes
the posterior distribution and makes a decision with regard to the user’s symbol of intent. Technically, the communication is done
through abstraction layers, containing basic functionality such as state_update, recent_priors, reset, and init, all of which are invoked
by the client. The next sections describe the types of LM modules that have been developed.

10 T. MEMMOTT ET AL.

2.7. Signal modeling
In the system, user intent is detected in a Bayesian
fashion that performs posterior probability updates.
The updates require a likelihood assessment between
the stimuli and the user intent. σ;ϕ; andε are used to
denote user intent, stimuli and EEG evidence, respec-
tively. After each stimulus presentation the system
updates the belief over all possible σ’s as the following:

p σjϕ; εð Þ ¼ p σð Þ
pðεjσ;ϕÞ

pðεjϕÞ
(1)

To update the belief over the user intent, the system
searches for the presence of an event-related potential
(ERP), an anomaly in the EEG sequence. Each sequence
contains multiple symbols being presented and hence
results in a list of (multichannel) evidence and a list of
corresponding labels. In the sequence, each stimulus letter
has a fixed-known location and hence one can assign
a label to each position. For simplicity, within this section
positional argument t over the stimuli is used. The

evidence set is denoted with ε ¼ ε1; ε2; � � � ; εTf g as εt 2

R C�N (where C;N denotes number of channels and
signal length, respectively), stimuli set with ϕ ¼
ϕ1; ϕ2; � � � ;ϕTf g and the label sequence with , ¼

,1; ,2; � � � ; ,Tf g where ,t 2 0; 1f g. The position t has
the corresponding label is ,t ¼ δϕt ;σ ; The label becomes 1
where the letter presented at location t is the user intent
and 0 otherwise. Therefore, ,t ¼ 1 coincides with the ERP
presence. This notation allows us to write the following:

p εtjσ;ϕtð Þ ¼
p εtj, ¼ 1ð Þ

p εtj, ¼ 0ð Þ

�
if σ ¼ ϕt
otherwise

Signal modeling is responsible for generating the like-
lihoods, in words the likelihood of evidence resulting
from the label sequence pðεj,Þ. In this application each
evidence chunk is assumed to be independent of each
other conditioned on the labels. This allows one to
simplify the update defined in (1) for estimates that
appear in the stimuli as the following:

Figure 9. Prefix language model demo. An example of how to initialize and retrieve inferences from the Prefix Language Model.

BRAIN-COMPUTER INTERFACES 11

Figure 10. Online contextual language model demo. An example of how to initialize and retrieve inferences from the Online
Contextual Language Model. The evidence variable represents the normalized likelihoods of the EEG signal over the sequences needed
to type (also referred to as epochs). These epochs are integrated into the language model to provide a language model probability
distribution for the next epoch. Evidence is a list of lists (representing the epochs already presented) of tuples (each indicating the
symbol and probability across the symbol set). Please refer to the demo code in the source repository for more information.

Figure 11. Signal filtering demo. Data filtering is a critical part of BCI use. The above snippet demonstrates a common data filtering
pipeline. It is started by generating some random data and then defining sampling rate and filter parameters. Next, there is a call to
the notch and bandpass filters.

12 T. MEMMOTT ET AL.

p σjϕ; εð Þ / p σð Þ
p εtj, ¼ 1ð Þ

p εtj, ¼ 0ð Þ
whereϕt ¼ σ (2)

The reader may refer to previous work for more
details [25].

In this application, the signal modeling is tasked to
return likelihoods for evidence pðεtj,t ¼ 1Þ,
pðεtj,t ¼ 0Þ, conditioned on positive and negative
classes, respectively. In order to extract that informa-
tion, there is a pipeline of models which is explained in
three sub-sections; Feature extraction, dimensionality
reduction and generative model. The scikit-learn library
[26] is used in this implementation and hence follow the
conventions of the package. Let x; y denote data and
label sets, respectively. Each module to be presented
includes the following properties:

● fit x; yð Þ: given a data and label sequence, fits the
model

● transform xð Þ: given a data sequence, returns trans-
formation based on fitted model

● fit_transform x; yð Þ: given a data and label
sequence, fits the model and returns transforma-
tion based on the fitted model.

