The Placenta: More than a Conduit

Leslie Myatt PhD FRCOG Dept of Obstetrics and Gynecology Moore Institute of Nutrition and Wellness Oregon Health & Science University

The Placenta is the Center of the Perinatal Universe

Role of the placenta in fetal programming

Maternal environment

Type/plane of nutrition, obesity, diabetes, stress, exposome

Placental function/adaptation?

Vascular development/perfusion, oxygenation, transport, metabolism, hormones, inflammation, oxidative stress, epigenetics

Physical forces

Molecular mechanisms

Fetal growth, development, epigenetics Heart, vasculature, kidney, pancreas, liver, brain, HPA axis

Placental function and metabolism

- Second only to brain in number of transcripts expressed
- <u>Not simply a conduit</u>, but regulates nutrient composition and supply from mother to fetus in several ways
- Source of hormonal signals regulating maternal metabolism and hence type and amount of substrate available to it
- Takes up, transfers, stores substrates to buffer transfer
- Placental metabolic activity 6x higher/unit weight than fetus
- Consumes substrates to provide energy for anabolic activity e.g. sheep placenta consumes 50% of oxygen, 75% of glucose supplied to uterus, - may limit fetal supply
- 1/3 of placental O₂ consumption for generation of peptides, 1/3 to maintain membrane cation gradient for transport
- Placental adaptation (metabolic flexibility) occurs to try and ensure fetal survival in adverse conditions

Sexual Dimorphism in Fetal Outcomes

- Male fetuses are larger but have more adverse outcomes:
 - preterm birth, PPROM, placenta previa, preeclampsia, lagging lung development, macrosomia, late stillbirths, poorer maternal B cell function and increased risk of GDM.
- Differences in fetal programming of metabolic syndrome based on sex of fetus.
- "Boys live dangerously in the womb" (*Eriksson et al* 2010)

Q.'s What are the mechanisms? Are boys more reckless or have girls evolved a protective mechanism?

Sex-specific in utero adaptation

- Males grow larger than females in utero but suffer more adverse outcomes as a consequence
- There is sexual dimorphism in placental function to accommodate this

Evidence for Sexual Dimorphism in Placental Function

- Differences in gene expression, 1st trimester and term
 - immune genes expressed at higher level in female placenta (JAK1, IL2RB, Clusterin, LTBP, CXCL1, IL1RL1, TNFR)
- Sexual dimorphism in placenta gene expression linked to failure of X-linked inactivation (Gong et al JCI, 2018)
- Inflammatory, hypoxia, apoptosis and autophagy responses
- Antioxidant defenses, expression of antioxidant enzymes
- Lipid uptake and metabolism
 - Fatty acid transporters
 - Fatty acid oxidation
- Response to maternal adiposity and inflammatory status
- microRNA expression in normal pregnancy
- Aromatase expression with preeclampsia

Maternal Metabolic Milieu with Obesity and GDM

- Insulin resistance, hyperglycemia, hyperlipidemia
- Inflammation, oxidative stress
- Sexually dimorphic responses

Is there metabolic reprogramming i.e. changes in cellular bioenergetics to adapt to environmental conditions? A hallmark of cancer –Warburg effect (aerobic glycolysis), altered mitochondrial metabolism

Effect of increasing maternal BMI on mitochondrial respiration

Vormalized OCR

Normalized OCR

N=33 separate cultures from placentas of females (open circles) and males (closed circles).

Mele J et al 2014

Effect of Obesity and A2GDM on Mitochondrial Respiration in Trophoblast

N=6, mean <u>+</u> SEM

No additional effect of A1GDM vs obesity

Mele J et al 2014

Protein Expression of Markers of Glycolysis in Villous Tissue with GDM

Mele J et al 2014

Clinical Implications

- Mitochondrial respiration compromised by increasing maternal adiposity and by A2 GDM
- But all these pregnancies went to term with good outcomes!!
- However there may be a cost in <u>later life for</u> offspring and mother!
- Does compromised mitochondrial respiration matter?
- Is there sufficient placental reserve?
- What happens if there is additional insult or reserve is exceeded?
- Could this be associated with <u>stillbirth</u>??

