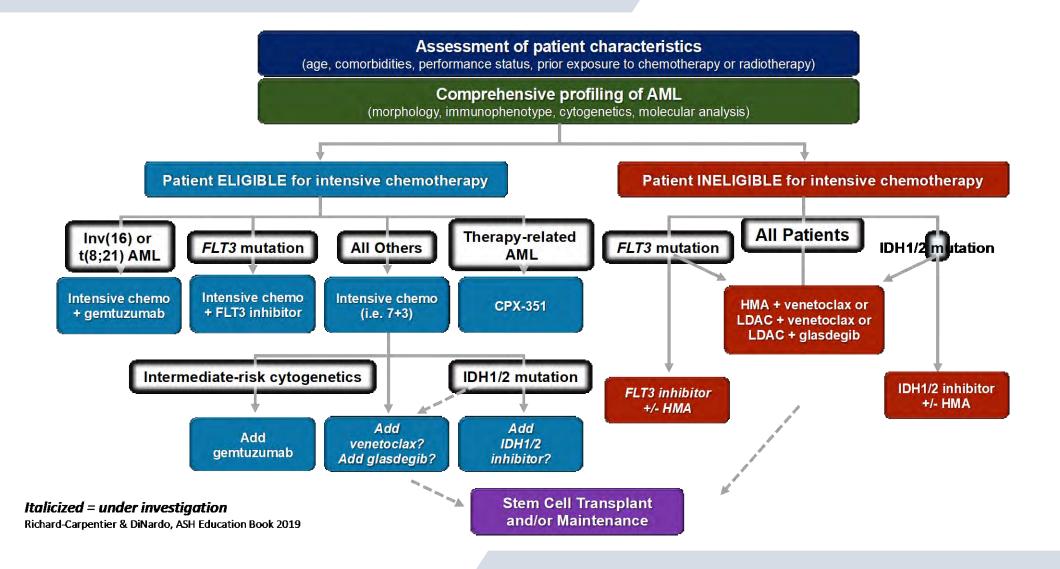


Acute Leukemia Review 2023

Curtis Lachowiez, M.D.

Assistant Professor
Knight Cancer Institute
Oregon Health & Science University



Conflict of interest

No relevant COI to disclose

AML Treatment approach

Discussion outline

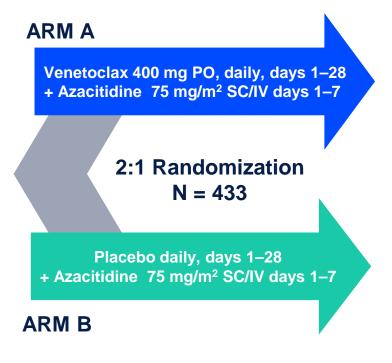
Long term outcomes VIALE—A AZA+VEN updates Risk stratification with AZA+VEN AZA+VEN vs. '7+3' CLIA+VEN updates Intensive induction treatment '7+3'+quizartinib AZA+VEN+magrolimab AZA+VEN+gilteritinib Lower-intensity treatment Cladribine/LDAC/VEN Menin inhibitor *KMT2A/NPM1* New therapies for AML **AML**

Long-Term Follow-Up of the Phase 3 VIALE-A Clinical Trial of Venetoclax Plus Azacitidine for Patients With Treatment-Naïve Acute Myeloid Leukemia Ineligible for Intensive Chemotherapy

Keith W. Pratz¹, Brian A. Jonas², Vinod Pullarkat³, Michael J. Thirman⁴, Jacqueline S. Garcia⁵, Walter Fiedler⁶, Kazuhito Yamamoto⁷, Jianxiang Wang⁸, Sung-Soo Yoon⁹, Ofir Wolach¹⁰, Jun-Ho Jang¹¹, Su-Peng Yeh¹², Grace Ku¹³, Catherine Miller¹⁴, Ying Zhou¹⁴, Brenda Chyla¹⁴, Jalaja Potluri¹⁴, Courtney D. DiNardo¹⁵

¹Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; ²Department of Internal Medicine, Division of Cellular Therapy, Bone Marrow Transplant and Malignant Hematology, University of California Davis School of Medicine, Sacramento, CA, USA; ³Department of Hematology and Hematopoietic Cell Transplantation and Gehr Family Center for Leukemia Research, City of Hope Comprehensive Cancer Center, Duarte, CA, USA; ⁴Section of Hematology and Oncology, Department of Medicine, University of Chicago Medicine, Chicago, IL, USA; ⁵Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; ⁶University Medical Center, Hamburg-Eppendorf, Hamburg, Germany; ⁷Aichi Cancer Center, Nagoya, Japan; ⁸Institute of Hematology and Hospital of Blood Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China; ⁹Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; ¹⁰Rabin Medical Center, Petah Tikva, Israel; ¹¹Department of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; ¹²Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; ¹³Genentech Inc., South San Francisco, CA, USA; ¹⁴AbbVie Inc., North Chicago, IL, USA; ¹⁵Department of Leukemia, Division of Cancer Medicine, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Eligibility


Key Inclusion Criteria

AML previously untreated ● Age
 ≥ 75 years or 18-74 years with comorbidities ineligible for standard induction regimens ● ECOG of 0-2 for pts ≥ 75 years or 0 to 3 for pts
 ≥ 18-74 years

Key Exclusion Criteria

- Prior receipt of any HMA, Ven, or chemotherapy for MDS
- Favorable risk cytogenetics per NCCN 2016 ● AML secondary to MPN, CML ● Acute promyelocytic leukemia ● Active CNS involvement

Treatment

Key Endpoints

Key Primary Endpoints:

Overall survival (OS)*

Key Secondary Endpoints:

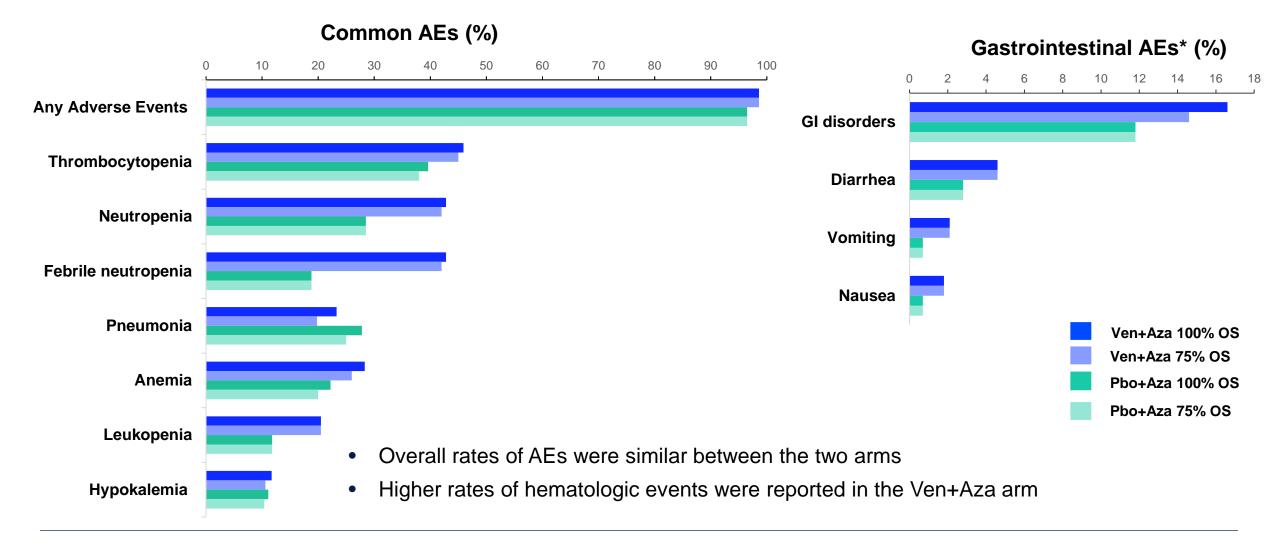
- CR+CRi rate*, CR rate
- OS, CR+CRi in mol. subgroups
- MRD negativity remission rate

Randomization Stratification Factors

Age (< 75 vs. ≥ 75 years); Cytogenetic Risk (intermediate, poor); Region

Venetoclax dosing ramp-up

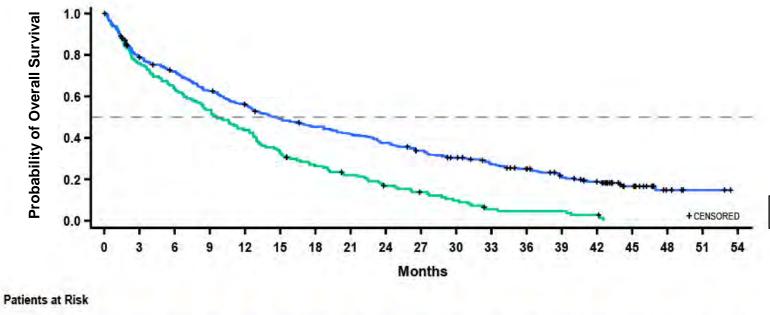
Cycle 1 ramp-up Day 1: 100 mg, Day 2: 200 mg, Day 3 - 28: 400 mg **Cycle 2** Day 1-28: 400 mg


Patient demographics and baseline disease characteristics

	Ven+Aza	Pbo+Aza
	(N=286)	(N=145)
Median age, years (range)	76.0 (49.0 - 91.0)	76.0 (60.0 - 90.0)
Age categories, n (%)		
18 - < 65	10 (3.5)	5 (3.4)
65 - < 75	102 (35.7)	53 (36.6)
≥ 75	174 (60.8)	87 (60.0)
AML types, n (%)		
De novo	214 (74.8)	110 (75.9)
Secondary	72 (25.2)	35 (24.1)
Types of secondary AML		
Therapy related to AML	26 (36.1)	9 (25.7)
Post MDS/CMML	46 (63.9)	26 (74.3)
AML-MRC, n (%)	92 (32.2)	49 (33.8)

	Ven+Aza	Pbo+Aza
	(N=286)	(N=145)
Blast count, n (%)		
< 30%	85 (29.6)	41 (28.1)
≥ 30 - < 50%	61 (21.3)	33 (22.6)
≥ 50%	140 (49.1)	71 (49.3)
ECOG score, n (%)		
0 - 1	157 (54.9)	81 (55.9)
2 - 3	129 (45.1)	64 (44.1)
Cytogenetic risk categ.		
Intermediate	182 (63.6)	89 (61.4)
Poor	104 (36.4)	56 (38.6)
Somatic mutations, n/N (%)		
FLT-3	29/206 (14.1)	22/108 (20.4)
IDH1/2	61/245 (24.9)	28/127 (22.0)
TP53	38/163 (23.3)	14/86 (16.3)
NPM1	27/163 (16.6)	17/86 (19.8)

With longer follow up on treatment, grade ≥ 3 TEAEs reported in ≥ 10% are slightly higher than at 75% OS analysis



Ven+Aza

Pbo+Aza

Patients treated with Ven+Aza continue to show OS benefit over those on Aza monotherapy

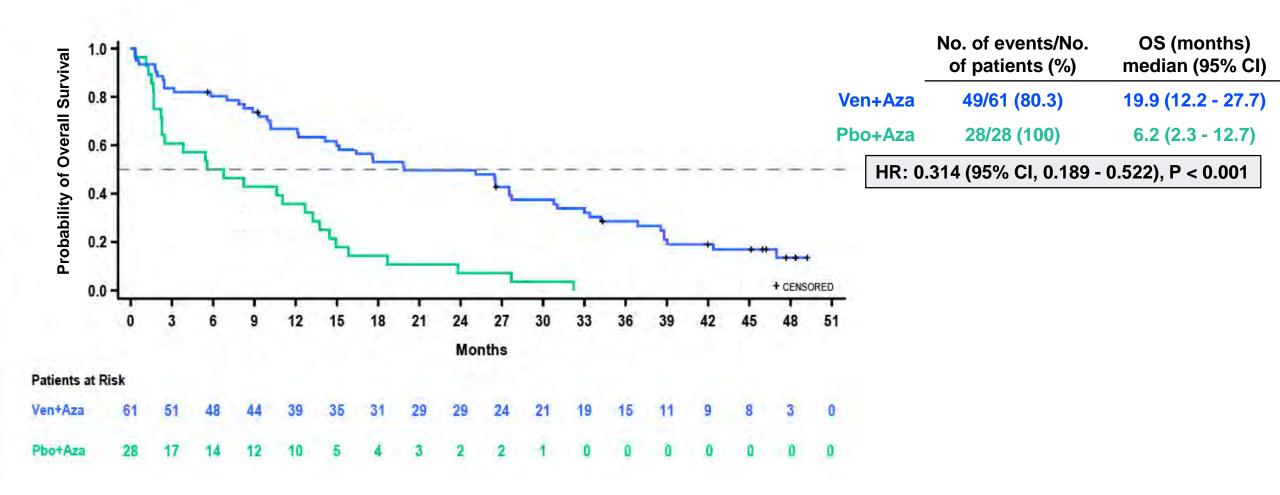
Median follow-up time: 43.2 months (range: < 0.1 - 53.4)

	No. of events/No. of patients (%)	OS (months) median (95% CI)
Ven+Aza	222/286 (77.6)	14.7 (12.1 - 18.7)
Pbo+Aza	138/145 (95.2)	9.6 (7.4 - 12.7)

Hazard ratio: 0.58 (95% CI, 0.465 - 0.723), P < 0.001
11a2a1 a 1atio: 0.50 (55% 01, 0.405 0.725), 1 < 0.001

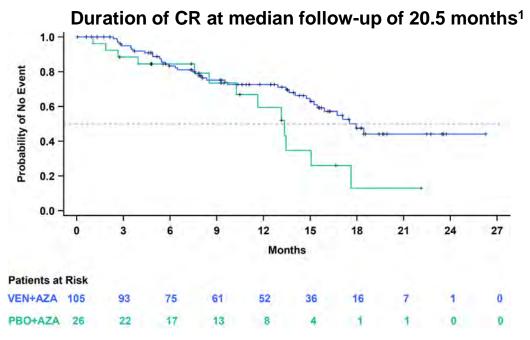
HR reduction from 0.66 (95% CI, 0.52 - 0.85) at 75% OS analysis

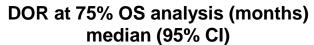
The distributions were estimated for each treatment arm using Kaplan-Meier methodology and compared using the log-rank test stratified by age (18-<75, ≥75 years) and cytogenetic risk (intermediate risk, poor risk); The hazard ratio between treatment arms were estimated using the Cox proportional hazards model with the same stratification factors used in the log-rank test; Data cutoff: 01 Dec 2021 Abbreviations: Aza, azacitidine; Pbo, placebo; Ven, venetoclax

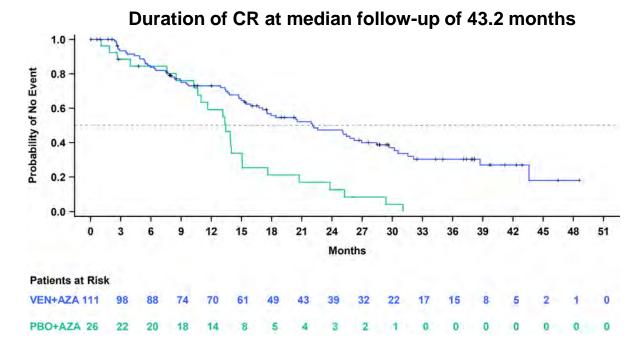


All subgroups of patients treated with Ven+Aza demonstrate continued OS benefit over Aza monotherapy

	Ven+Aza	Pbo+Aza		HR (95% CI)
	n/N (%)	n/N (%)		
All Patients	222/286 (77.6)	138/145 (95.2)	+■+ }	0.57 (0.45, 0.70)
Gender				
Female	88/114 (77.2)	55/ 58 (94.8)	⊢= → }	0.58 (0.41, 0.82)
Male	134/172 (77.9)	83/87 (95.4)	⊢= -1 }	0.56 (0.42, 0.74)
Age (Years)				
18 - < 65	8/ 10 (80.0)	5/ 5 (100.0)	⊢ ■	0.61 (0.19, 1.95)
65 - < 75	79/102 (77.5)	49/ 53 (92.5)	⊢ ■(0.69 (0.48, 0.99)
≥ 75	135/174 (77.6)	84/87 (96.6)	⊢■ → {	0.50 (0.37, 0.66)
Age (Years)				
< 75	87/112 (77.7)	54/ 58 (93.1)	⊢ ■→	0.68 (0.48, 0.96)
≥ 75	135/174 (77.6)	84/87 (96.6)	⊢■ → }	0.50 (0.37, 0.66)
Baseline ECOG				
Grade < 2	127/157 (80.9)	78/81 (96.3)	⊢■ → }	0.52 (0.39, 0.70)
Grade ≥ 2	95/129 (73.6)	60/ 64 (93.8)	⊢■ → }	0.61 (0.44, 0.85)
Type of AML			(
De Novo	162/214 (75.7)	104/110 (94.5)	⊢= → {	0.56 (0.44, 0.73)
Secondary	60/72 (83.3)	34/ 35 (97.1)	⊢= →∤	0.57 (0.37, 0.89)
Cytogenetic risk				
Intermediate	130/182 (71.4)	84/89 (94.4)	⊢■ → }	0.49 (0.37, 0.65)
Poor	92/104 (88.5)	54/ 56 (96.4)	⊢ ■}i	0.73 (0.52, 1.02)
Molecular Marker	, ,	,		
FLT3	23/29 (79.3)	20/22 (90.9)	⊢ ■-	0.65 (0.35, 1.19)
IDH1	21/23 (91.3)	11/ 11 (100.0)	⊢	0.28 (0.12, 0.65)
IDH2	30/40 (75.0)	18/ 18 (100.0)	⊢ ■ {	0.30 (0.16, 0.57)
IDH1/2	49/61 (80.3)	28/ 28 (100.0)	├─ ■─┤	0.31 (0.19, 0.52)
TP53	36/38 (94.7)	13/ 14 (92.9)	⊢ ■	0.76 (0.40, 1.45)
NPM1	17/ 27 (63.0)	17/ 17 (100.0)	⊢ ■-/a	0.52 (0.26, 1.03)
AML-MRC	(,	, , , , , , , , , , , , , , , , , , , ,		, , , , , , , , , , , , , , , , , , , ,
Yes	81/92 (88.0)	46/49 (93.9)	⊢ ■	0.72 (0.50, 1.04)
No	141/194 (72.7)	92/ 96 (95.8)	⊢■ → {	0.51 (0.39, 0.67)
Bone marrow blast count		,		,,
< 30%	72/85 (84.7)	40/41 (97.6)	⊢ ■	0.60 (0.40, 0.89)
30 -< 50%	47/61 (77.0)	32/ 33 (97.0)	· _ · ∫	0.53 (0.34, 0.84)
≥ 50%	103/140 (73.6)	66/71 (93.0)	· }	0.56 (0.41, 0.77)
	. 35 10 (. 5.5)	-3 (55.5)	—	—
			Favors Ven+Aza Favors	Pbo+Aza
			0.1 1	10