2.7.1. Feature extraction
In order to extract features, principal components along
each channel data are obtained with a channel-wise prin-
cipal component analysis (PCA) approach. To extract the
components, a channel-specific PCA matrix AcMc�N is
learned for channel c using the corresponding evidence
set εc

1; εc
2; � � � ; εc

T
� �

of the channel. Each channel PCA
matrix further used to reduce the dimensionality of the
corresponding channel c. To incorporate all channel infor-
mation at a position t, the feature vector is formed as the
following:

f t ¼ A1ε1
t ;A2ε2

t ; . . . ;ACεC
t

� �T
2 R d

Observe that d ¼
P

c
Mc. For simplicity of the application,

this feature vector is assumed to be Gaussian. The sim-
plest representation can be represented using the quad-
ratic decision boundary between such feature vectors and
the built-in method is discussed in the following section.

2.7.2. Dimensionality reduction
Feature vector is passed through a regularized discrimi-
nant analysis (RDA) to obtain one-dimensional repre-
sentation. The model is specifically tailored to improve
the intent selection by discriminating target and non-
target representations. For more detailed information,
the reader may refer to Friedman’s work [27]. RDA
modifies quadratic decision boundary between classes

using two hyperparameters; λ 2 0; 1½ �, γ 2 0; 1½ � for
shrinkage and regularization. Shrinkage balances class
conditioned covariances with the overall mean sub-
tracted covariance. As λ! 1; both classes share the
covariance and hence decision boundary becomes linear.
As γ! 1 both conditional covariances converge to cir-
cular covariance. Each of the hyper-parameters are
selected with cross-validating the area under receiver
operating characteristics curve (AUC = AUroC).

RDA returns a log-likelihood log p , ¼ 1jf tð Þð Þ 2 R ,
log pð, ¼ 0jf tð ÞÞ 2 R and the log-likelihood ratio score
st ¼ log pð, ¼ 1jf tÞÞ � log pð, ¼ 0jf tð Þð Þ number for
each trial where st 2 R . By design, st > 0 if the stimulus
was the user’s intent and st < 0 otherwise.

2.7.3. Generative model
To perform the posterior update presented in (2) p εj,ð Þ

is needed, which is calculated along class conditional
likelihood distributions p εtj,tð Þ. These likelihoods are
estimated from training data where label assignment is
already known using kernel density estimates (KDEs)
with Gaussian kernels around each log-likelihood score
point st. These models are tasked to provide the condi-
tional likelihoods p εtj,t ¼ 1ð Þ, p εtj,t ¼ 0ð Þ during the
inference for the update presented in (2).

Use-case: The pipeline requires the evidence ε and
label , to train model parameters. The pipeline is visua-
lized in Figure 12. Each model in the pipeline can be
used independently by their own methods. To give an
example, the code in Figure 13 defines RDA, fits a mean
and a covariance with fixed λ 2 0; 1½ �, γ 2 0; 1½ � and
outputs the transform, defined as z.

Hyperparameters are set using the cross-validation.
The cross-validation optimizes hyperparameters to
maximize area under receiver operation characteristics
curve for all the validation sets. Cross-validation accepts
x; y as training samples, the entire model and element to
be optimized (See Figure 14).

In the proposed pipeline presented, the element to be
optimized is RDA with required parameters which is the
first element.

Each of the functionalities are presented with their
own demo files within the demo folder inside ‘machine
learning (mach_learning)’ subdirectory.

2.8. Feedback

The feedback module provides functionality for both audi-
tory and visual feedback types. The module may be used in
a Task and inherit a Display to present stimuli. However, it
may also be used independently. Visual feedback uses
PsychoPy visual and core modules to administer and con-
figure visual feedback stimuli. Users can build on top of

BRAIN-COMPUTER INTERFACES 13

visual feedback to administer progress, alertness, attention,
and other context-based feedback during an experiment
without complicating their main display or task logic.
Additionally, using the Python library python-
sounddevice, built on top of PortAudio [28], auditory
feedback may also be administered. The
RSVPInterSequenceFeedbackCalibration task is an exam-
ple of visual feedback being used in conjugation with EEG

frequency activity to focus attention during a calibration
session [29].

2.9. Task

BciPy implements its own Task module, which is the
basis for experimental design and where the modules
connect to form operational meaning. A Task at its base

Figure 12. Signal model processing pipeline. Signal Processing pipeline for likelihood generation. At a high level, reshaped data is sent
through the pipeline to undergo Channel-Wise PCA, RDA, and finally KDE. The output is then returned to the system to make decisions
on.

