Principles of limb immobilization: backcountry applications

19 AUGUST 2022 NICOLE KELLAN BEHNKE, MD ORTHOPAEDIC SURGERY

What are we going to cover?

- Stats and general info
- ▶ **Brief** discussion of triage and orthopaedic emergencies
- ► Terminology: Sprains/strains and fractures
- General principles of limb immobilization
- Upper extremity
 - Anatomy
 - Common injuries
 - ► Immobilization strategies
- Lower extremity
 - Anatomy
 - Common injuries
 - Immobilization strategies
- Supplies and improvisation

Me driving past any trail...

- Musculoskeletal injuries make up 70-80% of all injuries reported in wilderness settings.
- Lower extremity injuries are the most common: 70% of all MSK
 - >50% are the ankle
- Fatalities: spinopelvic injuries and head trauma
- ▶ Treatment decisions:
 - ► Experience of the group
 - ▶ Distance from definitive care
 - Safety of the group takes precedence

What are the goals?

- Address emergencies: anything life- and/or limb-threatening
 - Assess need to evacuate individual vs group
 - ▶ Do you need outside help?
- Ensure the safety of the group this takes precedence over optimal treatment of any individual
- Make the injured person as functional as possible
 - ► Facilitates self-rescue
 - ▶ Eliminates need for outside assistance until the group is safely back to the trailhead/basecamp/cars.
 - ▶ By necessity the care provided in the backcountry is TEMPORIZING.

Ortho emergencies: pulseless extremity

- Major joint dislocations
- Open Fractures
- ▶ LOOK:
 - Visible deformity
 - Open wounds
- **EXAMINE:**
 - ▶ The "5-Ps" →
 - Acute: pain, pulselessness,
 - Minutes: cool, possibly change in color, temp
 - ▶ Paresthesias / paralysis: minutes to very late

► TREAT:

- Reduce as best as possible
- Cover open wounds
- Splint extremity
- ► GET OUT

Ortho emergencies: open fracture

- "Compound" fractures
- Always look for open wounds
- You might not always see bone
 - Assume major open wounds over relatively subcutaneous bones are open (TIBIA TIBIA TIBIA.)
- Often dirty/contaminated
 - Addressing this in the field depends on time/distance to definitive care
- Fingertip (tuft) and Toe fractures have different rules.
- Open dislocations follow the same principles

Grade I: Wound is ≤1 cm Minimal contamination

Grade II
Wound is 1-10 cm
Moderate soft tissue injury
+/- contamination

Grade IIIA:
>10cm, high-energy
Extensive soft tissue damage
Contaminated
Local coverage vs closure possible

Grade IIIB Above, but requires a flap

Grade IIIC Vascular injury requiring repair Any wound

Ortho emergencies: open fracture

- ► TREAT:
 - Reduce as best as possible
 - ► Cover open wounds
 - ▶ Splint extremity
 - ► GET OUT

Ortho emergencies: major joint dislocations

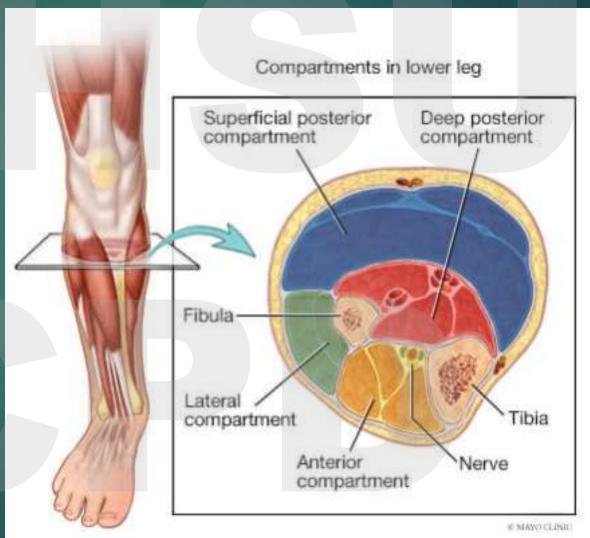
- Shoulder is the most common
- Knee can be a surgical emergency
- ▶ Hip fracture vs dislocation
- Ankles usually come with fractures
- Visible deformity
- Suspect if there's a block to motion
- Compare contralateral
- Are fingers a "major joint?"

Should I reduce it?

- Experience level?
- Distance from definitive care?
- ▶ Threat to limb?
- Associated injuries
- Splint the extremity regardless

Ortho emergencies: compartment syndrome

- "Extremity Claustrophobia"
- ▶ Fractures
- ▶ Envenomation
- Crush injury
- Major vascular injury (dislocations)
- Constricting bandages



Ortho emergencies: compartment syndrome

Compartment pressure exceeds perfusion pressure

Fascia doesn't stretch

Leg > forearm > hand> foot

- Diagnosis: The Ps again
 - ► PAIN OUT OF PROPORTION
 - ► PASSIVE MOTION PAIN

- ▶ Treatment:
 - Address open fractures/dislocations
 - ▶ Try to stop any bleeding
 - No tourniquet if no visible bleeding
 - ▶ Splint the extremity
 - ▶ GET OUT