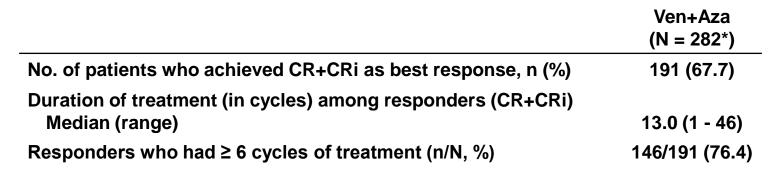


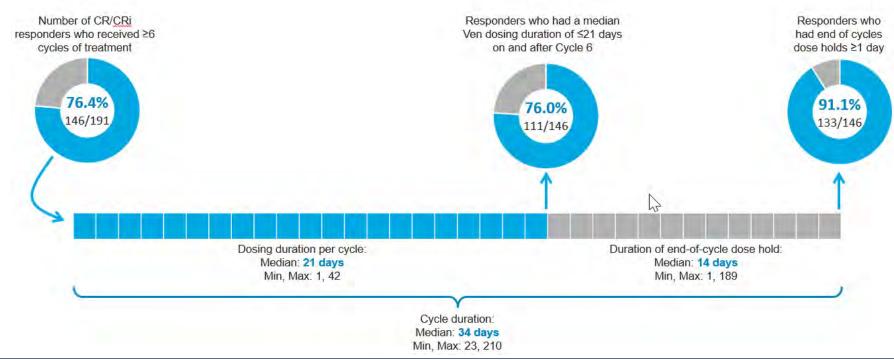

Median OS is achieved in patients with IDH1/2 mutations



Median duration of CR for patients on Ven+Aza is ~5 months longer at 100% OS analysis than at primary analysis

Ven+Aza (n=105) 17.5 (15.3 – NE) Pbo+Aza (n=26) 13.3 (8.5 – 17.6)




DOR at 100% OS analysis (months) median (95% CI)

Ven+Aza (n=111) 22.1 (16.7 - 27.0) Pbo+Aza (n=26) 13.4 (10.3 - 15.1)

Treatment duration and Ven dosing schedule among CR+CRi responders who received ≥ 6 cycles of treatment

^{*}Excludes 1 patient who was randomized from an earlier protocol by stratification factors of age and region, not cytogenetic risk; Data cut-off: 01 Dec 2021; Abbreviations: Aza, azacitidine; CR, complete remission; CRi, CR with incomplete count recovery; Ven, venetoclax

The VIALE-A study demonstrates favorable benefit risk of Ven+Aza in newly diagnosed AML patients who are ineligible to receive intensive chemotherapy

The 100% OS analysis shows that the OS benefit from Ven+Aza continues to be observed

No new safety signals are found for Ven+Aza or Aza monotherapy from the previous analysis

Duration of CR, CR+CRi, and OS in some subgroups are longer at the 100% OS analysis than at the 75% OS analysis

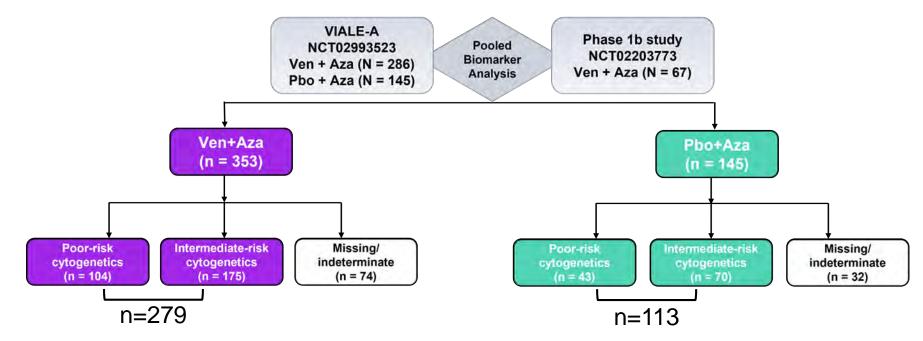
AbbVie and the authors thank the participants, study sites, and investigators who participated in this clinical trial.

Venetoclax is being developed in collaboration between AbbVie and Genentech. AbbVie and Genentech funded this study and participated in the trial design, research, analysis, data collection, interpretation of data, and the review and approval of the publication. All authors had access to relevant data and participated in the drafting, review, and approval of this publication. No honoraria or payments were made for authorship. Medical writing support was provided by Amrita Balachandran, PhD, of AbbVie. Editorial support was provided by Angela T. Hadsell, MS, of AbbVie.

Scan QR code to download an electronic version of this presentation and other AbbVie ASH 2022 scientific presentations:

QR Code expiration: November 10, 2023

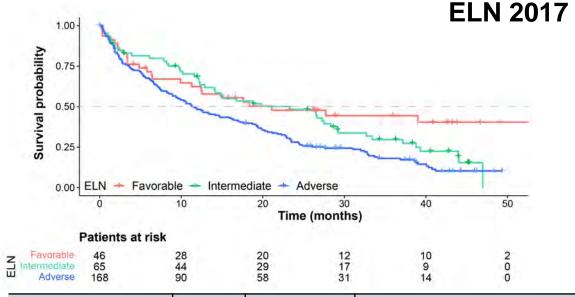
To submit a medical question, please visit www.abbviemedinfo.com


ELN Risk Stratification and Outcomes Among Treatment-Naïve Patients With Acute Myeloid Leukemia Treated With Venetoclax and Azacitidine

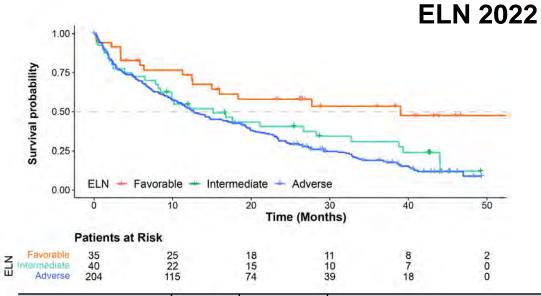
Hartmut Döhner¹, Keith W. Pratz², Courtney D. DiNardo³, Brian A. Jonas⁴, Vinod A. Pullarkat⁵, Michael J. Thirman⁶, Christian Recher⁷, Andre C. Schuh⁸, Sunil Babu⁹, Monique Dail¹⁰, Grace Ku¹⁰, Yan Sun¹¹, Jalaja Potluri¹¹, Brenda Chyla¹¹, Daniel A. Pollyea¹²

¹Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany; ²Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; ³Department of Leukemia, Division of Cancer Medicine, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA; ⁴Department of Internal Medicine, Division of Cellular Therapy, Bone Marrow Transplant and Malignant Hematology, University of California Davis School of Medicine, Sacramento, CA, USA; ⁵Department of Hematology and Hematology and Hematology and Hematology and Hematology and Oncology, Department of Medicine, University of Chicago Medicine, Chicago, IL, USA; ⁷CHU de Toulouse; Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France; ⁸Princess Margaret Cancer Centre, Toronto, Canada; ⁹Fort Wayne Medical Oncology and Hematology, Fort Wayne, IN, USA; ¹⁰Genentech Inc.. South San Francisco, CA, USA; ¹¹AbbVie Inc., North Chicago, IL, USA; ¹²University of Colorado Division of Hematology, School of Medicine, Aurora, CO, USA

Pooled analysis of chemotherapy ineligible patients in a phase 3 and a phase 1b study


Design: Pooled analysis of treatment-naïve, chemotherapy-ineligible patients enrolled in the phase 3 VIALE-A trial and a prior phase 1b trial of Ven+Aza

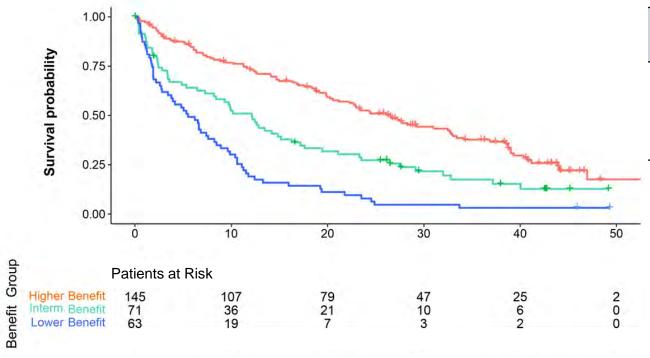
Analysis of genetic features:


- Cytogenetics analyzed locally and categorized per NCCN criteria
- Mutations analyzed from BM aspirate at baseline using the MyAML assay (central lab)
- Inclusion of central molecular data allowed the reclassification of patients according to ELN recommendations

ELN recommendations do not provide clinically meaningful outcome stratification for patients treated with Ven+Aza

ELN 2017	n	Events	Median OS, mo (95% CI)
Favorable	46	25	21.09 (9.92 – NE)
Intermediate	65	48	23.26 (12.85 – 28.29)
Adverse	168	141	11.53 (8.87 – 16.23)

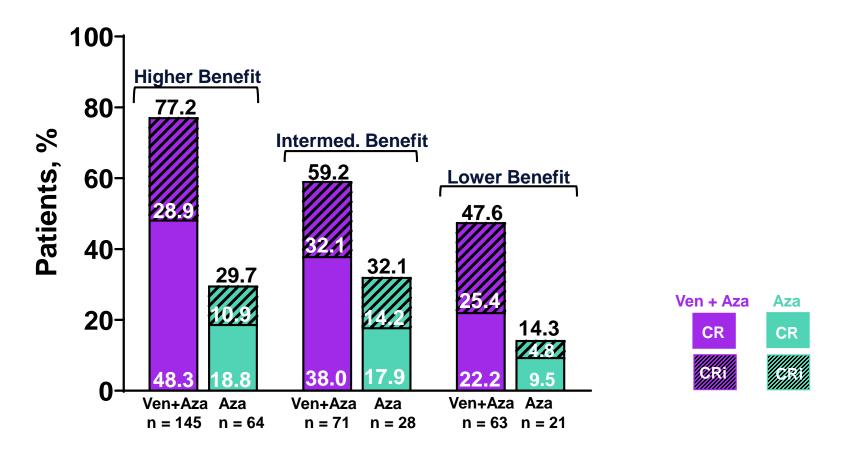
• Overlapping outcomes to Ven+Aza for favorable and intermediate-risk patients



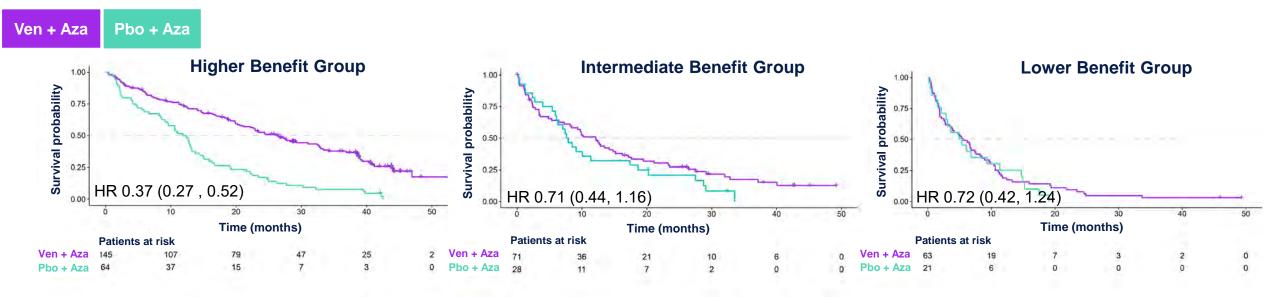
ELN 2022	n	Events	Median OS, mo (95% CI)
Favorable	35	16	39.0 (12.52 – NE)
Intermediate	40	30	15.15 (8.18 – 28.29)
Adverse	204	168	12.65 (10.41 – 17.15)

- Overlapping outcomes to Ven+Aza for intermediate and adverse-risk pts;
- A small population of favorable-risk pts, primarily with NPM1 mutations, show prolonged mOS of 39 months

Patients receiving Ven+Aza are distinguishable into three efficacy subgroups by OS benefit


- First a higher benefit group was identified, with a median OS > 24 months
- Subsequently a lower benefit group was determined, with a median OS < 6 months
- Patients fitting neither criteria were categorized as the intermediate benefit group, with a median OS of 12 months

Ven + Aza (N = 279)	n	Events	Median OS, months (95% CI)
Higher Benefit	145	96	26.51 (20.24, 32.69)
Intermediate Benefit	71	57	12.12 (7.26 – 15.15)
Lower Benefit	63	61	5.52 (2.79 - 7.59)


- Majority of patients in the Ven+Aza arm are in the higher benefit group: 52% (145/279)
- The remainder of the patients are distributed equally between the intermediate and lower benefit groups:
 25.4% (71/279) and 22.6% (63/279), respectively

Remission rates were higher with Ven+Aza than with Aza monotherapy across all 3 groups

- CR and CR/CRi rates were highest in the higher benefit group
- Higher MRD negativity rates were achieved with Ven+Aza than with Aza monotherapy across all 3 groups

Median OS was higher with Ven+Aza than Aza monotherapy in patients with higher and intermediate benefit signatures

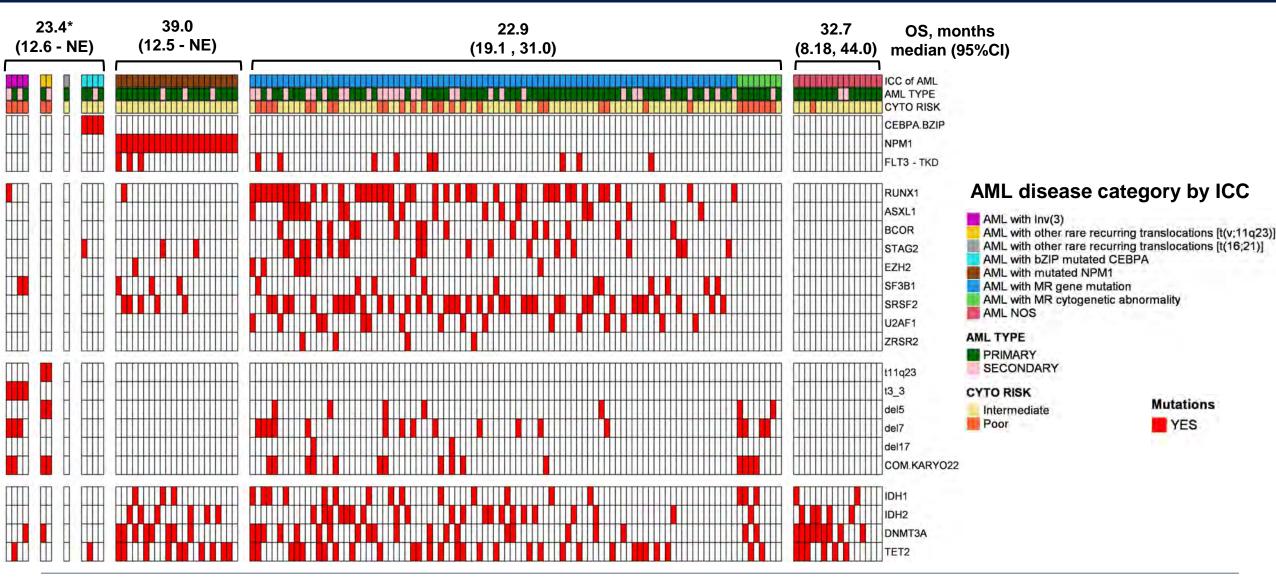
TP53WT, No FLT3-ITD, K/NRASWT

Higher Benefit Group	n	Events	Median OS, months (95% CI)
Ven + Aza	145	96	26.51 (20.24 , 32.69)
Pbo + Aza	64	63	12.12 (8.64 – 13.24)

mOS with Ven+Aza is double that for Aza alone

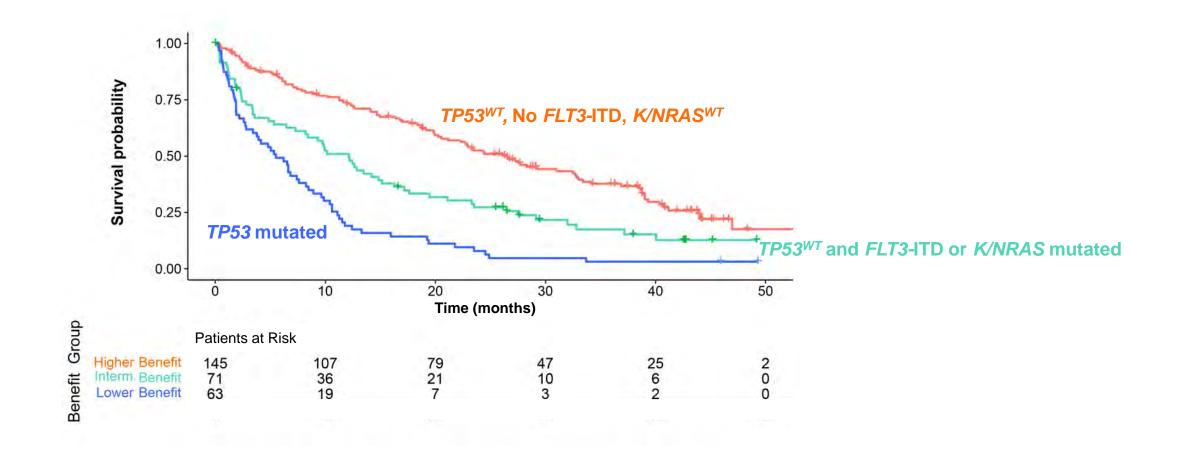
TP53WT and FLT3-ITD or K/NRAS mutated

Intermed. Benefit Group	n	Events	Median OS, months (95% CI)
Ven + Aza	71	57	12.12 (7.26 – 15.15)
Pbo + Aza	28	26	7.75 (5.88 – 11.37)


~ 5 month longer mOS if treated with Ven+Aza vs Aza alone

TP53 mutated

Lower Benefit Group	n	Events	Median OS, months (95% CI)
Ven + Aza	63	61	5.52 (2.79 – 7.59)
Pbo + Aza	21	20	5.36 (2.14 – 11.3)


Patients with *TP53* mutations have similar mOS with Ven+Aza and Aza alone

The higher benefit group includes patients with diverse biological drivers of AML

*Combination of 4 groups with < 10 pts/group; Abbreviations: AML, acute myeloid leukemia; Aza, azacitidine; cyto, cytogenetic; ICC, International Consensus Classification; MR, myelodysplasia-related; NE, non-evaluable; NOS, not otherwise specified; OS, overall survival; Ven, venetoclax

Three prognostic risk signatures derived to indicate higher, intermediate, and lower benefit from treatment with Ven+Aza

Conclusions

2017 and 2022 ELN genetic risk groups do not provide clinically meaningful stratification of outcomes for chemotherapy-ineligible treatment-naïve AML patients treated with Ven+Aza

Three prognostic risk signatures, derived based on the mutational status of 4 genes: *FLT3*-ITD, *KRAS*, *NRAS* and *TP53*, indicate higher benefit, intermediate benefit and lower benefit from Ven+Aza treatment

The predictive value of the 4-gene prognostic signature is demonstrated by improved outcome in patients on Ven+Aza compared to Aza monotherapy in the higher benefit group

These findings require validation in a larger independent dataset

AbbVie and the authors thank the participants, study sites, and investigators who participated in this clinical trial.