Figure 13. Signal modeling regularized discriminant analysis demo. An example of how to initialize the BciPy Regularized Discriminant
Analysis class and use it to transform data, where x is reshaped data and y are labels.

Figure 14. Signal modeling cross-validation demo. An example of how to initialize the BciPy Cross-Validation class and use it to
validate inferences. The inputs are as follows: x is reshaped data, y is the data labels, model is a trained model, and opt_el is element to
optimize on. A user may also optionally specify the number of folds and define the split type.

14 T. MEMMOTT ET AL.

level must contain implementation-specific settings,
a unique name, and a method of execution. All tasks
programmed into the task registry are accessible via the
GUI. These tasks can be used to accomplish the closed-
loop BCI control (See Figure 15) needed for many BCI
experiments. Currently, tasks to calibrate, spell, and
provide feedback in an RSVP paradigm [24] are
included with the base classes for utilization. For exam-
ple, the RSVP copy phrase task utilizes all modules to
collect, query, and save data, retrieve language and sig-
nal inference, display stimuli and ultimately provide
spelling ability.

3. Inquiry

3.1. System requirements

This software requires a graphics card capable of
OpenGl support and an operating system which com-
plies resources-wise with the libraries used by BciPy,
particularly PsychoPy. BciPy uses only Python 3, as
support for Python 2 reached end of support from the
Python Software Foundation in January 2020.
Currently, the system can install on most modern
Windows and Mac OS. Manual installation of some
dependencies will be required for Linux installation.
New computers should be tested for timing before for-
mal experimentation. Any blocking applications such
as, some Antivirus software must be configured to
cease during BciPy operation. Additionally, when

configuring new systems, especially gaming laptops, it
may require disabling power save mode. This is because
the laptop may, in order to save battery life, default to
the onboard graphics card instead of the performance
graphics card needed for timing resolution. For the
purpose of evaluating a new BciPy system, there are
scripts provided in the repository for visualizing the
offset of triggers and raw data, as well as some docu-
mentation on how to remedy common issues, either in
real-time or offline. These resources, along with tradi-
tional photodiode assessments recommended above,
should be used when starting new experiments or pre-
paring new hardware for use.

3.2. Release and contribution

BciPy is hosted on PyPi and pip installable [30].
The code is hosted on GitHub and can be
accessed using the following link: https://github.
com/CAMBI-tech/BciPy. To use the provided
RSVP implementation, the user will need to git
clone or download the repository and follow the
README instructions for local usage.
Contributors are invited to the repository. The
Code of Conduct will be enforced, utilizing the
Contributor Covenant v1.4.1, listed at the root of
the repository to encourage a safe development
environment. It is currently distributed under
a BSD license. Please refer to the LICENSE.txt in
the repository for more information.

Figure 15. Closed-loop BciPy control. Closed-loop control diagram of BciPy. The blue and yellow entities indicate BciPy modules, and
green/red boxes are user interaction or criteria checks. Starting at the leftmost side, a user starts a BciPy GUI (such as RSVPKeyboard.
py), selects experimental parameters, and begins a session via the main entry point bci_main.py at the root of the project. After
passing requisite parameters to bci_main.py, the Task starts with Acquisition and Display running in parallel processes. After
a presentation sequence, data is piped through signal processing and modeling, and (optionally) Language Modeling to decide on
what to do next. The Task, having implemented some decision-making criteria, then decides the next presentation sequence or to
discontinue sequencing. Each loop results in written data, checking of criteria, and formation of new stimuli or ending the session. If
stopping criteria are met, Acquisition and Display are stopped in their parallel processes, data are written, and the user is directed back
to the GUI.

