Medications for Acute Agitation in Traumatic Brain Injury (TBI)

Ethan Beckley MD

Assistant Professor of Psychiatry Oregon Health & Science University

Disclosures etc.

- · No financial interests
- This talk does discuss "off label" use of medications
 - Not FDA approved for TBI
 - Please be aware
- Comments to: beckleye@ohsu.edu
 - Corrections, additions, questions, suggestions, etc.

Objectives

- Describe approaches to medication for TBI agitation including selection, dosing, and timing
- Identify evidence-based medications useful in TBI agitation
- Describe limitations of current evidence in TBI agitation and approach to medications while we wait for better evidence

Reading list

 Williamson et al. (2019).
 "Pharmacological interventions for agitated behaviours in patients with traumatic brain injury: A systematic review." BMJ Open 9:e029604

https://pubmed.ncbi.nlm.nih.gov/collections/62098110/?sort=pubdate

shortened URL: https://bit.ly/3CujXsA

Phases of TBI neuropsychiatric symptoms

- Acute
 - Agitation, altered consciousness
- Subacute
 - Cognitive impairment
- Chronic
 - Mood, anxiety, irritability, apathy, concentration

Agitation

- Often the biggest problem for the hospital
 - · Patient injuries
 - Staff injuries
 - Staff morale, fatigue, attrition
 - Preventing other needed care and recovery
 - Preventing discharge
- Challenges
 - Catch-all term
 - One strategy: Standardized scales

Riker Agitation Scale

	RASS (R	ichmond Agitation Sedation Scale)
4	Combative	Overtly combative, violent, immediate danger to staff
3	Very agitated	Pulls or removes tubes or catheters; aggressive
2	Agitated	Frequent non-purposeful mvmt, fights ventilator
1	Restless	Anxious but movements not aggressive or vigorous
0		Alert and calm
-1	Drowsy	Sustained awakening to voice (≥10sec)
-2	Light sedation	Briefly awakens with eye contact to voice (<10 sec)
-3	Moderate sedation	Movement or eye opening to voice but no eye contact
-4	Deep sedation	No response to voice but movement or eye opening to physical stimulation
-5	Cannot be aroused	No response to voice or physical stimulation

Scores	State	Behavior
7	Dangerous agitation	Trying to remove catheters, climbing over bedrail, thrashing side to side, or striking at staff
6	Very agitated	Requiring restraint and frequent verbal reminding of limits
5	Agitated	Anxious or physically agitated and calms to verbal instructions
4	Calm cooperative	Calm, easily arousable, and follows commands
3	Sedated	Difficult to arouse but awakens to verbal stimuli or gentle shaking, and follows simple commands
2	Very sedated	Arouse to physical stimuli but does not communicate or follow commands
1	Unarousable	Minimal or no response to noxious stimuli, and does not communicate or follow commands

Initial medication plan for agitation: A psychiatrist's perspective

- · Initial recommendations are rarely final
 - Attempt to treat the patient
 - · Gather data about what's working, revise as needed
 - (Only works if the data are collected!)
- Initial recommendations rarely will work in the first day
 - Even if it ends up working later
 - · Chance of success goes down if too many changes too quickly
- Initial recommendations rarely involve highest doses
 - Off label meds, serious side effects, black box warnings good reasons to start low!
 - · Trying and failing low doses helps justify higher doses

Approach to medication administration

- Scientific approach
 - Hypothesis
 - · Characterize the problem behavior (refer back: standardized scales)
 - Attempt an intervention
 - Assess and document response at rational intervals
 - · Review data, revise hypothesis, repeat cycle
- Use as-needed "PRN" medication
 - · Establish personalized dose range
 - Identify patterns of agitation
- Identify "what works" vs. doesn't
- · Use scheduled medications
 - · Get ahead of agitation
 - · Dose and timing informed by prior PRN pattern
 - Ongoing adjustment of schedule based on PRN use

Approach to dose and timing

- Low, frequent, early doses
 - · Better outcomes
 - · Lower total doses, fewer side effects
- Strategies compared:
 - Strategy A: haloperidol 10 mg every 8 hours as needed for severe agitation
 - Strategy B: haloperidol 2 mg every 1 hour as needed for mild agitation
 - Most often: "Strategy B" will result in lower total doses, and less agitation
- Higher rescue doses
 - · Sometimes necessary
 - Still try to go back to low, frequent, early doses when feasible

Example case

- Patient with TBI, confused, exiting unit, psychiatry consulted
- Day 1:
 - Rec: haloperidol 1 mg IV twice daily, 5 mg IV every 4 hours as needed
 - That day: receives both scheduled doses, plus 5 mg IV x1 with good effect at 30 minutes
 - · Analysis: needs more scheduled haloperidol
- Day 2:
 - Rec: haloperidol 1 mg IV three times daily, 5 mg IV every 4 hours as needed
 - That day: receives all three scheduled doses, no additional dose
- Analysis: patient can be successful on 3 mg total, but keep PRN available
- Take-home points
 - · Initial recommendations are rarely final recommendations
 - · Use PRNs to guide scheduled doses
 - · Use small, frequent doses to get ahead of agitation
 - Use rescue doses if needed

Medications used in acute TBI: What's even on the table?