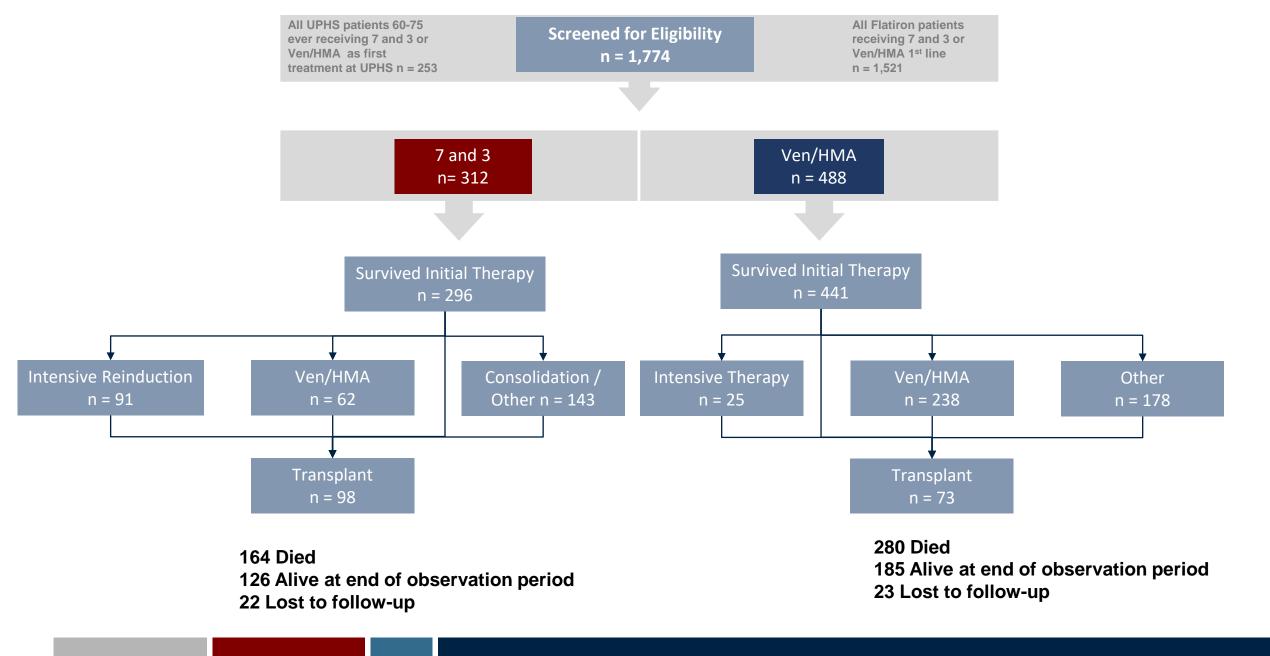
Venetoclax is being developed in collaboration between AbbVie and Genentech. AbbVie and Genentech funded this study and participated in the trial design, research, analysis, data collection, interpretation of data, and the review and approval of the publication. All authors had access to relevant data and participated in the drafting, review, and approval of this publication. No honoraria or payments were made for authorship. Statistical support for ELN 2022 data was provided by Zihuan Liu of AbbVie. The oncoprint for AML disease categories was developed by Xiaotong Li of AbbVie. Medical writing support was provided by Amrita Balachandran, PhD, of AbbVie. Editorial support was provided by Angela T. Hadsell, MS, of AbbVie.

Scan QR code to download an electronic version of this presentation and other AbbVie ASH 2022 scientific presentations:

QR Code expiration: November 10, 2023

To submit a medical question, please visit www.abbviemedinfo.com

American Society of Hematology 2022


Real World Effectiveness of "7 + 3" Intensive Chemotherapy Vs Venetoclax and Hypomethylating Agent for Initial Therapy in Adult Acute Myeloid Leukemia

Andrew H. Matthews, MD¹; Alexander E. Perl, MD¹; Selina M. Luger, MD¹; Saar I. Gill, MD, PhD¹; Catherine Lai, MD, MPH¹; David L. Porter, MD¹; Sarah Skuli, MD, PhD¹; Ximena Jordan Bruno MD¹; Martin P. Carrol, MD¹; Daria V. Babushok MD, PhD¹; Noelle V. Frey, MD¹; Elizabeth O. Hexner, MD¹; Mary Ellen Martin MD¹; Shannon R. McCurdy, MD¹; Edward A. Stadtmauer MD¹; Alison W. Loren, MD¹; Vikram Paralkar, MD¹; Ivan P. Maillard, MD, PhD¹; Keith W. Pratz, MD¹

December 11, 2022

^{1.} Division of Hematology-Oncology, Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, PA.

^{2.} Department of Biostatistics, Epidemiology and Informatics, Perlman School of Medicine, Philadelphia, PA.

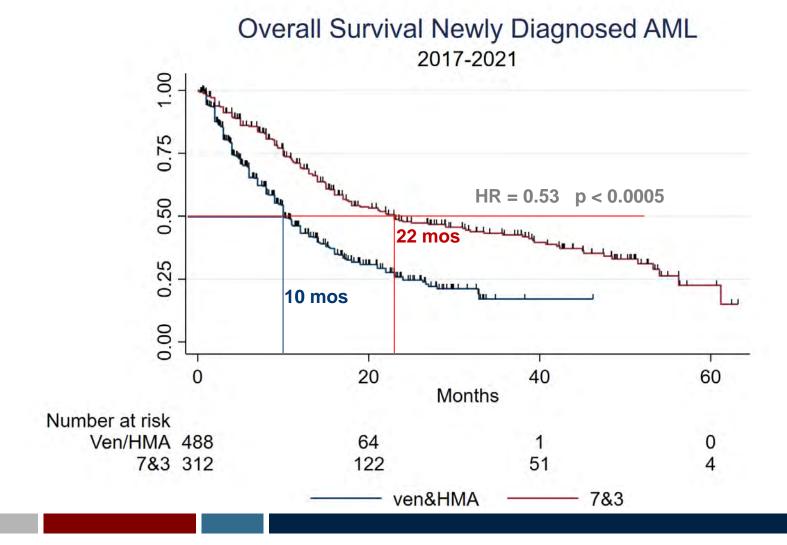
[&]quot;Intensive therapy" defined as regimens including: cytarabine, idarubicin, daunorubicin, fludarabine, mitoxantrone, etoposide, cladribine, hydroxycarbamide, methotrexate. "Other" included monotherapy with azacitidine, decitabine, CC-486, decitabine and cedazuridine, gilteritinib, midostaurin, ivosidenib, enasidenib, best supportive care,

Patient Characteristics Show Major Imbalances at Baseline

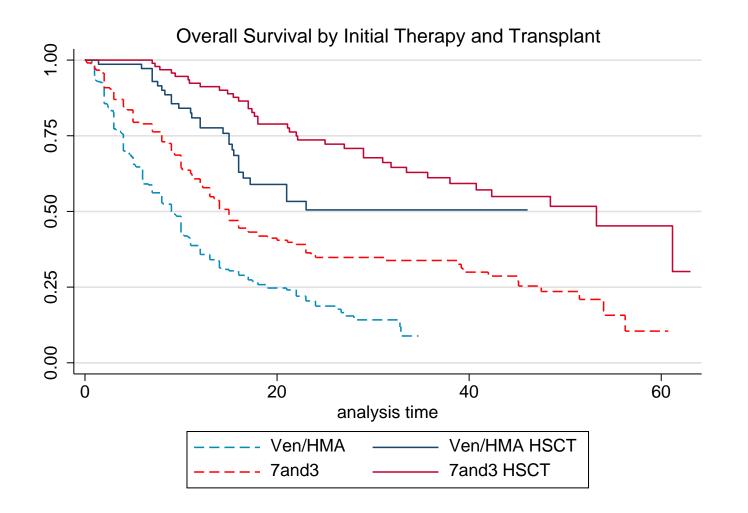
	Ven/HMA	7&3	p-value
	N=488	N=312	
Age	<mark>71 (60-75)</mark>	<mark>67 (60-75)</mark>	<0.001
Gender			0.56
Female	204 (42%)	137 (44%)	
Male	284 (58%)	175 (56%)	
Practice Type			0.004
Academic	175 (36%)	144 (54%)	
Community	313 (64%)	168 (46%)	
Туре			<0.001
De Novo	104 (21%)	160 (51%)	
Secondary AML ¹	<mark>312 (64%)</mark>	139 (46%)	
Prior MDS	153 (31%)	42 (13%)	
Prior MPN ²	58 (12%)	25 (8%)	
Therapy-Related	72 (15%)	13 (4%)	
ELN 2022 Risk Group			<0.001
Favorable	40 (7%)	48 (15%)	
Intermediate	140 (42%)	158 (59%)	
Adverse	<mark>255 (50%)</mark>	91 (26%)	
Missing	53 (11%)	15 (5%)	
=			

	Ven/HMA	7&3	p-value
	N=488	N=312	praide
HCT-Comorbidity Index	<		0.008
0	198 (41%)	138 (44%)	
1-2	74 (15%)	70 (22%)	
>=3	98 (20%)	45 (14%)	
Missing	118 (24%)	59 (19%)	
ECOG Performance Sta	tus		0.17
0-1	287 (59%)	178 (57%)	
2	94 (19%)	39 (13%)	
Missing	107 (22%)	95 (30%)	
Selected Mutations or	Cytogenetic	c Changes	
CBF	11 (2%)	11 (4%)	0.55
NPM1	33 (7%)	79 (25%)	< 0.001
FLT3	49 (10%)	80 (26%)	< 0.001
TP53	98 (20%)	12 (4%)	<0.001

Ven/HMA patients were older, sicker and had worse disease biology

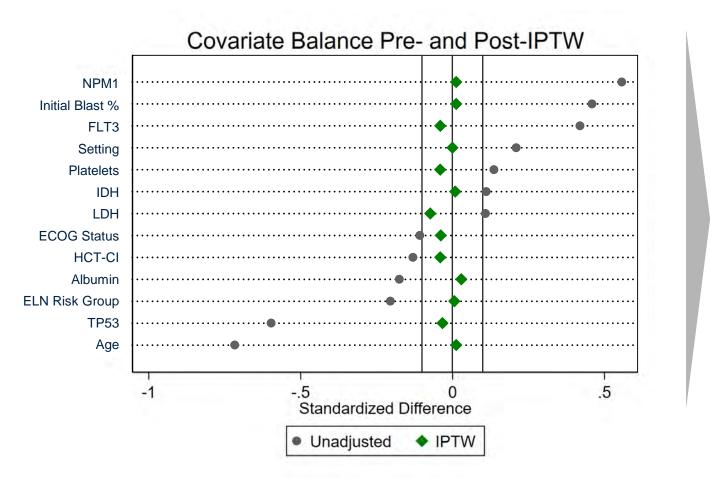


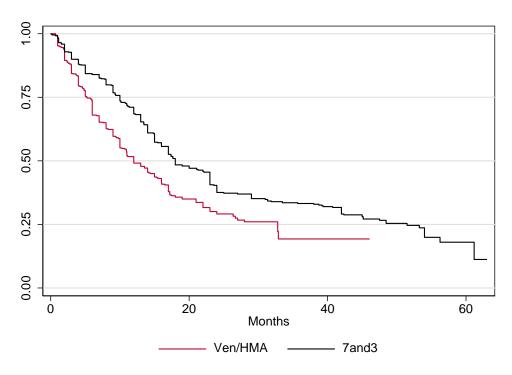
Early Mortality Higher for Ven/HMA but Length of Stay and Infections Higher for 7 and 3.


	Ven/HMA	7&3	p-value
	N = 488	n = 312	
30 Day Mortality (95% CI)	5% (3-7%)	3% (1-5%)	0.20
60 Day Mortality (95% CI)	15% (11-17%)	6% (4-9%)	<0.001
Febrile Neutropenia % (95% CI) ¹	47% (37-57%)	93% (87-98%)	<0.001
Culture Positive Infection % (95% CI) ¹	21% (12-28%)	44% (35-56%)	0.004
Median Days Inpatient Induction ² (Range) ^{1,2}	15.5 (0-90)	31.5 (6-82)	<0.001

Grade 3-4 Adverse Events by Common Terminology Criteria for Induction Adverse Events ^{1,3}			
UPHS Only (n = 179)	Ven/HMA	7&3	p-value
	n = 94	n = 85	
Hypokalemia	6%	25%	<0.001
Alanine aminotransferase increased	7%	6%	0.77
Aspartate aminotransferase increased	8%	8%	1.00
Blood Bilirubin increased	6%	2%	0.44
Anemia	89%	99%	0.018
Median Transfusions in Induction	12	18	0.006
Platelet Count Decreased	86%	99%	<0.001
Median Transfusions in Induction	6	20	<0.001

Patients Receiving 7&3 Had Improved Overall Survival vs Ven/HMA


Transplant is Critical for Survival Regardless of Initial Treatment



	Ven/HMA	7&3
Number (%)	<mark>72 (15%)</mark>	<mark>96 (31%)</mark>
Median Time to Transplant (range)	169 (78-415)	168 (75-983)
Median OS w/ HSCT	NR	53.3 mos
Median OS w/o HSCT	9 mos	15 mos

 HR of HSCT with transplant as a time-varying covariate is 0.44 (95% CI 0.33 to 0.58, p-value <0.0005)

Multiple Imputation (MI) and Inverse Probability of Treatment Weighting (IPTW) Balanced Baseline Covariates

- Survival remained improved with 7&3 after balancing covariates
 - HR 0.71, p-value 0.026, 95% CI 0.53-0.94

Limitations

- Selection bias & Confounding by Indication
 - Major baseline imbalance in secondary AML likely impacted by availability of CPX-351
 - Higher transplant rates and overall survival for patients selected to receive 7 and 3 compared to historical studies
- Unmeasured Confounding
 - Multiple imputation and inverse probability treatment weighting can only correct measured confounders
- Depth of Response Unclear
 - Molecular or flow-based MRD unavailable
 - Assessment bias would complicate EFS or RFS comparisons
- Cross-over May Confound Overall Survival Results
 - 20% of patients initially selected to receive 7 and 3 went on to receive ven/HMA

Conclusions

- ► Patients selected for intensive chemotherapy with "7&3" had superior overall survival compared to patients selected for venetoclax & HMA
- After adjusting for measured baseline covariates, "7&3" remains superior to ven/HMA
 - One can select a group of patients with equipoise between the two treatments
- Unmeasured confounding may drive this study's outcome:
 - These two groups had different baseline characteristics
 - Imbalance in <u>measured</u> baseline characteristics appears to account for half of survival difference
 - Uneven cross-over, differences in transplant rates likely reflect confounding by indication
- This question requires a prospective randomized trial
 - Prospective Trials (e.g., NCT04801797)
 - Additional Retrospective Replication

Abstract #709

Venetoclax combined with Cladribine, Idarubicin, Cytarabine (CLIA) as Induction Therapy in Patients with Newly Diagnosed Acute Myeloid Leukemia and High-Risk Myelodysplastic Syndrome

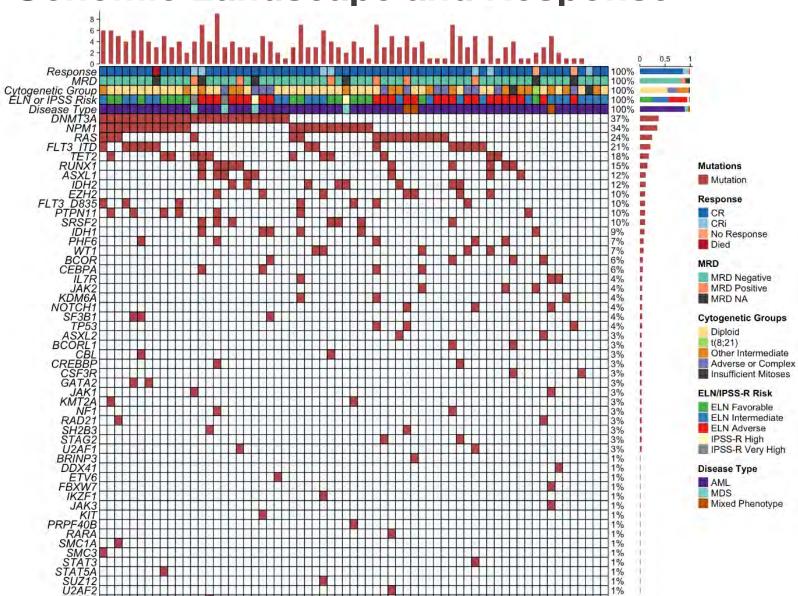
Making Cancer History®

Patrick K Reville, Hagop M. Kantarjian, Gautam Borthakur, Musa Yilmaz, Naval Daver, Nicholas Short, Courtney DiNardo, Steven Kornblau, Naveen Pemmaraju, Nitin Jain, Yesid Alvarado, Prithviraj Bose, Elias Jabbour, Kelly Chien, Hussein Abbas, Lucia Masarova, Sa A Wang, Rebecca S. S. Tidwell, Michael Andreeff, Guillermo Garcia-Manero, Marina Konopleva, Farhad Ravandi, Tapan M. Kadia

Department of Leukemia at MD Anderson Cancer Center

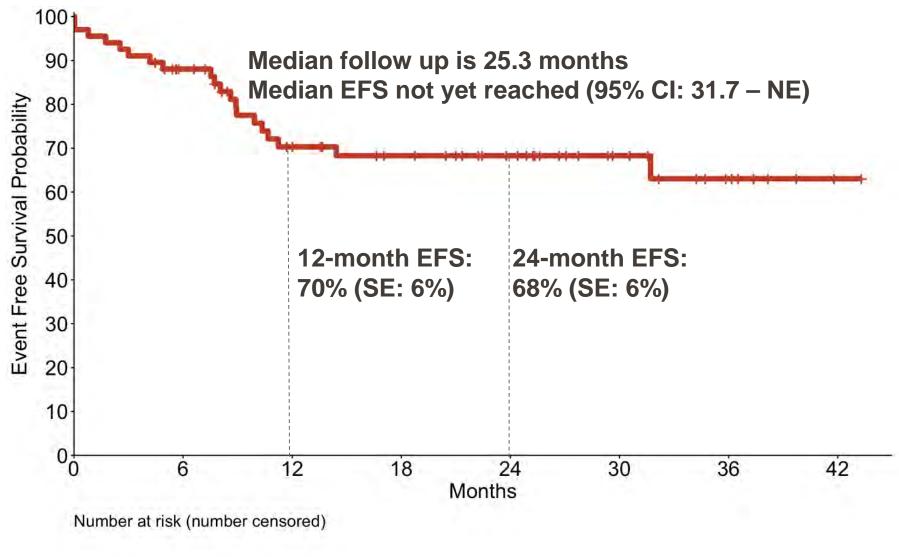
Patient Selection

- Previously untreated AML or high-risk MDS (≥ 10% blasts or IPSS ≥ 2).
 - Hydroxyurea, hematopoietic growth factors, ATRA, or a total dose of cytarabine up to 2g (for emergency use for stabilization) is allowed.
- Age ≤ 65 years.
- ECOG performance status of ≤ 2.
- No prior therapy with venetoclax
- Adequate organ function (bilirubin < 2mg/dL, AST and/or ALT < 3 x ULN, creatinine < 1.5 x ULN, LVEF ≥ 45%)
- Patients with APL and known CBF were excluded