BRAIN-COMPUTER INTERFACES 15

https://github.com/CAMBI-tech/BciPy
https://github.com/CAMBI-tech/BciPy

4. Discussion

Brain–computer interface technology is a rapidly grow-
ing enterprise that has the potential to augment our lives
in many ways. For individuals with severe disabilities,
BCIs may replace or restore useful functions such as
control of computer, robotic arms, prostheses, wheel-
chairs or communication devices [31]. For those who
are searching for enhancements, BCIs have the potential
to improve alertness and attention or augment standard
levels of functioning, such as gaming speed [32].
However, successful translation of this technology for
practical applications has remained elusive [33]. The
effective interaction between the user’s intent and
a system’s performance is facilitated by dependable
BCI software. The demands on precise, accurate, time-
sensitive signal acquisition and processing increase as
system expectations expand. In this regard, it is critical
that BCI technologies are built with a functionally
dynamic platform that can integrate additions and new
functionalities as the field accelerates. BciPy moves the
state of BCI research forward by providing functionally
dynamic development tools in Python. The technologi-
cal requirements for BCI research are immense. As
additional functions are proposed, it is essential that
accessible tooling be obtainable by the larger field.
BciPy may not suit all BCI applications, but its flexibility
and potential make it a top candidate for further
developments.

BciPy was designed and built with a research com-
munity in mind. This requires that users have an under-
standing of Python, their OS, and how to empirically
evaluate a new system before beginning an experiment.
For example, if potential users choose to add custom
complex processing code along with the available mod-
ules, it should be known there are differences in the way
Python handles some lower-level functionality (e.g.
multiprocessing) between OS. One solution would be
to provide a pre-baked BciPy OS image, likely by
extending a Linux distribution, with the settings already
configured and software with timing validators
included. This would facilitate faster installation and
use of the software without advanced knowledge of the
OS pre-installed on computers. While there may be
general interest in maintaining software across all
major commercially available OS for accessibility rea-
sons, it comes at a cost and risk for systems that rely
heavily on the direct use of hardware (graphics card,
RAM) in real-time. That cost is reflected in the slowing
of progress in other areas of software in order to patch
or circumvent intricacies of commercial systems which
are not made for experimental purpose.

Another challenge of presenting BciPy through
a research lens is that this is not out-of-the-box suitable
for end-users or groups without some programming
expertise. There is no interface for typing selection or
free form typing. While a GUI is provided with some
easy to use functionality, it is not an application. Future
developments can be envisioned to extend this library,
with a product perspective where the end-user’s engage-
ment and usability of the system are measurable along-
side performance. Applications with other experiment
generation tools, such as PsychoPy, could reduce the
programming needs required to start simple experi-
ments. As the community and its contributors grow,
responses will be provided to those needs first and
foremost.

These early releases are meant to lay the foundations
needed for all BCI research, with some implementations
as examples as they are developed. This should make
adoption for paradigms not currently implemented
lower than if starting from scratch or using some of
the software described in Table 1. For instance, we’ve
presented many tools to operate event-related BCI para-
digms, particularly for spelling, however more work
would need to be done for robotic control. From an
accessibility and software engineering perspective,
future contributions that bridge existing research soft-
ware will be particularly beneficial to future releases.
Moreover, improvements that allow for greater OS
compatibility and easier calibration of stimuli timing
are needed. There remain hurdles in setting up new
commercial machines to be performant for BCI use.
Additionally, tools needed to test timing at the start of
an experiment, such as a photodiode, may be difficult to
operate if not included in a commercial set. There is
ongoing work to release debug and visualization tools to
help diagnose timing and other critical aspects to BCI
operation.

Acknowledgments

We utilized many learnings from our group’s original
MATLAB implementation of RSVP Keyboard [24]. We
thank David Smith, Shaobin Xu, Deniz Erdogmus, Steven
Bedrick, Brandon Eddy, Betts Peters, Deirdre McLaughlin,
Ian Jackson, and Dani Smektala for their architectural con-
siderations, code and feedback over the course of
development.

Disclosure statement

The authors whose names are listed on this manuscript have
no conflicts of interest to report.

16 T. MEMMOTT ET AL.

Funding

Funding was provided by NIH grant #R01 DC009834 and the
National Institute on Disability, Independent Living, and
Rehabilitation Research (NIDILRR grant #90RE507).

ORCID

Tab Memmott http://orcid.org/0000-0001-6143-5057
Aziz Koçanaoğulları http://orcid.org/0000-0002-4776-
4206
Shiran Dudy http://orcid.org/0000-0002-7569-5922
Barry Oken http://orcid.org/0000-0002-3781-4273

References

[1] Mason SG, Birch GE. A general framework for brain -
Computer interface design. In: IEEE Transactions on
Neural Systems and Rehabilitation Engineering. 2003.
DOI:10.1109/TNSRE.2003.810426

[2] Brainard DH. The Psychophysics Toolbox. Spatial
Vision. 1997;10(4):433–436.

