Testing DOHaD Hypotheses About Drivers of Childhood Growth Using Epidemiologic Study Designs

Challenges and Opportunities

DOHaD Summer Course, OHSL August 7, 2023

Janne Boone-Heinonen, PhD, MPH Associate Professor, Epidemiology

SCHOOL OF PUBLIC HEALTH

Objectives

- Share examples of types of epidemiologic DOHaD research: in the realm of childhood growth and cardiometabolic disease prevention
- Apply a public health lens to DOHaD research questions and implications

Types of processes and outcomes examined in epidemiologic DOHaD research

Study populations and data sources

Public health lens: Mitigating the intergenerational cycle of cardiometabolic disease

I. Pregnancy health

Maternal obesity

Elevated risk of obesity and related disease

Primary focus of a) Preconception weight loss, nutrition (stay tuned: Kim Vesco's talk on Wed!) prevention efforts b) Healthy gestational weight gain, nutrition

1. What are optimal GWG patterns in pregnant people with Class II or III obesity?

Existing GWG recommendations

- Not available for obesity sub-classes, largely due to scarcity of evidence
- Based on evidence in which women from racial and ethnic minority groups, and with lower income are under-represented

Characterizing GWG trajectories

Group-based latent trajectories

Obesity Class III (n= 1,180) Obesity Class II (n= 1,800) Obesity Class I (n= 4,219) 60 1. High gain, exceed IOM (8.0%) 1. High gain, exceed IOM (12.4%) . High gain, exceed IOM (11.9%) Low gain, exceed IOM (26.4%) 2. Low gain, exceed IOM (31.2%) 2. Low gain, exceed ION (32.7%) 3. Lost, met IOM (35.4%) 3. Lost. met IOM (39.9%) 3. Lost. met IOM (41.2%) 4. Lost, below IOM (25.4%) 4. Lost, below IOM (17.0%) 4. Lost, below IOM (13.7%) 45 5. Lost, never regained (4.8%) 30 15 -15 -30 10 20 30 40 20 30 40 0 10 20 30 0 40 Gestational weeks

PROMISE

Key findings

Weight gain (lbs)

- Over half of patients were classified in trajectory groups with first trimester weight loss
- The only trajectories that ended within IOM recommendations began with weight loss
- Weight loss is more extreme for women with Class III obesity

Tran ST et al. Oral presentation: SER Annual Research meeting, 2021. Manuscript drafted. IOM recommendation for BMI >30:11-20 lbs total

II-III. Mitigating fetal programming effects

Boone-Heinonen J, Messer LC, Fortmann SP, Wallack L, Thornburg KL (2015) Prev Med. 81:451-459

What are the changes that need to be reversed or overcome?

II. Behavioral mechanisms

Programming of early childhood eating behavior

Programming of early childhood eating behavior

ABC Cohort (Appetite, Behavior, and Cortisol); low-income

- ABC Toddler (n=154; mean age 33 months)
- ABC Preschool (n=333; mean age 51 months)

Eating in the absence of hunger (EAH) protocol (gold standard measure of eating

Boone-Heinonen J, Weeks H, Sturza J, Miller AL, Lumeng JC, Bauer KW (2019) Pediatr Obes. 14(11):e12554

Programming of early childhood eating behavior: **implications**

 Poor appetite regulation may be an important mechanism underlying prenatally-induced predispositions to obesity and cardiometabolic disease
Sex differences

Food environment

Subgroups that may be hyper-responsive to food marketing, price, other manipulations

Opportunities to counteract poor appetite control

III. Overcoming programmed susceptibility Prenatal-postnatal interaction

Overcoming birth weight: can physical activity mitigate birth weight related differences in adiposity?

National Health and Nutrition Examination Survey 1999-2006

Girls 12-15 years of age

Sex-stratified linear regression, BMIz as a function of HBW, LBW, MVPA, HBW*MVPA, LBW*MVPA, adjusted for age, race/ethnicity, parent education, household income

Boone-Heinonen J, Markwardt S, Fortmann SP, Thornburg KT. Pediatr Obes. 11(3):166-73

Prenatal development and adolescent obesity: two distinct pathways to diabetes in adulthood

National Longitudinal Study of Adolescent to Adult Health (AddHealth); n=13,413

Boone-Heinonen J, Sacks RM, Takemoto E, Hooker E, Harrod C, Dieckmann N, Thornburg KL. (2018) Childhood Obesity. 14(3):173-181.

Prenatal development and adolescent obesity: two distinct pathways to diabetes in adulthood

Challenges and opportunities

Challenges

- Measurement of developmental exposures and intermediate outcomes: Need...
 - Rigorous measures (specific nutrition, chemical, etc exposures; placental or epigenetic metrics)
 - In large study populations

Opportunities

- Methods to combine data/evidence from many types of study designs: systems science, data sharing and collaboration
- Getting closer to biologic signatures for exposures and disease processes (?)
 - Epigenetic
 - Metabolomic
 - Microbiome
 - Placenta

Acknowledgements

Funding

- Office of Research in Women's Health and NICHD, Oregon BIRCWH (K12-HD043488)
- NICHD: R01-HD102477, R01-HD109246
- NIDDK: K01-DK1022857, R01-DK118484
- PCORI: CDRN-1306-04716 (PI: DeVoe) OBS-1505-30699 (PI: Gillman/Block)
- OHSU-PSU School of Public Health Pilot Grant

Key collaborators

- Kent Thornburg, Stephen Fortmann, Kimberly Vesco
- Lynne Messer, Jonathan Snowden, Jonathan Purnell

Analysts

Rachel Springer, Dang Dinh, Carrie Tillotson, Jean O'Malley, Sheila Markwardt

Students (current and former)

- PhD: Anna Booman, Sarah Tran, Erin Takemoto, Sarah Andrea
- MPH: Rebecca Sacks, Thomas Tandy

Thank You!!!

Janne Boone-Heinonen boonej@ohsu.edu