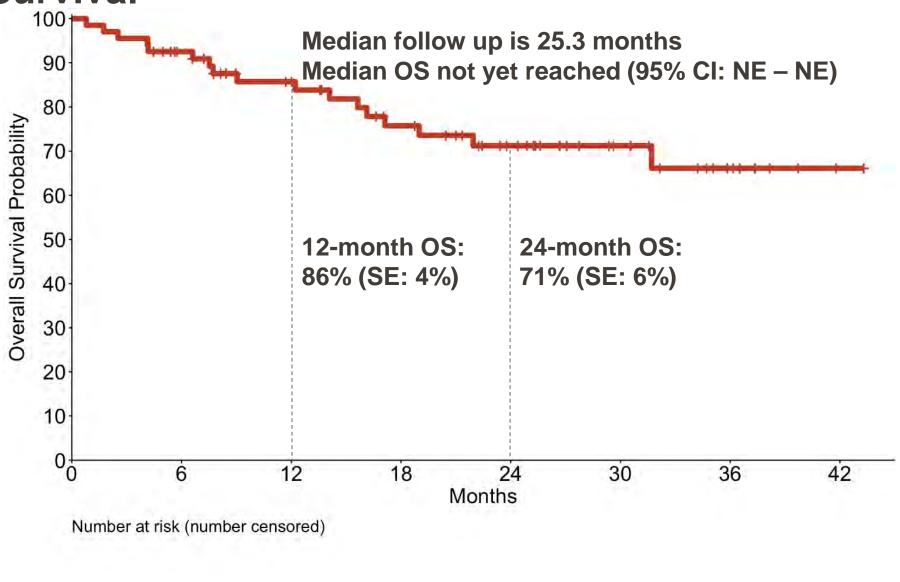

Baseline Characteristics

N = 67	n / N (%); Median [Range]
Age	48 [18 – 64]
Diagnosis	
AML	60 / 67 (90)
MDS	4 / 67 (6.0)
MPAL	3 / 67 (4.5)
Sex	
Female	31 / 67 (46)
Male	36 / 67 (54)
Therapy Related AML	5 / 63 (8)
Secondary AML	6 / 63 (10)
Treated Secondary AML	3 / 63 (5)
Cytogenetic Group	
Diploid	36 / 66 (55)
Other Intermediate	16 / 66 (24)
Adverse/Complex	12 / 66 (18)
Insufficient Mitoses	2 / 66 (3)
ELN Risk	
Favorable	16 / 63 (25)
Intermediate	22 / 63 (35)
Adverse	25 / 63 (40)

Response


N = 67	n / N (%); Median [Range]
Composite CR Rate (CR+CRi)	64 / 67 (96)
Best Response	
CR	57 / 67 (85)
CRi	7 / 67 (10)
NR	2 / 67 (3)
Died	1 / 67 (1.5)
MRD Negative at First Response Assessment (by flow)	47 / 61 (77)
MRD Negative on Study (by flow)	55 / 61 (90)
Positive	6 / 61 (10)
Total Number of Course Given, Median (IQR)	2.0 [2.0 – 3.0]
Responders that Received alloSCT	45 / 64 (70)
Mortality Rate at 4 Weeks	1 / 67 (1.5)
Mortality Rate at 8 Weeks	2 / 67 (3)

Genomic Landscape and Response


	Response
ELN Favorable (n=16)	94%
ELN Intermediate (n=22)	95%
ELN Adverse (n=25)	96%
Diploid Cytogenetics (n=36)	97%
Other Intermediate Cytogenetics (n=16)	100%
Complex/Adverse Cytogenetics (n=12)	92%
TP53 Mutated (n=3)	67%
NPM1 Mutated (n=23)	96%
FLT3 ITD Mutated (n=14)	93%

Event-Free Survival

All 67 (0) 54 (5) 38 (11) 32 (16) 25 (23) 15 (33) 8 (39) 1 (46)

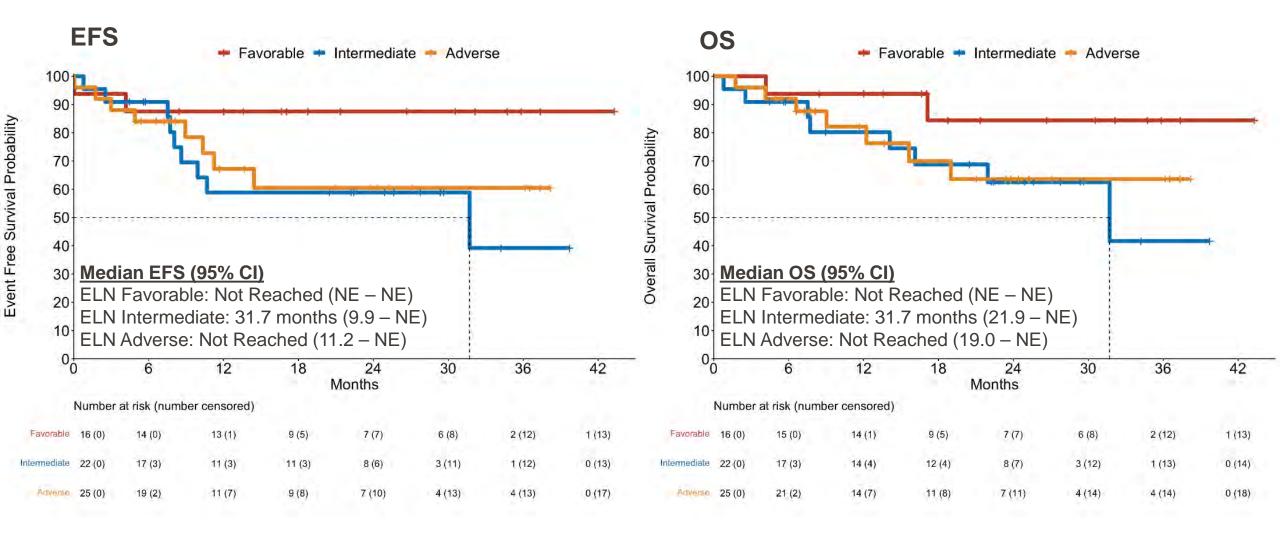
Overall Survival

67 (0)

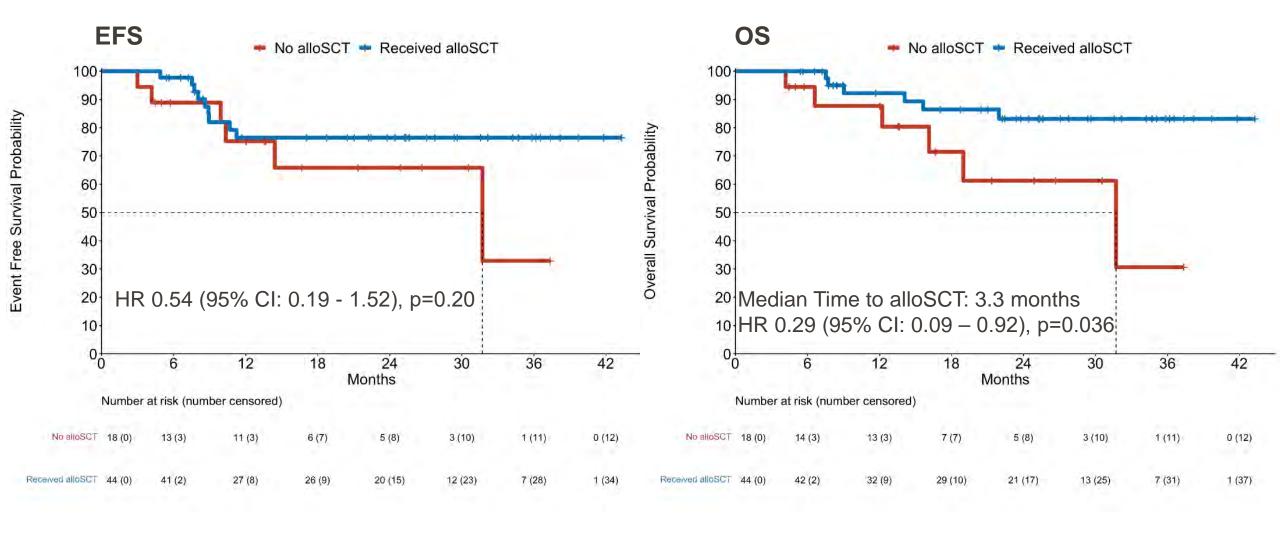
57 (5)

46 (12)

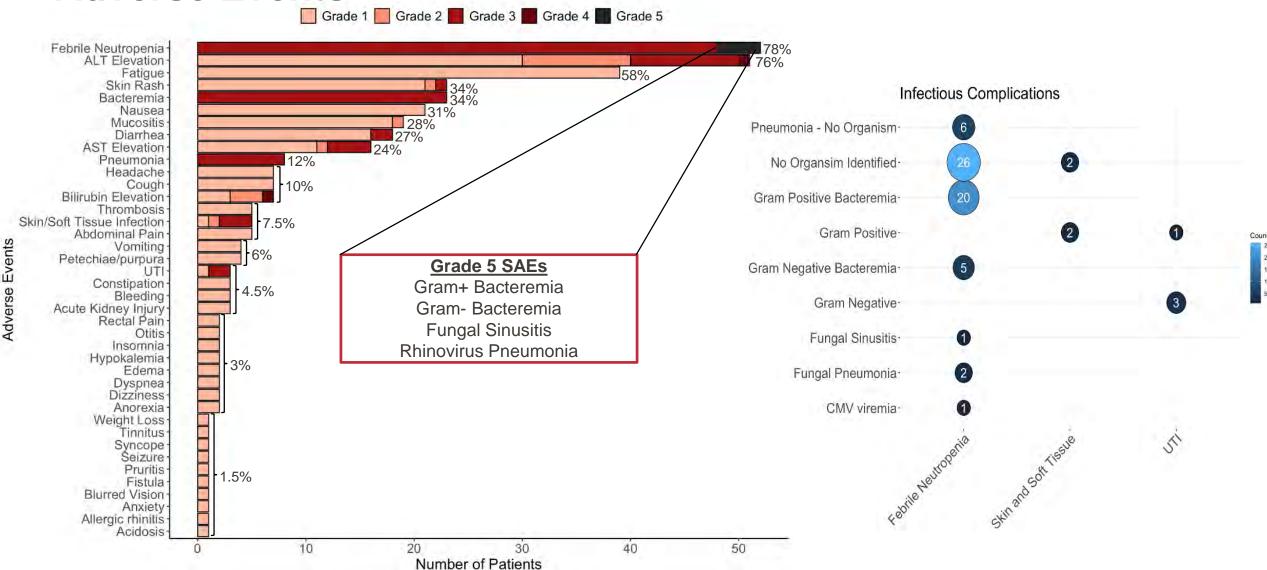
36 (17)

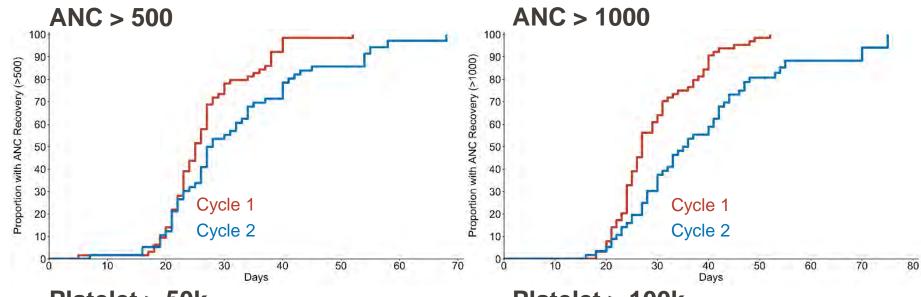

26 (25)

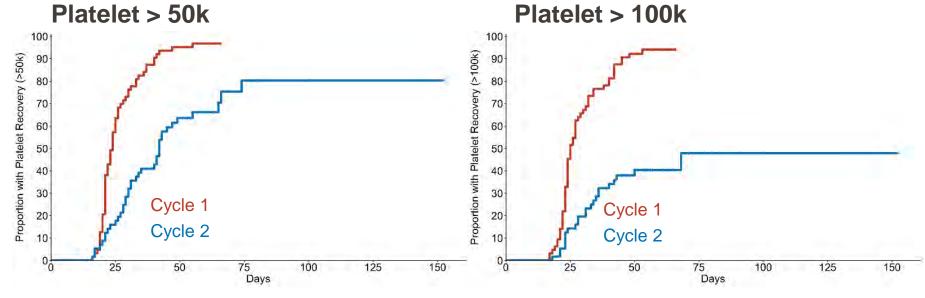
16 (35)


8 (42)

1 (49)


EFS and OS by ELN Risk

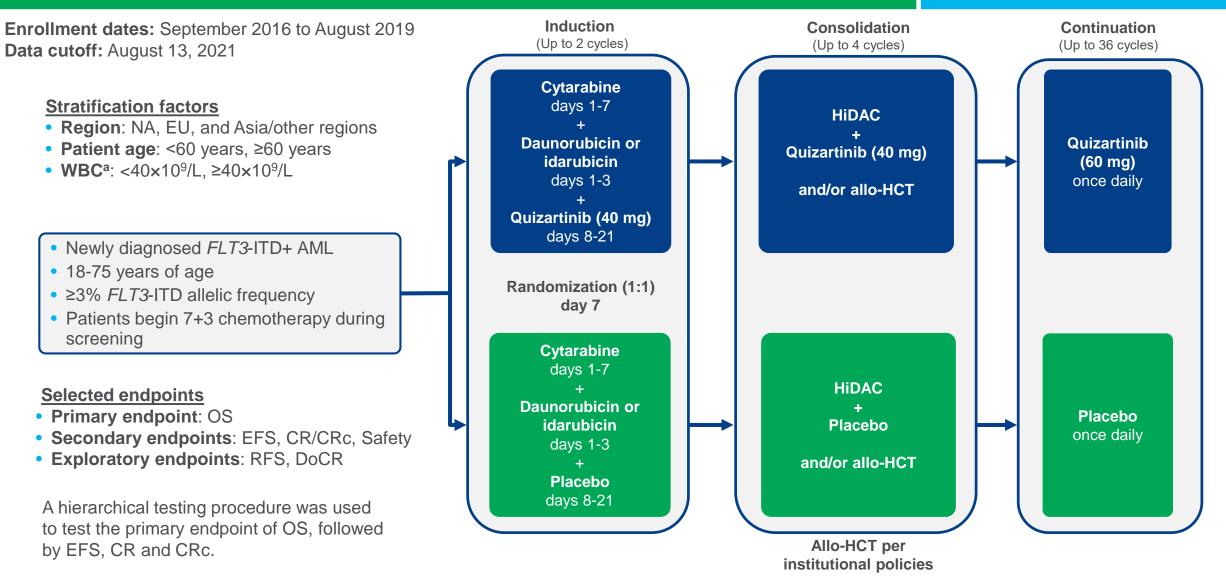

Landmark EFS and OS by Receipt of SCT


Adverse Events

Blood Count Recovery During Cycle 1 and 2

Median Time to Count Recovery	C1	C2
ANC > 500	25	28
ANC > 1000	27	36

Median Time to Count Recovery	C1	C2
Platelet > 50,000	24	42
Platelet > 100,000	25	NA


Quizartinib Prolonged Survival vs Placebo Plus Intensive Induction and Consolidation Therapy Followed by Single-Agent Continuation in Patients Ages 18-75 Years With Newly Diagnosed *FLT3*-ITD+ AML

Harry P. Erba,¹ Pau Montesinos,² Radovan Vrhovac,³ Elzbieta Patkowska,⁴ Hee-Je Kim,⁵ Pavel Zak,⁶ Po-Nan Wang,⁷ Tsvetomir Mitov,⁸ James Hanyok,⁹ Li Liu,⁹ Aziz Benzohra,⁹ Arnaud Lesegretain,⁹ Jorge Cortes,¹⁰ Alexander Perl,¹¹ Mikkael Sekeres,¹² Hervé Dombret,¹³ Sergio Amadori,¹⁴ Jianxiang Wang,¹⁵ Mark Levis,¹⁶ Richard F. Schlenk¹⁷

¹Duke Cancer Institute, Durham, NC, USA; ²La Fe University and Polytechnic Hospital, Valencia, Spain; ³University Hospital Centre Zagreb, Zagreb, Croatia; ⁴Institute of Hematology and Blood Transfusion, Warsaw, Poland; ⁵Catholic Hematology Hospital, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea; ⁶University Hospital Hradec Kralove, Hradec Kralove, Czechia; ⁷Chang Gung Medical Foundation, Linkou, Taiwan; ⁸Daiichi Sankyo UK Ltd, Uxbridge, United Kingdom; ⁹Daiichi Sankyo, Inc, Basking Ridge, NJ, USA; ¹¹Augusta University Medical Center, Augusta, GA, USA; ¹¹University of Pennsylvania, Philadelphia, PA, USA; ¹²Sylvester Cancer Center, University of Miami Health System, Miami, FL, USA; ¹³Saint Louis Hospital, University of Paris, Paris, France; ¹⁴Tor Vergata Polyclinic Hospital Rome, Rome, Italy; ¹⁵Institute of Hematology and Blood Diseases Hospital, Tianjin, China; ¹⁶Johns Hopkins University, Baltimore, MD, USA; ¹¹Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany

QuANTUM-First Phase 3 Trial (NCT02668653): Quizartinib Plus Standard Induction Chemotherapy and Consolidation Followed by Single-Agent Quizartinib

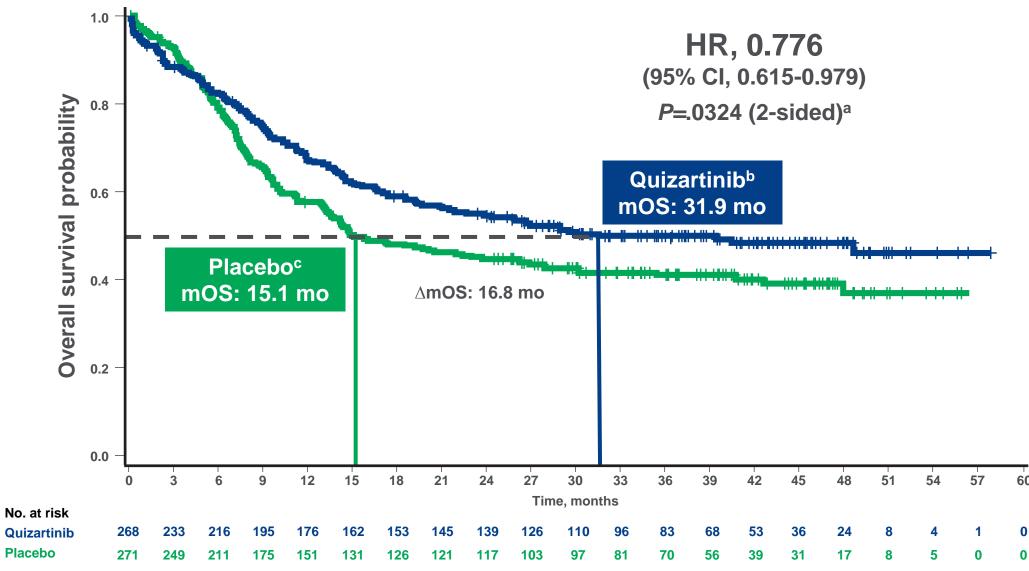
AML, acute myeloid leukemia; CR, complete remission; CRc, composite complete remission; DoCR, duration of complete remission; EFS, event-free survival; EU, Europe; HiDAC, high-dose cytarabine; NA, North America, OS, overall survival; RFS, relapse-free survival; WBC, white blood cell

Baseline Patient Characteristics

Patient Characteristics	Quizartinib (N=268) ^a	Placebo (N=271) ^a
Age, years Median (range) ≥60 years, %	56 (23-75) 39.9	56 (20-75) 40.2
Sex, n % Male Female	46.3 53.7	44.6 55.4
Race, % Asian Black or African American American Indian or Alaska Native White Other	29.9 0.7 0 59.3 10.1	28.8 1.8 0.4 60.1 8.9
Region, % North America Europe Asia/other regions	6.0 60.8 33.2	6.6 60.1 33.2

ITT, intention to treat.

^a Three patients in the ITT set were randomized but not treated.