Risk of Stillbirth by Gestational Period and BMI

Yao R, et al . Am J Obstet Gynecol 2014;210:457.e1-9.

Mitochondrial Fuel Flex Assay

Fuel Dependency The measurement of cells' reliance on a particular fuel pathway to maintain baseline respiration.

Fuel Capacity The ability of a cell's mitochondria to oxidize a fuel when other fuel pathways are inhibited.

Fuel Flexibility The difference between fuel capacity and dependency, that is, the ability of cells to increase oxidation of a particular fuel to compensate for inhibition of alternative fuel pathway(s).

Sexual Dimorphism in Effect of Maternal Metabolic State on Fuel Flex Parameters

Mean <u>+</u> SEM *p< 0.05 ** P<0.01 Kruskal-Wallis test with Dunns post hoc test Lean n=6M, 7F Obese n=5M, 5F GDM n=4M, 5F

Wang E et al 2019

Sexual Dimorphism in Fuel Flex

- In <u>lean</u> women no difference in dependency for three fuels between male and female trophoblast (35% glutamine and FAs, 30% glucose).
- With hyperglycemia and hyperlipidemia of obesity and A2GDM, <u>in male</u> <u>placenta only</u>, we find increased dependency on glucose and fatty acids for baseline respiration.
- This is accompanied by significantly decreased flexibility for use of both glucose and fatty acids, but also glutamine, i.e. <u>male trophoblast cannot adapt</u> by increasing oxidation of other fuels.
- Decreased flexibility seen in male and not female trophoblast may contribute to the increased risk of the male for adverse outcomes
- Dependency and flexibility for glucose and fatty acids change incrementally from lean to obese women and are further exacerbated with BMI-matched A2GDM suggesting that the effect is not due to obesity alone but may reflect the continuum of worsening hyperglycemia and hyperlipidemia from obesity to A2GDM.

Examples and Consequences of Placental Metabolic Reprogramming

- High altitude hypoxia has been inferred to lead to increased placental anaerobic glycolysis at the expense of mitochondrial respiration to spare oxygen to support the fetus, this results in increased glucose utilization in the placenta with consequent decreased glucose delivery to the fetus leading to growth restriction.
- Recent findings using a four vessel sampling technique in humans has shown that the placenta consumes 30% of glucose taken up from maternal blood and that placental consumption modulates maternal to fetal glucose transfer and fetal glucose consumption such that high placental use of glucose limits fetal glucose delivery and consumption.
- Studies in the isolated perfused placental cotyledon coupled with computational modeling showed that placental metabolism also influences fatty acid transfer to the fetus with the vast majority of fatty acids taken up being incorporated into placental lipid pools.
- Hence the placenta is not simply the passive conduit for substrate transport to the fetus but its metabolism influences substrate supply to the fetus.

Fatty Acids and Brain Growth

- Docosahexaenoic acid (DHA, C22:6) and arachidonic acid (AA, C20:4) are essential brain specific fatty acids (BSFA) important for mammalian CNS development
- Brain growth increases dramatically in the 3rd trimester and post-partum with significant increases in DHA and AA
- The effect of BSFA supplementation in pregnancy on brain size was determined by MRI (n=86, double blind placebo controlled) [Ogundipe et al 2018]
- Males born to the BSFA supplemented group had significantly larger total brain volume, total gray matter, corpus callosum and cortical volumes when compared to placebo group.

Placental mitochondrial fatty acid β oxidation (FAO)

Enzymes in the β oxidation pathway have preference for either long chain (ACADVL, ACADL, HADHA) or medium/short chain (ACADM, HADH2) fatty acids.

Lipidomic Analysis

In total 436 lipids were quantified.

Data are displayed as heatmaps

1%

species containing docosahexaenoic acid fatty acid chains (22:6) >85 lipids changed significantly (\blacksquare = Increased, \blacksquare = Decreased) comparing A2GDM to Obese, A2GDM to Lean and Obese to Lean (adjusted p<0.05, ANOVA with Tukey test correction).