[3] Brunner C, Andreoni G, Bianchi L, et al. BCI Software
Platforms. 2012. DOI:10.1007/978-3-642-29746-5_16

[4] Delorme A, Makeig S. EEGLAB: an open source tool-
box for analysis of single-trial EEG dynamics including
independent component analysis. J Neurosci Methods.
2004;134(1):9–21.

[5] Kothe CA, Makeig S. BCILAB: A platform for
brain-computer interface development. J Neural Eng.
2013;10(5):056014.

[6] Peirce JW. PsychoPy-Psychophysics software in
Python. J Neurosci Methods. 2007;162(1–2):8–13.

[7] Renard Y, Lotte F, Gibert G, et al. OpenViBE: an
open-source software platform to design, test, and use
brain-computer interfaces in real and virtual
environments. Presence. 2010;19(1):35–53.

[8] Schalk G, McFarland DJ, Hinterberger T, et al.
BCI2000: A general-purpose brain-computer interface
(BCI) system. IEEE Trans Biomed Eng. 2004;51
(6):1034–1043.

[9] Venthur B, Scholler S, Williamson J, et al. Pyff -
A pythonic framework for feedback applications and
stimulus presentation in neuroscience. Front
Neuroinform. 2010. DOI:10.3389/.2010.00100

[10] Wessel JR, Gorgolewski KJ, Bellec P. Switching
Software in Science: motivations, Challenges, and
Solutions. In: Trends in Cognitive Sciences. 2019.
DOI:10.1016/j.tics.2019.01.004

[11] Eaton JW, Bateman D, Søren Hauberg RW. GNU
Octave version 6.1.0 manual: a high-level interactive
language for numerical computations. 2020. https://
www.gnu.org/software/octave/doc/v6.1.0/

[12] McKinney W. Data Structures for Statistical
Computing in Python. In: Proceedings of the 9th
Python in Science Conference, Austin, Texas. 2010.

[13] Oliphant T, Millma JK. A guide to NumPy. Trelgol
Publishing; 2006. DOI:10.1109/MCSE.2007.58

[14] Van Der Walt S, Colbert SC, Varoquaux G. The NumPy
array: A structure for efficient numerical computation.
Comput Sci Eng. 2011;13(2):22–30.

[15] Robinson D. The Incredible Growth of Python | Stack
Overflow. Stackoverflow.Blog; 2017. https://stackover-
flow.blog/2017/09/06/incredible-growth-python/

[16] Kothe C. Lab streaming layer (lsl). 2014. Available
from: https://github.com/sccn/labstreaminglayer

[17] Lees S, Dayan N, Cecotti H, et al. A review of rapid
serial visual presentation-based brain-computer
interfaces. J Neural Eng. 2018;15(2):021001.

[18] Oken B, Memmott T, Eddy B, et al. Vigilance state
fluctuations and performance using brain–computer
interface for communication. Brain-Comput
Interfaces. 2018;5(4):146–156.

[19] Oken BS, Orhan U, Roark B, et al. Brain-computer
interface with language model-electroencephalography
fusion for locked-in syndrome. Neurorehabil Neural
Repair. 2014;28(4):387–394.

[20] Orhan U, Erdogmus D, Roark B, et al. Fusion with
language models improves spelling accuracy for
ERP-based brain computer interface spellers. In:
Proceedings of the Annual International Conference
of the IEEE Engineering in Medicine and Biology
Society, EMBS. 2011. DOI:10.1109/
IEMBS.2011.6091429

[21] Manning CD, Schütze H. Foundations of Natural
Language Processing. Cambridge: The MIT Press; 2000.

[22] Merkel D. Docker: lightweight Linux containers for con-
sistent development and deployment. Linux J. 2014. 239,
Article 2 (March 2014).