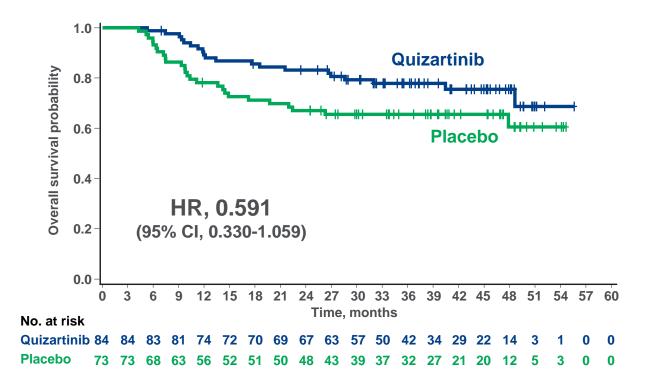

Baseline Disease Characteristics

Disease Characteristics	Quizartinib (N=268) ^a	Placebo (N=271) ^a
ECOG performance status, %b		
0	32.5	36.2
1	50.0	50.2
2	17.5	13.3
Cytogenetic risks, %		
Favorable	5.2	7.0
Intermediate	73.5	71.2
Unfavorable	7.1	10.0
Unknown	14.2	11.4
Missing	0	0.4
Mutated NPM1	53.0	51.7
FLT3-ITD/total FLT3, %c,d		
≥3% to ≤25%	35.1	36.2
>25% to ≤50%	53.4	50.9
>50%	11.2	12.9
WBC count at diagnosis of AML, %		
<40×10 ⁹ /L	50.4	50.6
≥40×10 ⁹ /L	49.6	49.4

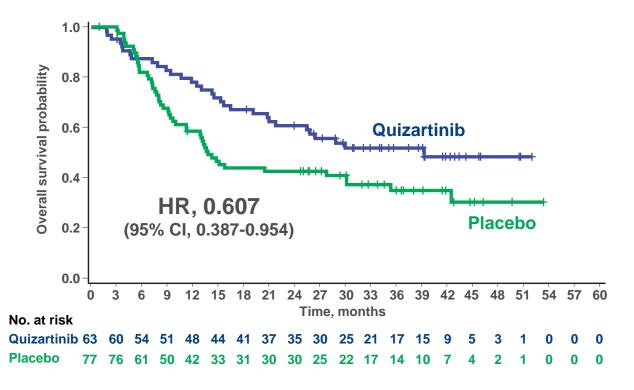
AML, acute myeloid leukemia; ECOG, Eastern Cooperative Oncology Group; FLT3, fms related receptor tyrosine kinase 3; ITD, internal tandem duplication; *NPM1*, nucleophosmin; WBC, white blood cell.

^a Three patients in the ITT set were randomized but not treated in each arm. ^b One patient in the placebo group was missing an ECOG status. ^c Variant allele frequency was assessed by central lab testing. ^d One patient with unknown *FLT3*-ITD/total *FLT3* was positive per local laboratory testing.

Primary Endpoint: Overall Survival



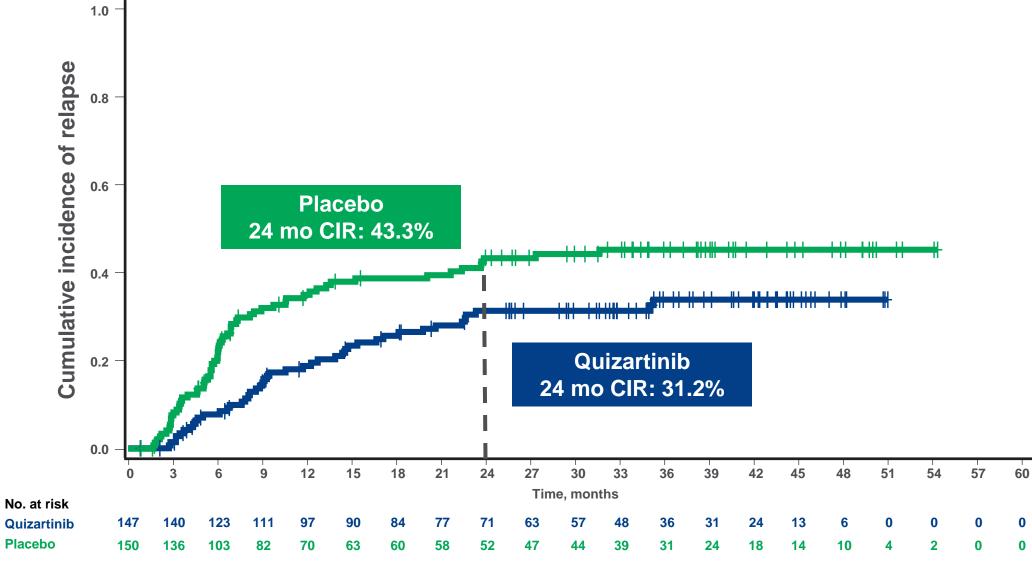
HR, hazard ratio; mOS, median overall survival.


^a P value was calculated using a stratified log-rank test. ^b Median follow-up time for quizartinib arm, 39.2 months. ^c Median follow-up time for placebo arm, 39.2 months.

Post-hoc Analysis: OS in Patients Who Achieved CRa

OS - Patients With CR Who Received Allo-HCT in CR1

OS – Patients With CR NOT Receiving Allo-HCT in CR1


Subgroup analysis for descriptive purposes only

Response and Duration of CRa

Parameter	Quizartinib (N=268)	Placebo (N=271)
CRc % 95% CI	71.6 (65.8-77.0) (58	
CR % 95% CI	54.9 (48.7-60.9)	55.4 (49.2-61.4)
CRi % 95% CI	16.8 (12.5-21.8)	9.6 (6.4-13.7)
Duration of CR Median, months 95% CI	38.6 (21.9-NE)	12.4 (8.8-22.7)

CR, complete remission; CRc, composite complete remission; CRi, complete remission with incomplete neutrophil or platelet recovery; IRC, independent review committee; NE, not evaluable. ^a By end of induction by IRC.

Post-Hoc Analysis: Cumulative Incidence of Relapse in Patients Who Achieved CRa

CIR, cumulative incidence of relapse; CR, complete remission; IRC, independent review committee.

^a By end of induction by IRC.

Summary of TEAEs Occurring in ≥20% of Patients

TEAEs, %	Quizartini	Quizartinib (N=265) ^a		(N=268) ^a
Hematologic adverse events	All Grades	Grade ≥3	All Grades	Grade ≥3
Febrile neutropenia	44.2	43.4	42.2	41.0
Neutropenia	20.4	18.1	10.1	8.6
Non-hematologic adverse events	All Grades	Grade ≥3	All Grades	Grade ≥3
Pyrexia	42.3	4.5	40.7	4.9
Diarrhea	37.0	3.8	35.1	3.7
Hypokalemia	35.1	18.9	35.8	16.4
Nausea	34.0	1.5	31.3	1.9
Headache	27.5	0	19.8	0.7
Rash	26.0	3.0	24.6	1.1
Vomiting	24.5	0	19.8	1.5
Stomatitis	21.5	4.5	20.9	3.0
Constipation	21.1	0.4	25.7	0

TEAE, Treatment Emergent Adverse Event.

^a Three patients in each group were not treated and not included in the safety analysis.

QT Prolongation by Central ECG and Select Cardiac Events by TEAE

Parameter	Quizartinib (N=265) Placebo (N=2				
QTcF interval based on central ECG data (ms), %					
New > 450 ms	34.3	17.9			
New > 480 ms	7.5	2.2			
New > 500 ms	2.3	0.7			
QTcF increase from baseline > 30 ms	55.1	32.5			
QTcF increase from baseline > 60 ms	10.1	4.9			
Select cardiac events by TEAE (PT), %					
ECG QT prolonged	13.6	4.1			
Cardiac arrest/ventricular fibrillation	0.8	0			
Ventricular tachycardia	0.4	0.4			

[•] Two patients (0.8%) treated with quizartinib had cardiac arrest (grade 4 [n=1], grade 5 [n=1]), with recorded ventricular fibrillation in the setting of severe hypokalemia

- One patient (0.4%) died in their sleep (PT 'death') in the quizartinib arm
- Two patients (0.8%) discontinued quizartinib due to QT prolongation

Conclusions

- In this pivotal phase 3 trial, QuANTUM-First, quizartinib improved OS when combined with standard induction and consolidation therapy and continued for up to 3 years as a single agent in patients ages 18-75 with newly diagnosed FLT3-ITD+ AML
 - Clinically meaningful improvements in RFS, reduced CIR, and longer duration of CR may underpin the OS benefit
- Safety of quizartinib combined with intensive chemotherapy and as continuation monotherapy was generally manageable, with no new safety signals
- These data have the potential to change the standard of care for the treatment of adult patients with newly diagnosed FLT3-ITD+ AML

Phase I/II Study of Azacitidine, Venetoclax and Magrolimab for Newly Diagnosed and Relapsed/Refractory AML

N.G. Daver¹, J. Senapati¹, A. Maiti¹, M.Y. Konopleva¹, C.D. DiNardo¹, G. Borthakur¹, K. Chien¹, G.C. Issa¹, E.J. Jabbour¹, S.M. Kornblau¹, L. Masarova¹, T.M. Kadia¹, Y. Alvarado¹, N. Jain¹, S. Loghavi², K. Sasaki¹, N. Pemmaraju¹, H. Abbas¹, P. Bose¹, J.A. Burger¹, A. Ferrajoli¹, G. Montalban-Bravo¹, M. Yilmaz¹, M. Ohanian¹, N.J. Short¹, K. Takahashi¹, P.A. Thompson¹, W.W. Weirda¹, G. Tang², M. Golez¹, K.P. Patel², S. Pierce¹, G. Nogueras-Gonzalez³, J. Ning³, F. Ravandi¹, M. Konopleva¹, G. Garcia-Manero¹, H.M. Kantarjian¹.

¹Department of Leukemia, ²Department of Hematopathology, ³Department of Biostatistics University of Texas MD Anderson Cancer Center, Houston, TX.

ABSTRACT#616
American Society of Hematology Meeting, 2022

Methods: Study Design

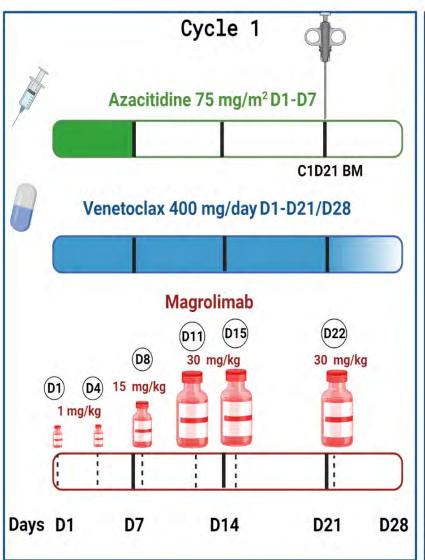
Phase 1 (Dose finding)

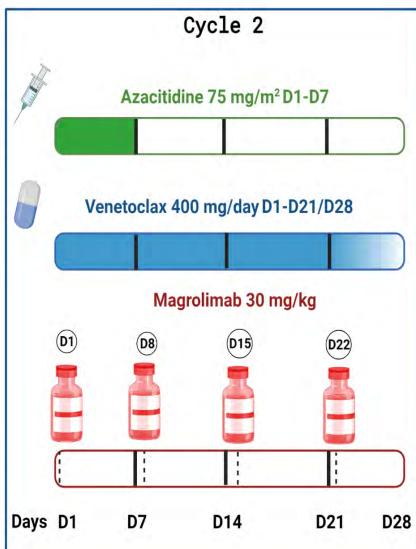
- R/R AML
- ≥ 18 yrs
- ECOG PS ≤ 2
- adequate organ function
- WBC ≤ $15x10^{9}/L$

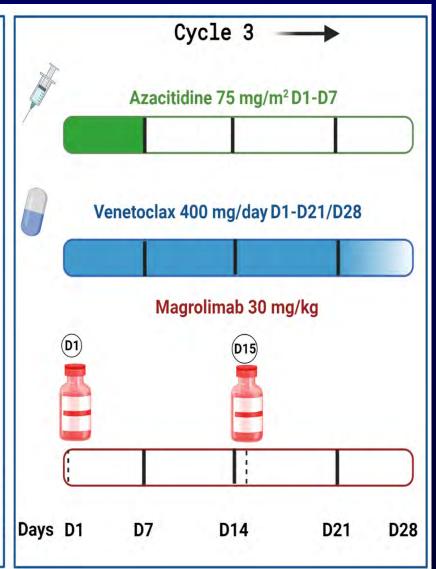
Phase 2 cohorts

- 1. Frontline (De Novo and Secondary AML cohorts)
- ≥ 75 yrs or
- <75 yrs, ineligible for intensive therapy
- ≥ 18 yrs with *TP53*^{mut} or adverse risk CG, regardless of 'fitness'
- 2. R/R venetoclax-naïve (Salvage 1 and 2)
- 3. R/R prior venetoclax (Salvage 1 and 2)

Primary objectives


- Determine MTD and RP2D
- CR/CRi rate


Secondary objectives


- ORR: CR/CRi + PR + MLFS
- Duration of response
- Event-free survival
- Overall survival
- MRD negative rate
- 4- and 8-wk mortality
- No. of pts transitioning to SCT

Exploratory objectives

Treatment Schema

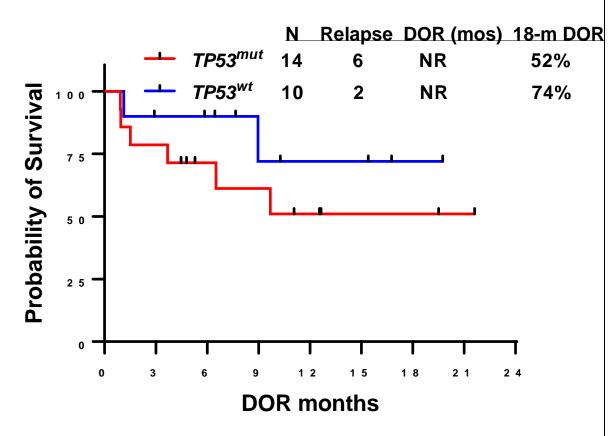
Characteristics FRONTLINE (n=43): A very high risk cohort

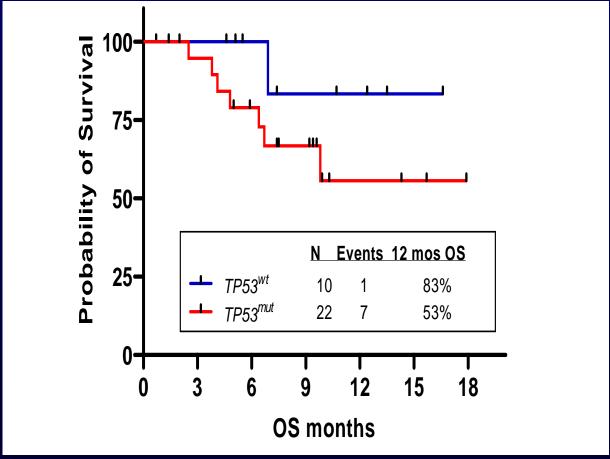
Parameters		Full Frontline	De n	novo	Seconda	ry AML*
		N 40	TP53 ^{mut}	TP53 ^{WT}	TP53 ^{mut}	TP53 ^{WT}
		N=43	(N=22)	(N=11)	(N=5)	(N=5)
				N (%), Medi	an [range]	
Age (yrs)		70 [32-84]	65 [33-81]	76 [67-80]	75 [61-84]	72 [69-82]
Age >65 years		30 (70)	11 (50)	10 (100)	4 (80)	5 (100)
Gender	Females	16 (37)	10 (45)	4 (36)	1 (20)	1 (25)
ECOG PS	0	2 (5)	2 (10)	0 (0)	0 (0)	0 (0)
	1-2	40 (93)	20 (90)	11 (100)	5 (100)	4 (100)
- · · ·	n-hematological cancer)	16 (37)	10 (45)	1 (9)	2 (40)	3 (75)
related AML						
ELN 2017 risk	Intermediate	4 (9)	0 (0)	4 (36)	0 (0)	0 (0)
stratification	Adverse	39 (91)	22 (100)	7 (64)	5 (100)	4 (100)
CTG per ELN	Intermediate	15 (35)	4 (18)	8 (73)	1 (20)	1 (25)
2017	- Diploid	10	3	6	1	0
	- Others	4	1	2	0	1
	Adverse	28 (65)	18 (82)	3 (27)	4 (80)	3 (75)
	- CK	23	17	1	4	1
	- Isolated -5/5q- or -7/7q-	4	1	2	0	1
	- Other adverse	1	0	0	0	1
Mutations	IDH1/IDH2	7 (16)	4 (18)	3 (27)	0 (0)	0 (0)
	FLT3 ITD/TKD	1 (2)	1 (5)	0 (0)	0 (0)	0 (0)
	NPM1	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
	ASXL1	7 (16)	2 (9)	5 (45)	0 (0)	0 (0)
	RUNX1	5 (12)	2 (9)	3 (27)	0 (0)	0 (0)

^{*}This includes treated and untreated sAML, except prior HMA treatment (such as targeted Rx, investigational agents, LDAC-based, growth factors, ImiDs, etc)

Responses per ITT FRONTLINE (n=43): CR/CRi rates similar in TP53m and TP53wt

Parameters		Full Frontline	De n	De novo		Secondary AML	
		N=43	TP53 ^{mut} (N=22)	TP53WT (N=11)	TP53 ^{mut} (N=5)	<i>TP53^{WT}</i> (N=5)	
				N (%), Media	an [range]		
Overall response	CR CRi CR + CRi	21 (49) 10 (23) 31 (72)	10 (46) 4 (18) 14 (64)	6 (55) 4 (36) 10 (91)	2 (40) 1 (20) 3 (60)	3 (60) 1 (20) 4 (80)	
	MLFS	4 (9)	1 (5)	1 (9)	2 (40)	0 (0)	
MRD-ve best responses#	FCM-CR/CRi	16/28 (67)#	8/14 (64)	6/10 (60)	0 (0)	2/4 (50)	
Cytogenetic responses*	CCyR	11/21 (52)*	5/10 (50)	4/6 (67)	2/5 (40)		
Time to response	First response	23 [19-105]	24 [20-81]	20 [20-29]	20 [19-105]	27 [20-73]	
(days)	Best response	51 [20-130]	49 [20-130]	33 [20-63]	48 [20-105]	62 [20-88]	
Counts recovery (days)	ANC ≥ 500/cu mm Platelet ≥ 100 x 10 ⁹ /L	36 [16-88] 32 [0-74]	36 [16- 88] 31 [15-55]	34 [26-62] 33 [19-74]	34 [31-36] 28 [22-49]	39 [23-59] 33 [0-46]	
Cycles on therapy		3 [1-17]	3 [2-6]	3 [1-17]	1 [1-3]	2 [1-3]	
Mortality: - 4 week - 8 week		0 (0) 0 (0)	0 (0) 0 (0)	0 (0) 0 (0)	0 (0) 0 (0)	0 (0) 0 (0)	