Key and comparisons

A significant decrease in phosphatidylinositol (PI) species containing docosahexaenoic acid fatty acid chains (22:6) was found in male villous tissue of A2GDM

Variable changes in triacylglycerol **(TG)** were found in <u>male</u> placental villous tissue of A2GDM. This included a significant decrease in TG species containing docosahexaenoic acid fatty acid chains (22:6)

Sexual dimorphism in effect of GDM on fatty acid and β oxidation enzymes in placenta and medium chain (MC) and long chain (LC) fatty acids found in amniotic fluid (O'Neill 2018).

Proteomic Analysis

- DAVID analysis recognized 2980 proteins to create functional annotation clusters of pathways
- Significant differences in expression of proteins (p<0.05) were identified comparing specimens between the different groups

	Number of Proteins	
Comparison	Upregulated	Downregulated
Obese vs Lean	53	143
A2GDM vs Lean	57	220
A2GDM vs Obese	34	44

 The differentially expressed proteins were used to find significant gene ontology (GO) pathways, identify proteins involved in each pathway and calculate an enrichment score (log10 p-value from Fisher's exact test) and create heatmaps

Enriched Pathways M+F Combined

acute inflammatory response complement activation cellular protein metabolic process negative regulation of tumor necrosis factor production RAGE receptor binding platelet alpha granule lumen endocytic vesicle lumen acute-phase response innate immune response antioxidant activity inflammatory response zinc ion binding spectrin-associated cytoskeleton bicarbonate transport heme binding extracellular space ribosomal large subunit biogenesis nucleolus ribonucleoprotein complex mRNA 5'-UTR binding rRNA processing nucleosome focal adhesion pre-mRNA binding telomerase holoenzyme complex cellular response to osmotic stress negative regulation of protein kinase activity U5 snRNP postsynaptic density cytoplasmic ribonucleoprotein granul spliceosomal complex **GTPase** activity ribosome osteoblast differentiation ribosomal large subunit assembly RNA splicing translation

Enriched Pathways Male

Driven more by inflammation vs hyperglycemia or hyperlipidemia?

Are these adaptive changes to maintain or enhance growth but with risk of demise?

A2GDM_vs_Obese

A2GDM_vs_Lean

Enriched Pathways - Female

Driven by worsening hyperglycemia and hyperlipidemia? Are they built upon pre-existing differences in gene expression related to female fetal growth and survival?

Female Placenta

Upregulated

- extracellular region
- extracellular space

Downregulated

- protein transporters
- centrioles
- glucose metabolic pathways

This may be driven by worsening hyperglycemia and hyperlipidemia with GDM

. Male Placenta

Upregulated

- cytoskeleton
- extracellular space
- heme binding
- inflammatory response
- antioxidant activity
- complement activation
- bicarbonate transport

Downregulated

- translation
- mRNA and rRNA processing
- ribosomal subunit biogenesis
- RNA splicing
- nucleosome
- focal adhesion

These changes may be driven more by the inflammatory milieu rather than hyperglycemia or hyperlipidemia.

Female Placenta: Glucose metabolic process

- Nischarin inhibits activity of AMPK major regulator of cellular energy homeostasis.
- Mouse ko model: females show disruption in insulin signaling, develop insulin resistance, and decreased glucose tolerance, males have increased glucose tolerance
- Humans: mRNA levels of Nischarin inversely corelated to obesity

Nischarin expression and phospho AMPK in placentas of lean, obese and GDM groups

Mean <u>+</u> SD. Significant difference between clinical groups, '**' p<0.001. '*' p<0.05 (ANOVA), between M and F in each group '#' p<0.05 (T test)

Acknowledgements

- M Bucher
- E Wang
- K Burnum-Johnson
- J Hebert
- S Muralimanoharan
- E Rodriguez

KAhuna **L** Kadam L Bramer **K** Stratton A Maloyan **K** Ireland