[23] Dudy S, Xu S, Bedrick S, et al. A multi-context character
prediction model for a brain-computer interface. 2018.
DOI:10.18653/v1/w18-1210

[24] Orhan U, Hild KE, Erdogmus D, et al. RSVP keyboard:
an EEG based typing interface. In: ICASSP, IEEE
International Conference on Acoustics, Speech and
Signal Processing – Proceedings; 2012. p. 645–648.
DOI:10.1109/ICASSP.2012.6287966

[25] Kocanaogullari A, Erdogmus D, Akcakaya M. On ana-
lysis of active querying for recursive state estimation.
IEEE Signal Process Lett. 2018;25(6):743–747.

[26] Pedregosa F, Michel V, Grisel O, et al. Scikit-learn:
machine Learning in Python Gaël Varoquaux Bertrand
Thirion Vincent Dubourg Alexandre Passos Pedregosa,
Varoquaux, Gramfort et al. Matthieu Perrot. J Mach
Learn Res. 2011. DOI:10.1007/s13398-014-0173-7.2

[27] Friedman JH. Regularized discriminant analysis. J Am
Stat Assoc. 1989;84(405):165–175.

[28] Bencina R, Burk P. PortAudio – an open source cross
platform audio API. Proceedings of the ICMC, La
Habana, Cuba.

[29] Klee D, McLaughlin D, Memmott T, et al. Using Brain-
Computer Interface (BCI) software for training read-
ing-related attention in mild Alzheimer’s Disease (AD).
Program No. 584.09. 2019.

BRAIN-COMPUTER INTERFACES 17

https://doi.org/10.1109/TNSRE.2003.810426
https://doi.org/10.1007/978-3-642-29746-5_16
https://doi.org/10.3389/.2010.00100
https://doi.org/10.1016/j.tics.2019.01.004
https://doi.org/10.1109/MCSE.2007.58
Https://Github.Com/Sccn/Labstreaminglayer
https://doi.org/10.1109/IEMBS.2011.6091429
https://doi.org/10.1109/IEMBS.2011.6091429
https://doi.org/10.18653/v1/w18-1210
https://doi.org/10.1109/ICASSP.2012.6287966
https://doi.org/10.1007/s13398-014-0173-7.2

[30] Python Community T. PyPI - the Python Package Index :
Python Package Index. pypi.python.org; 2014.

[31] Shih JJ, Krusienski DJ, Wolpaw JR Brain-computer
interfaces in medicine. In: Mayo Clinic Proceedings.
2012. DOI:10.1016/j.mayocp.2011.12.008

[32] Beveridge R, Wilson S, Coyle D. Can teenagers
control a 3D racing game using motion-onset
visual evoked potentials? Brain-Comput
Interfaces. 2017;4(1–2):102–113.

[33] Chavarriaga R, Fried-Oken M, Kleih S, et al. Heading
for new shores! Overcoming pitfalls in BCI design.
Brain-Comput Interfaces. 2017;4(1–2):60–73.

[34] Memmott, T., Kocanaogullari, A., Erdogmus, D.,
Bedrick, S., Peters, B., Fried-Oken, M. & Oken, B.
(2018, May). BciPy: A Python Framework for Brain-
Computer Interface Research. Poster presented at
the 7th International BCI meeting 2018 in
Asilomar, CA.

18 T. MEMMOTT ET AL.

https://doi.org/10.1016/j.mayocp.2011.12.008

	Abstract
	1. Introduction
	1.1. BCI software platforms
	1.2. BCI programming languages

	2. Methods and materials
	2.1. Architecture
	2.2. Acquisition
	2.2.1. Architecture
	2.2.2. Hardware interface
	2.2.3. Persistence
	2.2.4. Data queries
	2.2.5. Development tools

	2.3. Display
	2.4. Graphical User Interface (GUI)
	2.4.1. BCI interface
	2.4.2. RSVP interface
	2.4.3. Signal viewer

	2.5. Language model
	2.5.1. Architecture
	2.5.2. Prefix language model
	2.5.3. Online contextual language model
	2.5.4. Interface
	2.5.5. Usage

	2.6. Signal
	2.6.1. Signal process
	2.6.2. Filtering
	2.6.3. Decomposition

	2.7. Signal modeling
	2.7.1. Feature extraction
	2.7.2. Dimensionality reduction
	2.7.3. Generative model

	2.8. Feedback
	2.9. Task

	3. Inquiry
	3.1. System requirements
	3.2. Release and contribution

	4. Discussion
	Acknowledgments
	Disclosure statement
	Funding
	ORCID
	References