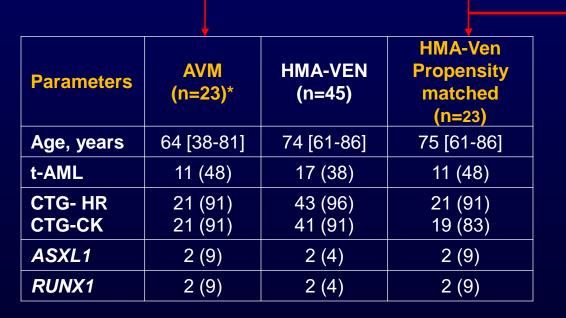

[#] Amongst CR/CRi patients with longitudinally MRD evaluable samples


^{*} Amongst responders with baseline clonal CTG abnormality

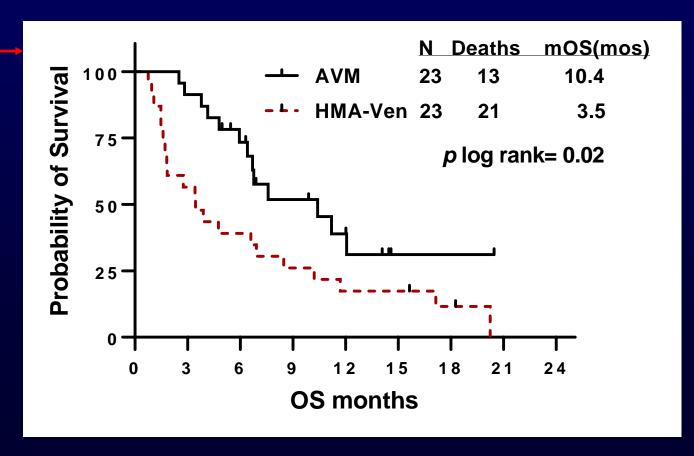
Duration of response and OS in FRONTLINE De Novo cohort Median follow-up: 14.5 months

DOR (De Novo patients, N=33)

Overall Survival (De Novo patients, n=33) Relapse DOR (mos) 18-m DOR



Survival comparison with Aza-Ven-Magrolimab to HMA-Ven combination: <u>TP53 mutated arm</u>


Propensity matched analysis: 1:1 (nearest neighbor)

Comparison of baseline characteristics of propensity matched groups

Comparison of overall survival of matched population

^{*23} propensity matching pts identified among total n=27 TP53m on AVM

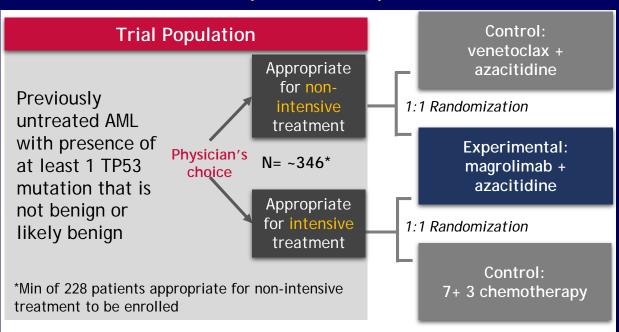
Results: Safety analysis (N=79)

- All patients had at least one any grade adverse event
- 71 patients (90%) had at least one ≥ grade 3 adverse event
- No patient had any immunological adverse event
- No study treatment discontinuations due to TRAEs
- Infusion reactions noted: in 8 (10%) patients (3 patients had grade 3 reaction)
 - ✓ effectively mitigated with dexamethasone pre-med for subsequent doses
- Eighteen patients (23%) had a ≥ grade 3 anemia while on study.
- No anemia related life-threatening events or deaths.
- The median drop in Hb post first infusion of magrolimab in the frontline cohort (n=43) was 1.2 g/dl (range, 0 3.9 g/dl).

Results: Treatment emergent adverse events* (non-hematological)

Adverse Event	Overall		≥ Grade 3	
Adverse Event	N	%	N	%
Febrile neutropenia	35	44	35	44
<u>Lung infection</u>	34	43	28	35
<u>Sepsis</u>	12	15	12	15
<u>Hyperbilirubinemia</u>	41	52	9	11
Hypokalemia	48	61	6	8
Inc. Creatinine /AKI	28	35	6	8
ALT elevation	31	39	5	6
Skin infection	9	11	5	6
Hypotension	26	33	4	5
Hyperuricemia	13	16	4	5
Urinary tract infection	4	5	4	5
Fatigue	19	24	3	4
Hyperglycemia	13	16	3	4
Respiratory failure	3	4	3	4
Mucositis	18	23	2	3
Infusion reaction	8	10	2	3
Hematuria	6	8	2	3
Syncope	2	3	2	3
Hypophosphatemia	40	51	1	1
Hypocalcemia	32	41	1	1

Adverse Event	Overall		≥ Grade 3	
Adverse Event	N	%	N	%
Diarrhea	29	41	1	1
ALP elevation	27	34	1	1
Hypomagnesemia	23	29	1	1
Dyspena	23	29	1	1
Abdominal pain	22	28	1	1
Pruritis	18	23	1	1
Hyperkalemia	9	11	1	1
Hypernatremia	6	8	1	1
Bone pain	4	5	1	1
Bladder spasm	1	1	1	1
Atrial fibrillation	1	1	1	1
Myocarditis	1	1	1	1
QTc prolongation	1	1	1	1
Rash	1	1	1	1
SVT	1	1	1	1
Pulmonary edema	1	1	1	1
Cholecystitis	1	1	1	1
Constipation	32	41	0	0
Nausea	28	35	0	0
Hypercalcemia	11	14	0	0


^{*} Unique highest grade adverse event/patient. All ≥ grade 3 events and all any grade AE regardless of attribution seen in ≥10% study patients tabulated

Conclusions

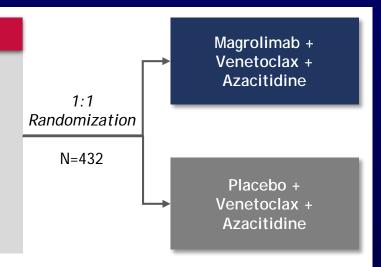
- Combination of AZA VEN magrolimab was safe in the frontline setting in this very high risk population
- CR rates in overall frontline (De Novo and Secondary cohorts) population were :
 - Frontline *TP53^{mut}* AML (n=27) CR/CRi rate = 63%, <u>CR rate = 42%</u>
 - Frontline *TP53^{wt}* AML **(64% ELN adverse risk) (n=16)** CR/CRi rate = 88%, <u>CR rate = 56%</u>
 - 8-week mortality in frontline = 0
- On propensity matching OS appeared to be better than HMA-VEN FL historical protocol patients for TP53m but median f/u and numbers remain small. Numbers too low currently to conduct this in the TP53wt
- Activity in R/R AML was modest
- No unexpected adverse events → Careful monitoring of Hemoglobin pre-magrolimab infusion (espescially between C1D1=C1D10)
- Randomized study initiated to assess whether AVM can improve on AV in frontline patients

Ongoing Phase III Studies with Magrolimab in Frontline AML

Phase III AZA+Magro vs Investigator Choice in TP53^{mut} AML (ENHANCE-2)

Stratification:

- Appropriateness for non-intensive therapy vs intensive therapy
- 2) Age (<75 vs > 75)
- 3) Geographic region (US vs. outside the US)


Primary Endpoint: OS in patients appropriate for non-intensive therapy Key Secondary Endpoint: OS in all patients

Other Secondary Endpoints: EFS, CR/CR^{MRD-}, duration of response, transfusion independence, rate of SCT

Phase III AZA+ VEN+ Magro vs AZA+VEN in older/unfit AML (ENHANCE-3)

Trial Population

Newly diagnosed, previously untreated AML patients who are ineligible for intensive chemotherapy (based on objective criteria)

Stratification:

- 1) Age (<75 vs > 75)
- 2) Cytogenetic risk (favorable/intermediate vs. adverse vs. unknown)
- Geographic region (US vs. outside the US)

Dual Primary Endpoint:

- CR rate within 6 cycles of treatment as determined by the investigator
- 05

Secondary Endpoints: CR^{MRD-}, CR/CRh, duration of response, transfusion independence, EFS, QOL

NCT04778397

NCT05079230

Updated results from a phase I/II study of the triplet combination of azacitidine, venetoclax and gilteritinib for patients with FLT3-mutated acute myeloid leukemia

NJ Short, CD Dinardo, N Daver, W Macaron, M Yilmaz, G Borthakur, G Montalban-Bravo, G Garcia-Manero, GC Issa, K Sasaki, P Thompson, J Burger, A Maiti, Y Alvarado, M Kwari, R Delumpa, J Thankachan, E Mayor, C Loiselle, A Milton, G Banks, T Kadia, M Konopleva, H Kantarjian, F Ravandi

Department of Leukemia

The University of Texas MD Anderson Cancer Center, Houston, TX

Aza+Ven+Gilteritinib in FLT3-mutated AML: Regimen

 Relapsed/refractory FLT3mutated* AML or high-risk MDS or CMML

or

 Newly diagnosed FLT3mutated* AML unfit for intensive chemotherapy **Induction**

Azacitidine 75 mg/m² IV/SC on D1-7

Venetoclax#
D1-28 (bone marrow on D14)%

Gilteritinib 80-120 mg on D1-28 Consolidation (up to 24 cycles)

Azacitidine
75 mg/m² IV/SC on D1-5

Venetoclax 400mg on D1-7

Gilteritinib 80-120 mg on D1-28

* FLT3-ITD or FLT3 D835 mutations allowed

Venetoclax ramp-up during cycle 1:100mg on D1, 200mg on D2, 400mg on D3+

% If <5% blasts or insufficient on C1D14, venetoclax held (both cohorts) and gilteritinib held (frontline only)

- Primary endpoints: MTD of gilteritinib in combination (phase I), CR/CRi rate (phase II)
- Secondary endpoints: CR rate, MRD negativity rate, duration of response, OS, safety

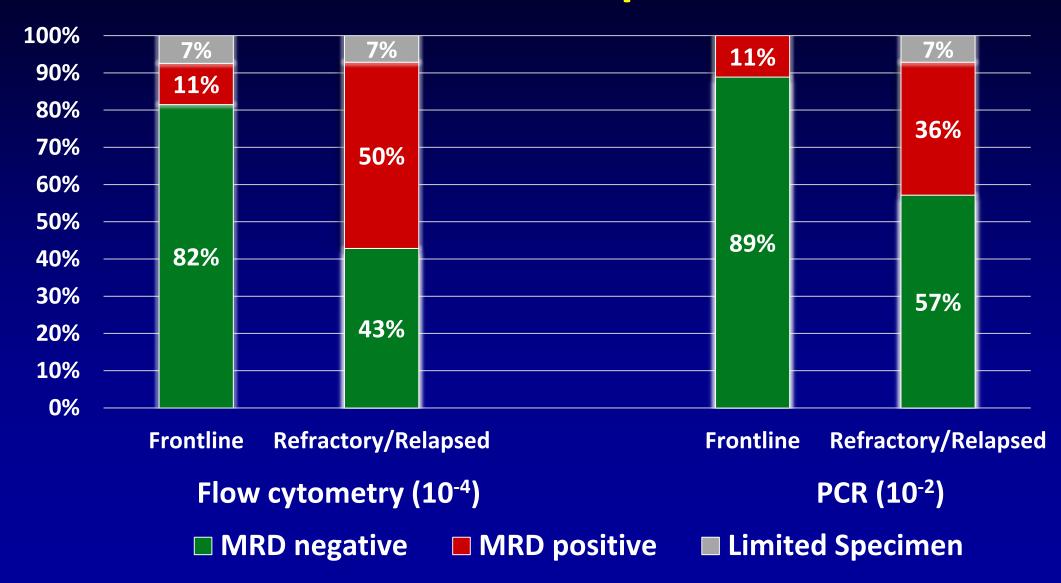
Aza+Ven+Gilteritinib in FLT3-mutated AML: Patients

Frontline

Relapsed/Refractory

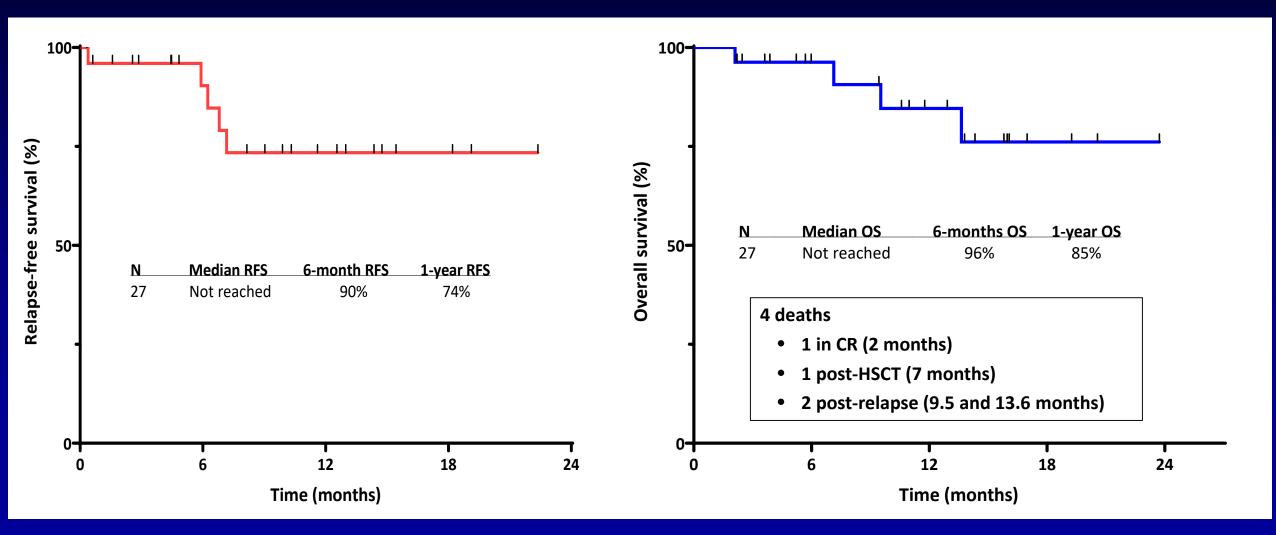
		(N=27)	(N=20)
Characteristic	Category	N (%) / median [range]	N (%) / median [range]
Age (years)		70 [18-86]	69 [19-90]
	≥60 years	26 (96)	16 (80)
	≥75 years	8 (30)	4 (20)
Diagnosis	AML	27 (100)	19 (95)
	MDS/CMML	0	1 (5)
Cytogenetics	Diploid	18 (67)	8 (40)
	Adverse risk	3 (11)	7 (35)
	Others	6 (22)	5 (25)
FLT3 mutation type	ITD	19 (70)	9 (45)
	TKD	8 (30)	7 (35)
	ITD+TKD	0	4 (20)
FLT3 allelic ratio	ITD	0.21 [0.04-3.35]	0.36 [0.03-15.7]
	TKD	0.65 [0.03-1.34]	0.59 [0.01-1.81]
Number of prior therapies			2 [1-5]
Prior FLT3 inhibitor			6 (30)
Prior gilteritinib			2 (10)
Prior HMA + venetoclax			8 (40)
Prior HSCT			5 (25)

Aza+Ven+Gilteritinib in FLT3-mutated AML: Phase I Safety


- 10 pts treated in Phase I cohort
 - Gilteritinib 80mg daily in 6 pts
 - Gilteritinib 120mg daily in 4 pts (1 pt not evaluable for DLT)
- No non-hematologic DLTs observed
- Myelosuppression appeared greater with gilteritinib 120mg dosing
 - 1/3 DLT at 120mg (grade 4 myelosuppression); 0/6 DLTs at 80mg
 - Among 3/4 responding pts at 120mg dose, MLFS was best response
 - 3/6 pts (50%) at 80mg dose responded → 1 CR and 2 CRi
 - Gilteritinib 80mg chosen as phase II expansion dose

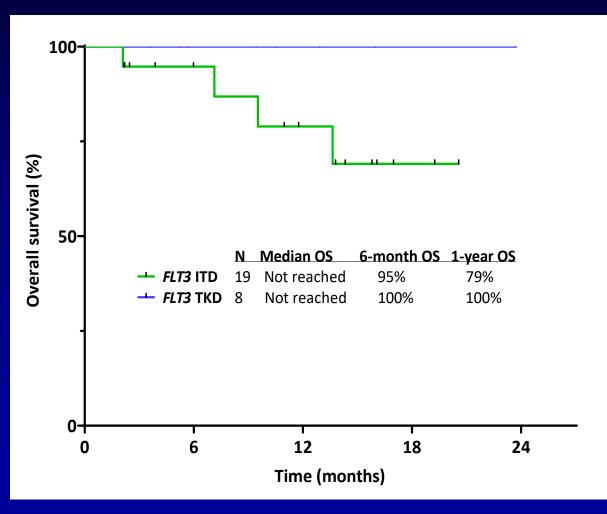
Aza+Ven+Gilteritinib in FLT3-mutated AML: Responses

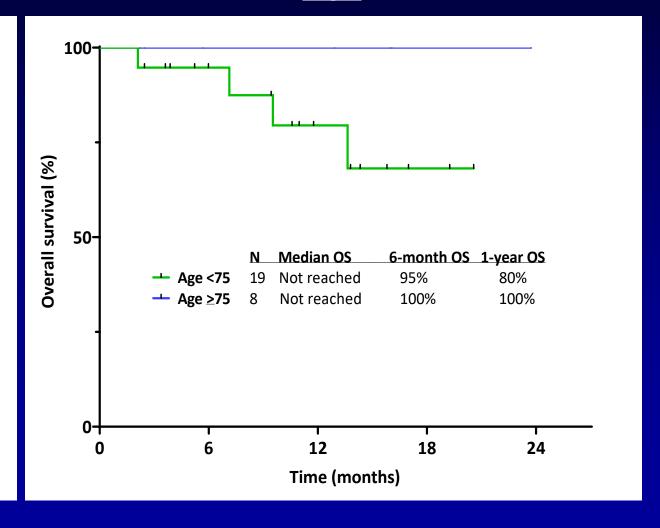
Response, n/N (%)	Frontline	R/R
	N = 27	N = 20
mCRc (CR/CRi/MLFS)	27 (100)	14 (70)
CR	25 (92)	4 (20)
CRi	1 (4)	3 (15)
MLFS	1 (4)	7 (35)
PR*	0	1 (5)
No response	0	5 (25)
Early death	0	0


^{*} PR in 1 patient with extramedullary-only disease (assessed by PET scan)

Aza+Ven+Gilteritinib in FLT3-mutated AML: Best MRD Response

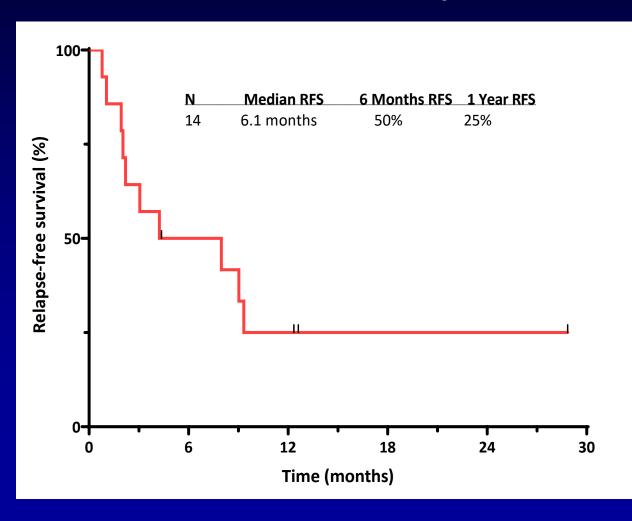
Aza+Ven+Gilteritinib in FLT3-mutated AML: RFS and OS in Frontline Cohort