- Naturalistic observation of inpatient rehabilitation:
 - 2,130 TBI patients age ≥14 years in inpatient rehabilitation
 - · 8,726 medication orders
 - · Mean length of stay 27 days
 - Average patient = 4.067 medications per admission
 - Average patient = 1.062 medications per week
 - Specific medications
 - 88 distinct psycho/neuro-active medications
 - >100 orders for trazodone, opioids, zolpidem, lorazepam, levetiracetam, amantadine, quetiapine, valproic acid, phenytoin, gabapentin, bromocriptine, donepezil, buspirone, risperidone, modafinil
- Conclusion: Everything has been tried!

Hammond et al. (2015). Psychotropic medication use during inpatient rehabilitation for traumatic brain injury. Archives of Physical Medicine & Rehabilitation, 96(8 Suppl), S256-S27:

Philosophies in medication selection

- "Whatever works" liberal approach
 - Pro: Possible jackpot, patient gets better
 - Con: Possible landmine, patient gets worse
- "Experienced based" moderate approach
 - Pro: Experience may count, help patients despite evidence lack
 - Con: Susceptible to bias
- "Evidence based" conservative approach
 - · Pro: Evidence based, theoretically only use proven medications
 - Con: Evidence may not exist, miss out on helpful medications
- · Unifying theme: Buy time while the brain heals
 - Primary treatment is time and rehabilitation

"Whatever works" liberal approach

- In general, recommend against this approach
 - Ketamine, benzodiazepines, propofol, opioids, dronabinol—all likely to be one step forward, two steps back
- May be appropriate in rare cases when top priority is immobilization
 - May be acceptable when there is an underlying problem that needs time
- May be appropriate in end-of-life/palliative care situations
 - · Surrogate decision maker in agreement
 - Comfort > restoration of function

The Williamson systematic review: Evidence-based medications for agitated behaviors

- High quality systematic review
 - Selected for inclusion in the ABPN ABCC Program (article based continuous certification program) in psychiatry
- Studies must have had >50% of patients with TBI
 - · Some prior systematic reviews less strict with inclusion

The Williamson systematic review: Propranolol

- Drug facts:
 - Name: Propranolol (Inderal, others)
 - Presumed mechanism of action: Nonselective β-blocker
 - · Approved uses include: Hypertension, migraine, essential tremor
- Williamson et al. findings
 - Take-home: May be beneficial
 - Pros: Reduction in intensity of agitation episodes, use of physical restraints
 - Cons: No reduction in frequency of agitation episodes

Williamson et al. (2019). Pharmacological interventions for agitated behaviours in patients with a traumatic brain injury: A systematic review. BMJ Open, 9, e029604.

The Williamson systematic review: Amantadine

- Drug facts:
 - · Name: Amantadine (Symmetrel, others)
 - Presumed mechanism of action: Weak NMDA antagonist
 - Approved uses include: Parkinsonism, drug-induced parkinsonism, (influenza)
- Williamson et al. findings
 - Take-home: Inconsistent findings
 - Pros: Possible reduction in irritability/aggression >6 months after TBI
 - Cons: Poor evidence for any benefit at <6 months after TBI, may increase ICU
 agitation episodes and length of stay, three studies found no difference in
 agitated behaviors compared to placebo

Williamson et al. (2019). Pharmacological interventions for agitated behaviours in patients with a traumatic brain injury: A systematic review. BMJ Open, 9, e029604.

The Williamson systematic review: Olanzapine

- Drug facts:
 - Name: Olanzapine (Zyprexa, Zydis, others)
 - Presumed mechanism of action: Dopamine type-2 receptor antagonist, others
 - · Approved uses include: Schizophrenia, bipolar disorder
- Williamson et al. findings
 - Take-home: May be beneficial
 - Pros: Reduction of irritability and insomnia at 1-3 weeks after TBI
 - Cons: No reduction in restlessness, not studied in ICU, inadequate statistical comparisons

Williamson et al. (2019). Pharmacological interventions for agitated behaviours in patients with a traumatic brain injury: A systematic review. *BMJ Open, 9,* e029604.