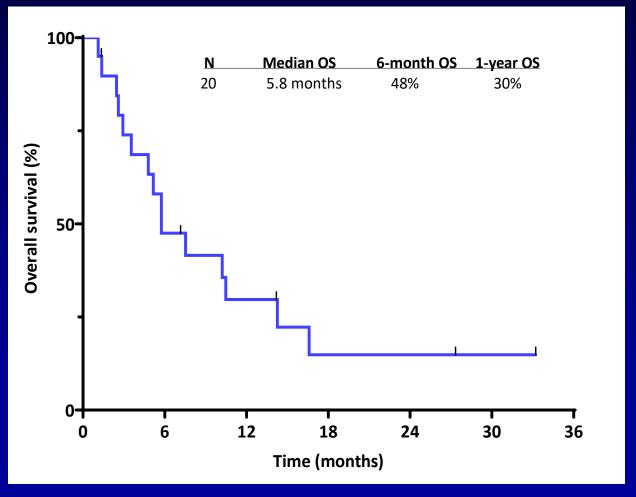

Median follow-up: 12 months (range, 1.5-24+ months)



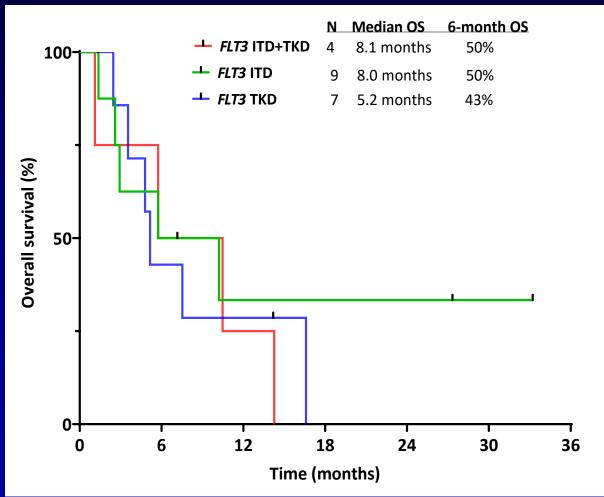
Aza+Ven+Gilteritinib in FLT3-mutated AML: OS in Frontline Cohort by Subgroups

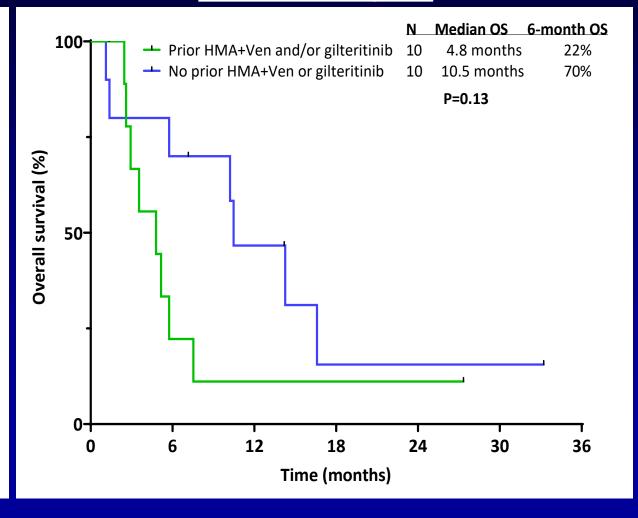
Type of FLT3 Mutation


Age



Aza+Ven+Gilteritinib in FLT3-mutated AML: RFS and OS in R/R Cohort

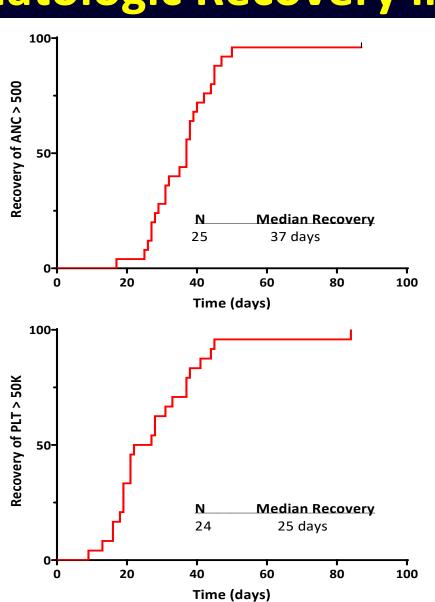

Median follow-up: 27 months (range, 1.1-33.2+ months)



Aza+Ven+Gilteritinib in FLT3-mutated AML: OS in R/R Cohort by Subgroups

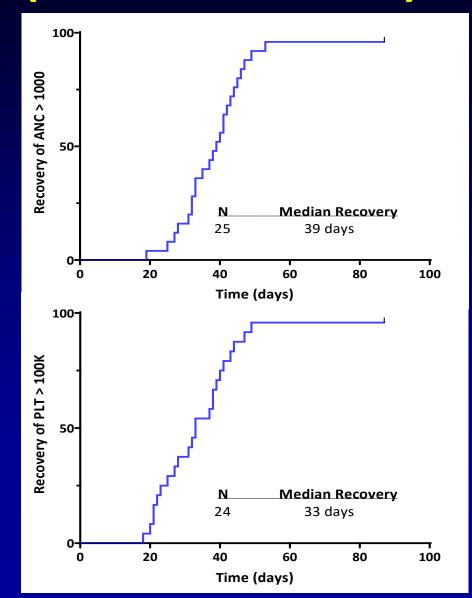
Type of FLT3 Mutation

Prior Therapies


Aza+Ven+Gilteritinib in FLT3-mutated AML: Safety

Adverse events	Fro	ontline (N=27)		Refractory/Relapsed (N=20)		
	Grade 3, n (%)	Grade 4, n (%)	Grade 5, n (%)	Grade 3, n (%)	Grade 4, n (%)	Grade 5, n (%)
Acute kidney injury	1 (4)	0	0	1 (5)	0	0
Altered mental status	0	0	0	1 (5)	0	0
Atrial fibrillation	0	0	0	1 (5)	0	0
Cardiac enzyme elevation	0	0	0	1 (5)	0	0
DIC	0	0	0	0	0	1 (5)
Febrile neutropenia	1 (4)	0	0	5 (25)	0	0
GU bleeding	0	0	0	2 (11)	1 (5)	0
Hypotension	0	0	0	2 (10)	1 (5)	0
Infection	5 (18)	0	1 (4)	9 (45)	0	2 (10)
Intracranial hemorrhage	0	0	0	0	0	1 (5)
Nausea/vomiting	1 (4)	0	0	0	0	0
QT prolongation	1 (4)	0	0	0	0	0
Sepsis	0	0	0	4 (20)	1 (5)	0
Small bowel obstruction	1 (4)	0	0	0	0	0
Tumor lysis syndrome	1 (4)	0	0	1 (5)	0	0

Aza+Ven+Gilteritnib in FLT3-mutated AML: Hematologic Recovery in Cycle 1 (Frontline Cohort)


ANC >500

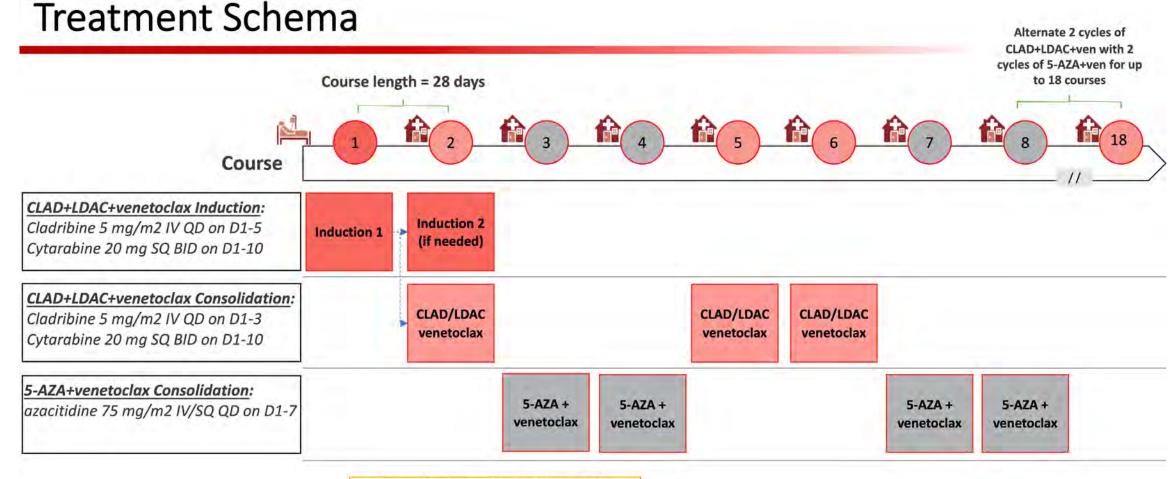
Platelets >50K

ANC >1000

Aza+Ven+Gilteritinib in FLT3-mutated AML: Conclusions

- Azacitidine + venetoclax + gilteritinib results in high rates of mCRc in newly diagnosed (100%) and R/R (70%) FLT3-mutated AML
 - CR rate 92% and flow MRD negativity rate 82% in newly diagnosed pts
- Durability of responses encouraging in newly diagnosed pts, regardless of age of type of FLT3 mutation
 - 3 relapses to date; estimated 1-year OS: 85% (vs. 40-60% in VIALE-A)
- Myelosuppression manageable with mitigation strategies
 - Use of gilteritinib 80mg
 - Day 14 bone marrow to determine course of venetoclax/gilteritinib
 - Attenuation of azacitidine/venetoclax in consolidation

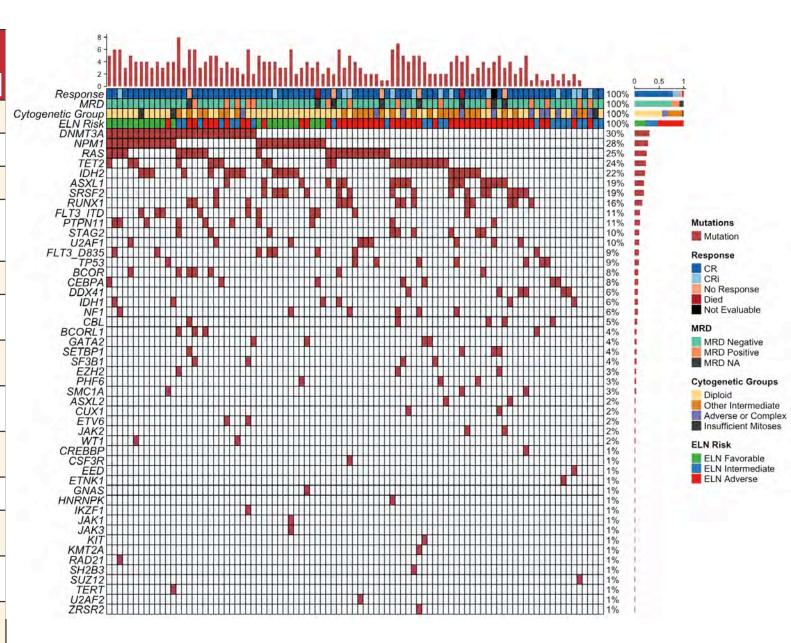
Publication #4074:


Venetoclax added to cladribine (CLAD) + low dose AraC (LDAC) alternating with azacitidine (AZA) is highly active as frontline therapy in older patients with newly diagnosed acute myeloid leukemia in a phase 2 study

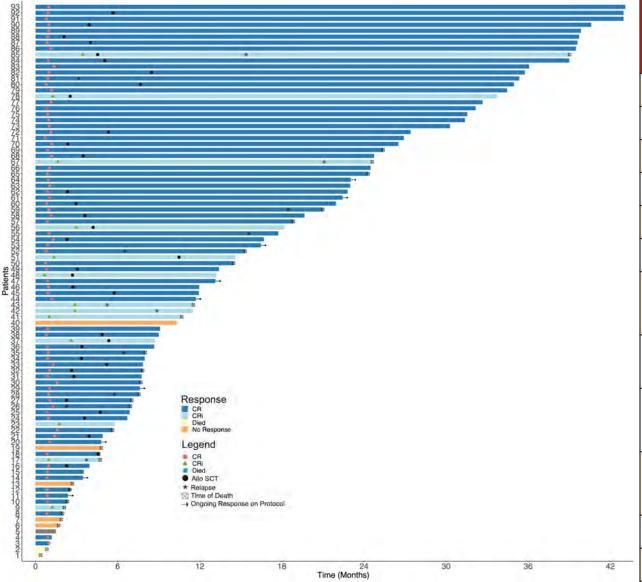
Making Cancer History®

Patient Selection

- Previously untreated AML.
 - Hydroxyurea, hematopoietic growth factors, ATRA, or a total dose of cytarabine up to 2g (for emergency use for stabilization) is allowed.
- Age ≥ 60 years. Patients aged < 60 years who are unsuitable for standard induction therapy may be eligible (1 patient <60 years was enrolled, 57 years old)
- Adequate organ function (bilirubin < 2mg/dL, AST and/or ALT <3 x ULN and creatinine < 1.5 x ULN)
- ECOG performance status of ≤ 2 .
- No prior therapy with venetoclax
- Patients with acute promyelocytic leukemia were excluded

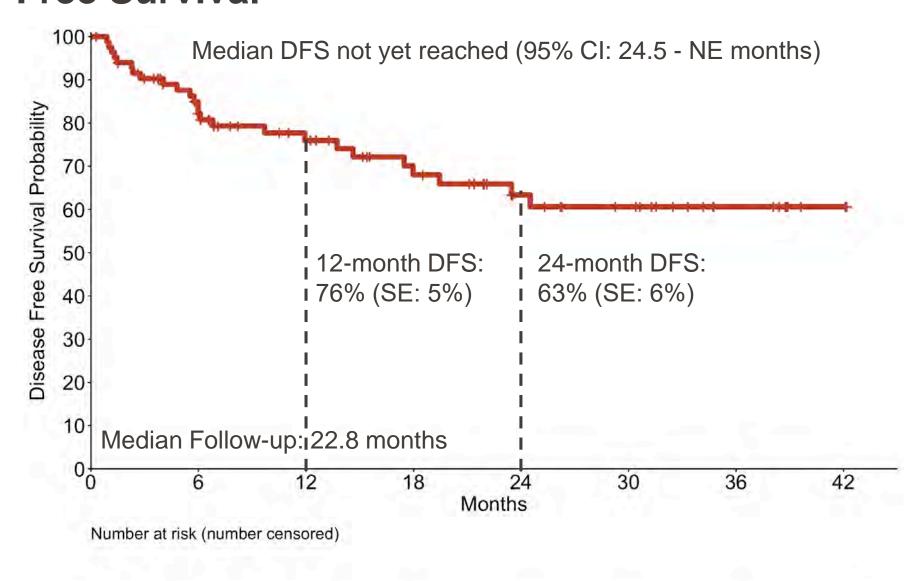

	Suggested Ramp Up for Venetoclax			
	Day 1	Day 2	Day 3	Target Dose
Strong CYP3A4 Inhibitor	50mg	50 mg	100 mg	100 mg
Moderate CYP3A4 Inhibitor	50mg	100 mg	200 mg	200 mg
No CYP3A4 Inhibitor	100mg	200 mg	400 mg	400 mg

Venetoclax dosing:

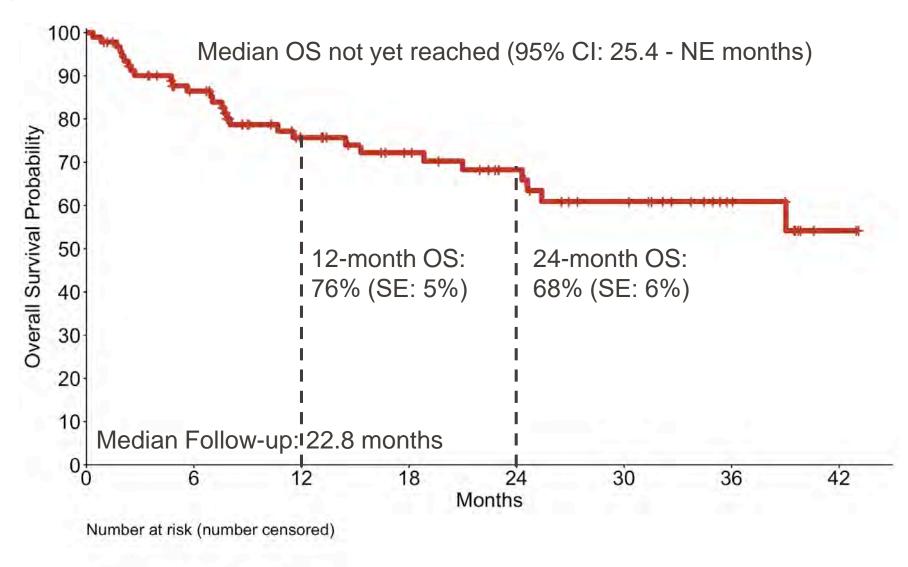

- · Cycle 1: 21 days
- Cycle 2+: 7 14 days, based on MRD and tolerability

Baseline Characteristics

N = 93	N (%); Median [Range]
Age	68 [57 – 84]
Therapy Related AML	10 / 93 (11%)
Secondary AML	19 / 93 (20%)
Treated Secondary AML	4 / 93 (4.3%)
Cytogenetic Group	
Diploid	52 / 93 (56%)
Other Intermediate	27 / 93 (29%)
Complex/Adverse	11 / 93 (12%)
Insufficient Mitoses	3 / 93 (3.2%)
ELN Risk	
Favorable	22 / 93 (24%)
Intermediate	22 / 93 (24%)
Adverse	49 / 93 (53%)



Response

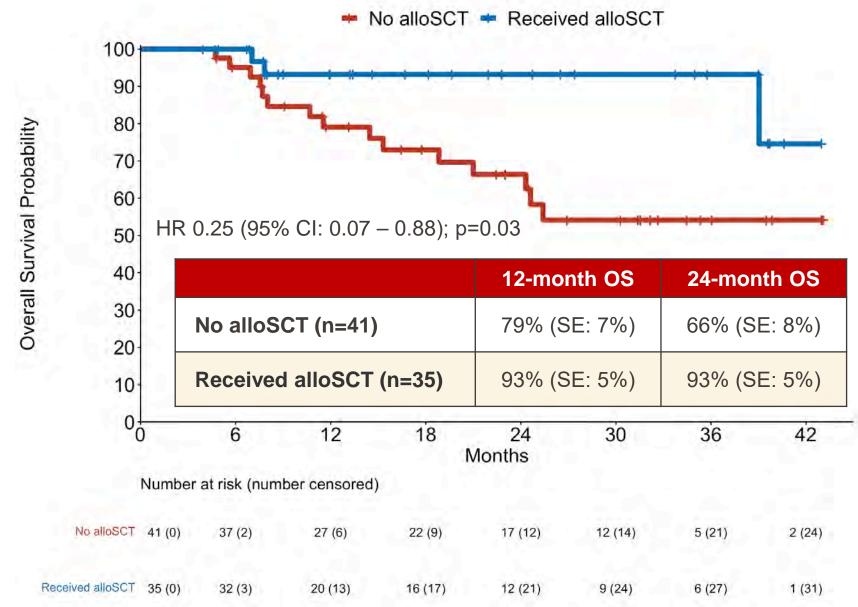

N = 93	N (%); Median [Range]
Composite CR Rate (CR+CRi)	85 / 92 (92%)
Best Response	
CR	72 / 92 (78%)
CRi	13 / 92 (14%)
NR	5 / 92 (5.4%)
Died	2 / 92 (2.2%)
MRD Negative at Response Assessment (by flow)	66 / 81 (81%)
MRD Negative on Study (by flow)	71 / 85 (84%)
Total Number of Course Given, Median (IQR)	3 [1 – 18]
Responders that Received alloSCT	35 / 85 (41%)
Mortality Rate at 4 Weeks	2 / 93 (2.2%)
Mortality Rate at 8 Weeks	5 / 93 (5.4%)