The Williamson systematic review: Divalproex

- Drug facts:
 - Name: Divalproex (Depakote, others)
 - · Presumed mechanism of action: Increase GABA?, sodium channel inhibitor?
 - Approved uses include: Bipolar disorder, absence seizure, migraine
- Williamson *et al.* findings
 - Take-home: May be beneficial
 - Pros: Significant reduction in agitated behaviors at eight weeks after TBI
 - · Cons: Studied in outpatient setting

The Williamson systematic review: Methylphenidate

- · Drug facts:
 - Name: Methylphenidate (Ritalin, others)
 - Presumed mechanism of action: Blocks norepinephrine, dopamine reuptake?
 - Approved uses include: Attention deficit/hyperactivity disorder, narcolepsy
- Williamson et al. findings
 - Take-home: Inconsistent findings
 - Pros: After 6 weeks patients had reduced anger scores on standardized scale (first study)
 - Cons: Long time to onset?, unclear benefit beyond anger as symptom (first study); no effect on irritability/aggression in a second study

Williamson et al. (2019). Pharmacological interventions for agitated behaviours in patients with a traumatic brain injury: A systematic review. BMJ Open, 9, e029604.

The Williamson systematic review: Sertraline

- Drug facts:
 - · Name: Sertraline (Zoloft)
 - Presumed mechanism of action: Selective serotonin reuptake inhibitor
 - Approved uses include: Major depressive disorder, panic disorder, others
- Williamson et al. findings
 - Take-home: May be harmful
 - · Pros: Not demonstrated
 - Cons: No effect on agitation, anger, or aggression in three studies, and possibly more restlessness/agitation in one study

Williamson et al. (2019). Pharmacological interventions for agitated behaviours in patients with a traumatic brain injury: A systematic review. BMJ Open, 9, e029604.

The Williamson systematic review: Amphetamine type stimulants

- Drug facts:
 - Name: Dextroamphetamine (Dexedrine), lisdexamfetamine (Vyvanse)
 - Presumed mechanism of action: Blocks norepinephrine, dopamine reuptake?
 - · Approved uses include: ADHD, narcolepsy, binge eating disorder
- Williamson et al. findings
 - Take-home: May be harmful
 - · Pros: Not demonstrated
 - Cons: Dextroamphetamine increased agitation

The Williamson systematic review: Summary

- May be helpful:
 - Propranolol, olanzapine, divalproex
- Inconsistent findings:
 - · Amantadine, methylphenidate
- May be harmful:
 - Sertraline, amphetamine-type stimulants

Williamson et al. (2019). Pharmacological interventions for agitated behaviours in patients with a traumatic brain injury: A systematic review. BMJ Open, 9, e029604.

The Williamson systematic review: Problems

- Studies evaluated
 - · Mostly sub-acute patients, likely milder injury
- Evidence limited for agitation among TBI patients, especially for:
 - Most acute timing
 - · Most severe injury
 - · Most serious agitation

"Experience based" moderate approach

The Williamson systematic review: Summary

- May be helpful:
 - Propranolol, olanzapine, divalproex
- Inconsistent findings:
 - Amantadine, methylphenidate
- May be harmful:
 - Sertraline, amphetamine-type stimulants

Williams et al. review

- May be helpful:
 - Propranolol, olanzapine, divalproex

By extrapolation

- May be helpful:
 - β -blockers, antipsychotics, some mood stabilizers... α_2 -agonists?

- Inconsistent findings:
 - Amantadine, methylphenidate
- May be harmful:
 - Sertraline, amphetamine-type stimulants
- May not be helpful:
 - Stimulants, antidepressants, cognitive enhancers

"Experience based" moderate approach

- Haloperidol
 - · PO, IM, IV routes
 - · Many decades of safe use
 - Few contraindications
 - · Not sedating
- Olanzapine
 - · PO and IM routes, ODT
 - · Helpful when sedation is required
- Risperidone
 - PO and ODT

- Quetiapine
 - · Gentle in older patients, low EPS
 - Relatively safe in Parkinson disorder
- Divalproex and other valproates
 - May be helpful with mood lability or impulsivity
 - Augmentation for patients refractory to antipsychotics
- Propranolol, clonidine, dexmedetomidine
 - · Emerging
 - · Some evidence, some roles

Objectives

- Describe approaches to medication for TBI agitation including selection, dosing, and timing
 - Liberal, moderate, and conservative approaches to selection have different trade-offs (risks vs. benefits)
 - Low, frequent, early doses usually more effective, fewer side effects
 - Use scheduled medications to get ahead of agitation with PRN medications to augment
 - Use scientific approach, define problem behavior, attempt intervention, assess and adjust as needed

Objectives

- Identify evidence-based medications useful in TBI agitation
 - Propranolol, olanzapine, and divalproex had the best evidence in a recent, high-quality systematic review
 - Cognitive enhancers and antidepressants were not well supported

Objectives

- Describe limitations of current evidence in TBI agitation and approach to medications while we wait for better evidence
 - · Relatively little research on TBI agitation
 - Existing research may be skewed toward sub-acute settings and milder injury
 - Haloperidol and other antipsychotic medications have extensive track record for safety and effectiveness, multiple routes of administration