Disease-Free Survival

All 85 (1) 59 (12) 44 (23) 33 (30) 23 (38) 18 (42) 9 (51) 3 (57)

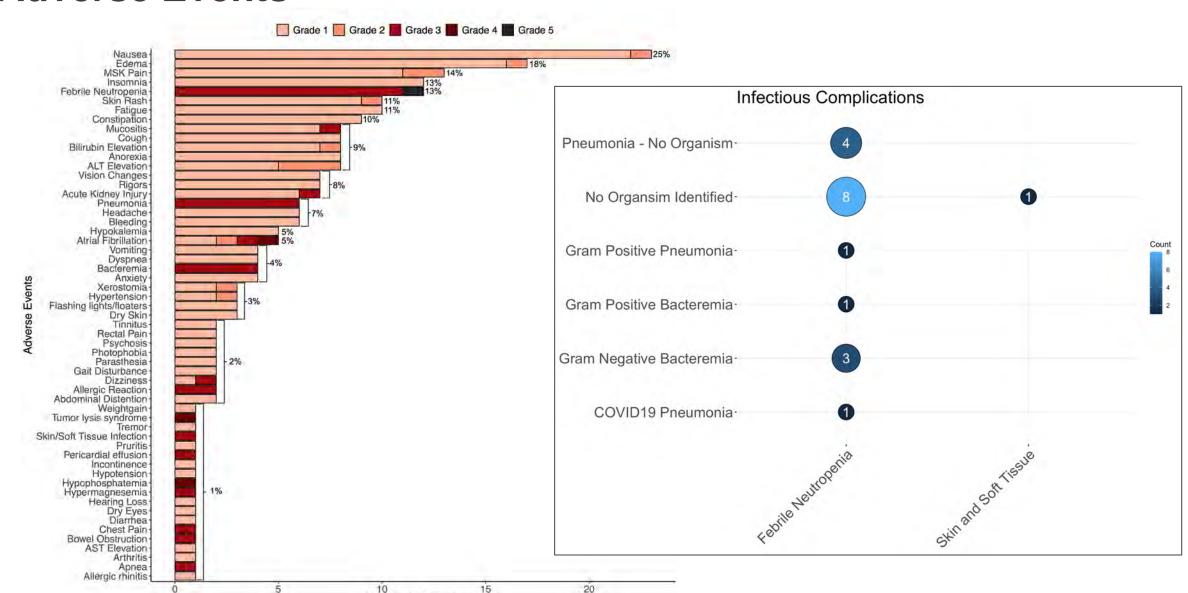
Overall Survival

29 (40)


21 (45)

11 (55)

3 (62)


All 93 (0) 70 (11) 47 (26) 38 (33)

OS by Receipt of SCT

Number of Patients

Adverse Events

The Menin Inhibitor Revumenib (SNDX-5613) Leads to Durable Responses in Patients with *KMT2A*-Rearranged or *NPM1* Mutant AML: Updated Results of a Phase 1 Study

Ghayas C. Issa, MD,¹ Ibrahim Aldoss, MD,² John F. DiPersio, MD, PhD,³ Branko Cuglievan, MD,¹ Richard M. Stone, MD,⁴ Martha L. Arellano, MD,⁵ Michael Thirman, MD,⁶ Manish R. Patel, MD,⁷ David Dickens, MD,⁸ Shalini Shenoy, MD,³ Neerav Shukla, MD,⁹ Galit Rosen, MD,¹⁰ Rebecca G. Bagley, MA,¹⁰ Michael L. Meyers, MD, PhD,¹⁰ Kate Madigan, MD,¹⁰ Peter Ordentlich, PhD,¹⁰ Yu Gu, PhD,¹⁰ Steven Smith, BS,¹⁰ Gerard M. McGeehan, PhD,¹⁰ and Eytan M. Stein, MD⁹

¹The University of Texas MD Anderson Cancer Center, Houston, TX; ²City of Hope, Duarte, CA; ³Washington University School of Medicine, St. Louis, MO; ⁴Dana-Farber Cancer Institute, Boston, MA; ⁵Emory University School of Medicine, Atlanta, GA; ⁶University of Chicago, Chicago, IL; ⁷Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, FL; ⁸University of Iowa, Iowa City, IA; ⁹Memorial Sloan Kettering Cancer Center, New York, NY; ¹⁰Syndax Pharmaceuticals, Inc., Waltham, MA

AUGMENT-101 patients are heavily pretreated with a poor prognosis

Baseline Characteristics	Safety Population N=68
Median age, years (range)	42.5 (0.8, 79)
Adult (n=60)	50.5
Pediatric (n=8)	2.5
Female, n (%)	42 (62)
Leukemia type, n (%)	
AML	56 (82)
ALL	11 (16)
MPAL	1 (2)
Median prior therapies (range)	4 (1,12)
Stem cell transplant, n (%)	31 (46)
Venetoclax, n (%)	41 (60)

Baseline Characteristics	Safety Population N=68
<i>KMT2Ar,</i> n (%)	46 (68)
t(9;11)	10 (15)
t(11;19)	9 (13)
t(4;11)	6 (9)
t(6;11)	3 (4)
t(11;17)	2 (3)
Other	16 (24)
<i>mNPM1,</i> n (%)	14 (21)
KMT2A and NPM1 wild type, n (%)	8 (12)
Co-occurring mutations*, n (%)	
FLT3	14 (25)
RAS	12 (29)
TP53	4 (10)

^{*}In patients for whom co-occurring mutation data were available. MPAL, mixed-phenotype acute leukemia

Adverse Events across all doses of revumenib

Any-grade treatment-related AE (≥5%)	Safety Population N=68
Patients with ≥1 treatment-related AE, n (%)	53 (78)
ECG QTc prolonged	36 (53)
Nausea	18 (27)
Vomiting	11 (16)
Differentiation syndrome	11 (16)
Diarrhea	7 (10)
Dysgeusia	5 (7)
Decreased appetite	5 (7)

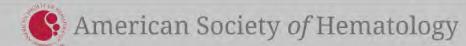
No treatment discontinuations for QTc prolongations, or associated arrhythmias

≥Grade 3 treatment-related AE	Safety Population N=68
Patients with ≥Gr 3 treatment-related AE, n (%)	11 (16)
ECG QTc prolonged	9 (13)
Diarrhea	2 (3)
Anemia	2 (3)
Asthenia	1 (2)
Fatigue	1 (2)
Hypercalcemia	1 (2)
Hypokalemia	1 (2)
Neutropenia	1 (2)
Thrombocytopenia	1 (2)
Tumor lysis syndrome	1 (2)

10% of patients (5/52) had Gr 3 QTc prolongation at doses meeting criteria for RP2D

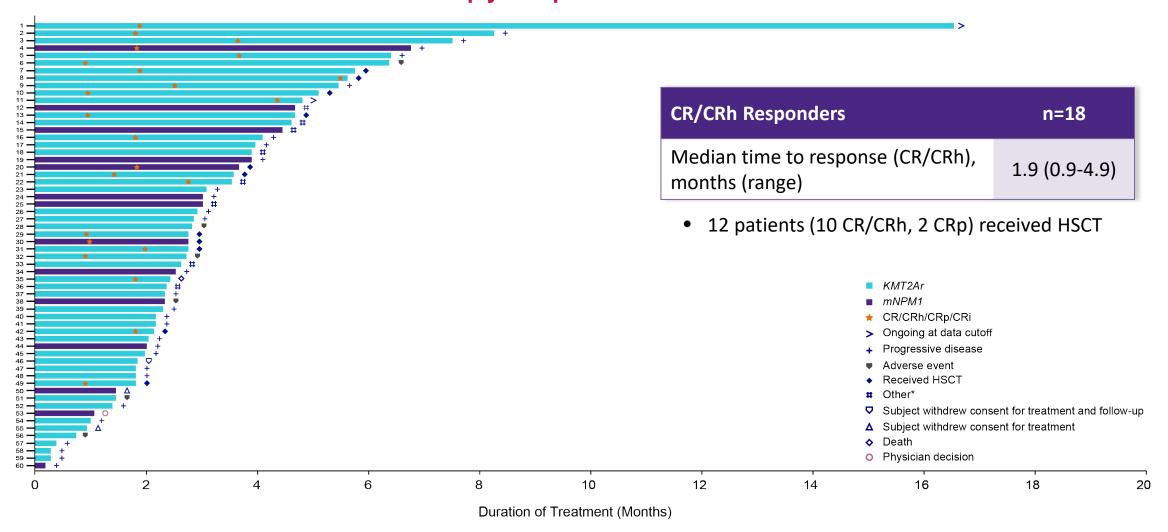
 ${\sf ECG, electrocardiogram; QTc, corrected\ QT\ interval.}$

Data cutoff: 31 March 2022

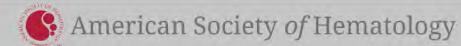

Revumenib demonstrates promising antileukemic activity in relapsed/refractory *KMT2Ar* and *mNPM1* leukemias

Best Response, n (%)	Efficacy Population n=60		Efficacy Population Doses Meeting Criteria for RP2D n=48	
ORR*	32/60	32/60 (53%)		(52%)
Best Response				
CR	12 (2	20%)	8 (1	.7%)
CRh	6 (1	6 (10%)		.0%)
CRp	5 (8%)		5 (1	.0%)
MLFS	9 (15%)		7 (15%)	
MRD ^{neg} rate [†]	18/32 (56%)		14/25	(56%)
CR/CRh MRD ^{neg}	14/18 (78%)		10/13 (77%)	
CR/CRh/CRp MRDneg	18/23 (78%)		14/18	(78%)
Genetic alteration	<i>KMT2Ar</i> n=46	<i>mNPM1</i> n=14	<i>KMT2Ar</i> n=37	<i>mNPM1</i> n=11
ORR	27/46 (59%)	5/14 (36%)	20/37 (54%)	5/11 (46%)
CR/CRh	15 (33%)	3 (21%)	10 (27%)	3 (27%)
CR/CRh MRD ^{neg} rate	11/15 (73%)	3/3 (100%)	7/10 (70%)	3/3 (100%)

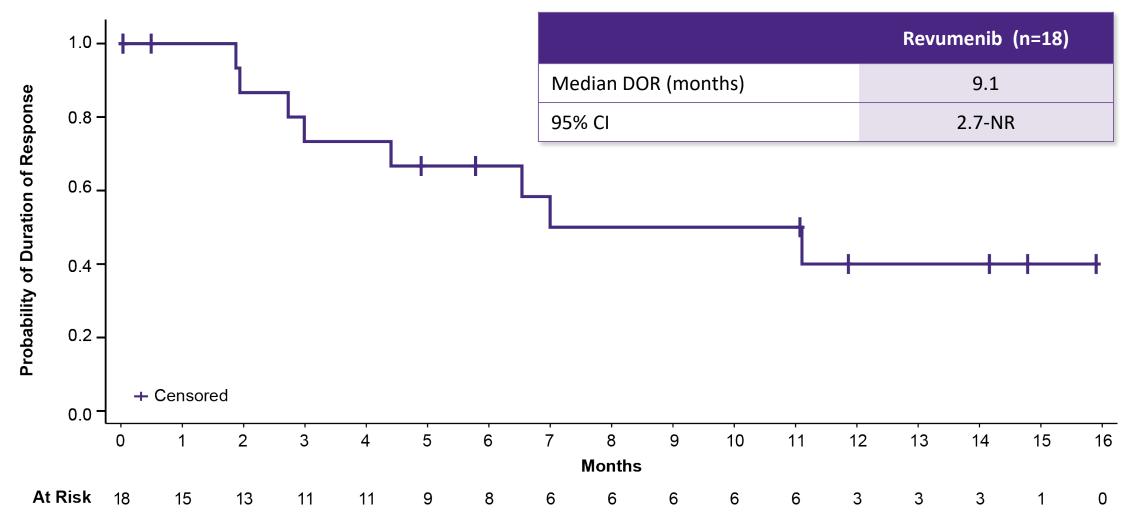
Data cutoff: 31 March 2022

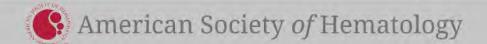

Overall Response Rate = CR + CRh + CRp + MLFS; †MRD status assessed locally by PCR or MCF

CR, complete remission; CRh, complete remission with partial hematologic recovery; CRp, complete remission with incomplete platelet recovery; MLFS, morphologic leukemia free state; MRD, measurable residual disease.

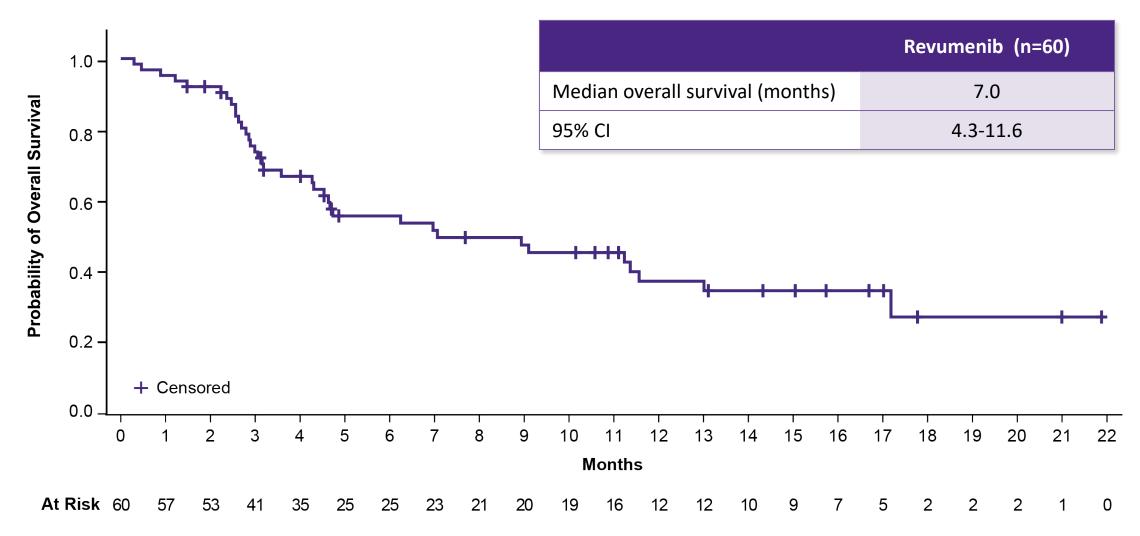


Duration of revumenib therapy in patients with *KMT2Ar* or *mNPM1*




^{*}Other reasons for treatment discontinuation included no response, relapse, death, and donor lymphocyte infusion.

Duration of CR/CRh response with revumenib treatment



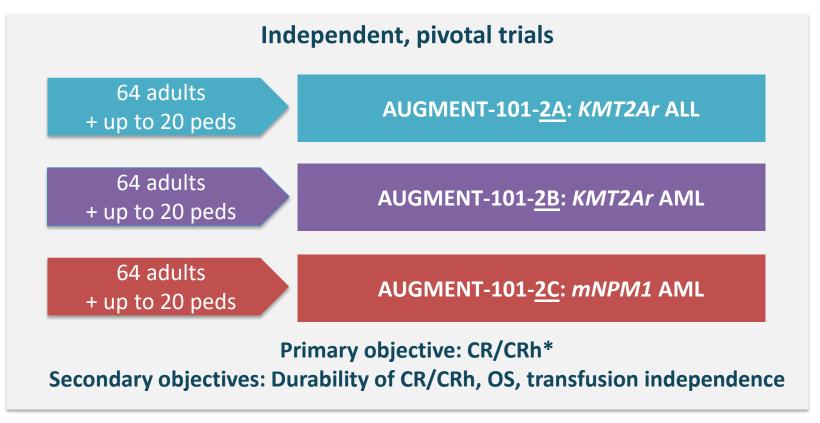
DOR, duration of response; NR, not reached.

Overall survival in revumenib treated patients with KMT2Ar or mNPM1

Conclusions

- Revumenib resulted in deep, durable responses in heavily pre-treated R/R KMT2Ar and mNPM1 patients, and demonstrated a clinically manageable safety profile
- 30% of patients attained CR/CRh with a median duration of 9.1 months
 - 78% of patients with CR/CRh attained MRD negativity
- 38% of responders proceeded to transplant
- Median OS was 7 months in this R/R population
- The only DLT, and the only common (≥5%) ≥Grade 3 related TEAE, was asymptomatic Grade 3
 QTc prolongation
 - 10% in patients treated at doses meeting criteria for RP2D; 13% in patients treated at all doses tested
- Differentiation syndrome occurred in 16% of patients
 - All cases were Grade 2 and responded to management with steroids with or without hydroxyurea

AUGMENT-101 Phase 2 pivotal trials underway in 3 distinct patient populations

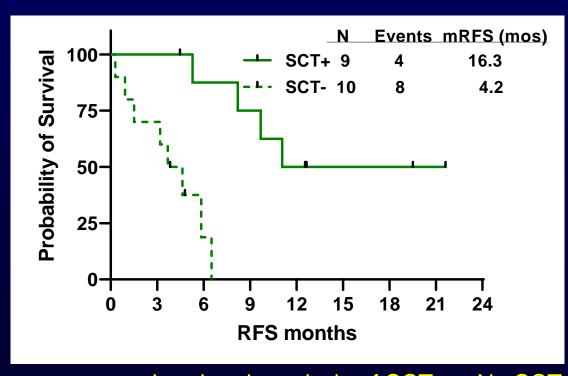

AUGMENT-101

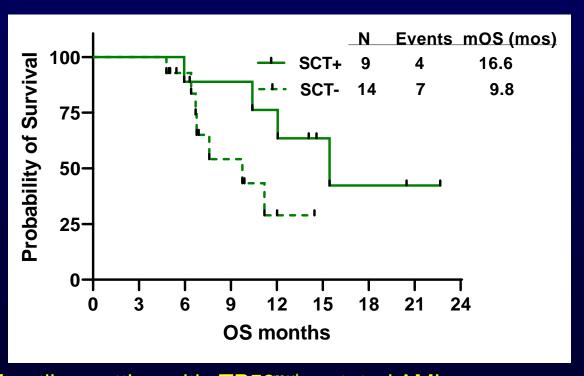
R/R
KMT2Ar (MLLr)
or mNPM1
acute leukemia

Dose:

Revumenib 163 mg q12h with a strong CYP3A4 inhibitor

^{*}Patients taken to HSCT can restart treatment with revumenib post-transplant.




Thank you!!!

Questions? email: lachowiez@ohsu.edu

Results: Impact of SCT in the frontline setting in *TP53*^{mut} patients

No. of <i>TP53</i> ^{mut} patients transplanted	9 (8 denovo+ 1 secondary untreated)
Age of the SCT patients	64 years (range, 46-69 years)
Median time to SCT from trial therapy initiation	4.3 months (range, 2.6-5.8 months)
Median cycles on therapy to SCT	3 (range, 2-4 cycles)
Disease status at SCT *	CR=7; CRi=2; MRD-ve=5

Landmark analysis of SCT vs. No SCT in frontline setting with TP53^{mut} mutated AML