The orthopod's vocabulary: soft tissue injury

SPRAIN

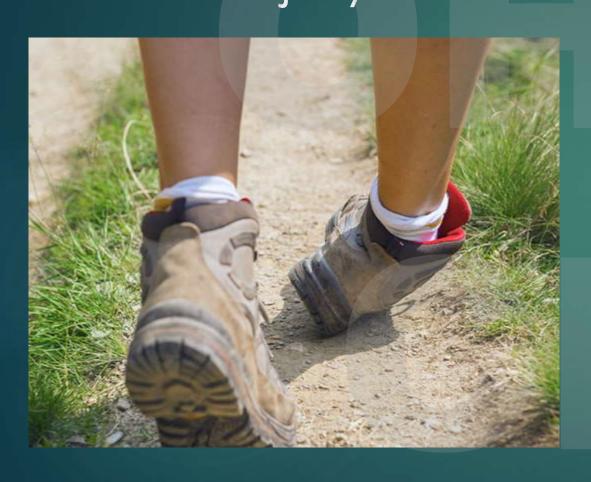
- Injury to a <u>ligamentous</u> structure, typically stabilizing a joint
- Ranges from stretching, to partial tearing to complete rupture
- Can destabilize a joint

STRAIN

- ▶ Injury to a <u>muscle</u> or <u>tendon</u>
- Ranges from stretching, to partial tearing, to complete rupture
- Can lead to loss of volitional control of part of a limb

For the purpose of backcountry care, you're going to treat sprains and strains the same: immobilization of the <u>injured structure alone</u>.

The orthopod's vocabulary: Is it a just a fracture, or is it broken?


fracture = any structural defect in the bone involving the integrity of the cortex – regardless of severity.

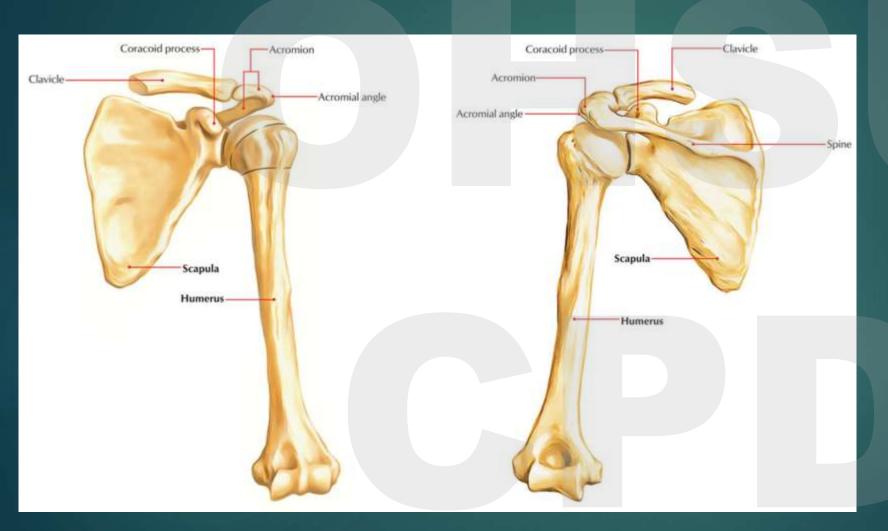
- If you want to break your consulting orthopaedist's heart, call them up and say you have a compound fracture you want them to see. If you want them to love you forever, call it an open fracture.
- Descriptive terms for fractures: displaced, angulated, impacted, comminuted
 - Useful in the clinical setting. Not so much in the backcountry

Basic immobilization principles: soft tissue injury

- If it's at a joint: immobilize the injured joint. Not critical to include joint above + joint below.
- Not at a joint: immobilization may not be needed. Assess on case-by-case basis.
 - When in doubt, first assess ability to bear weight
 - Can never go wrong with immobilization of the injured structure for pain control
- Evacuation depends on severity

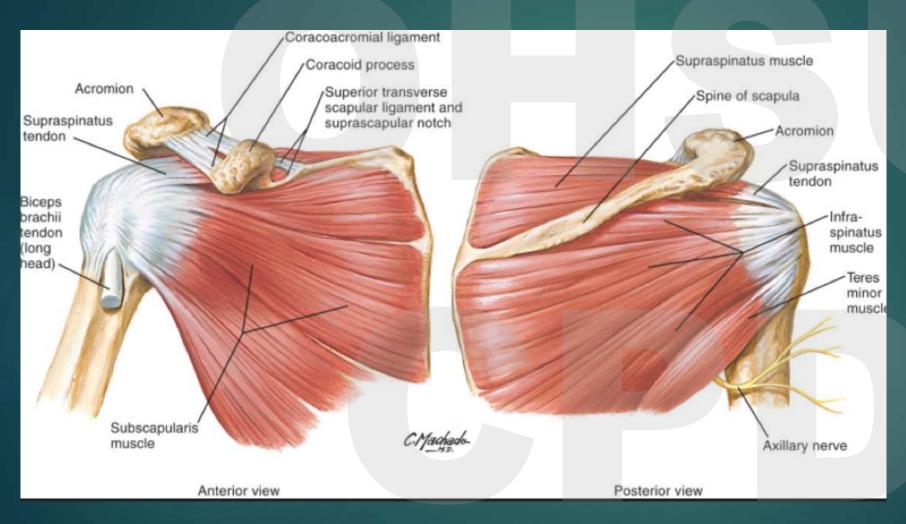
Basic immobilization principles: bony injuries

- Straighten out any deformity
 - Gentle, in-line traction
 - You're not going to make it worse
 - Patient tolerance dictates
 - Ok to immobilize still malreduced
- Injury at the level of a joint (i.e. ankle, wrist,) assess the movement / pain of the joint above and the joint below for decision-making
- ▶ If it's midshaft (tibia, forearm, humerus) → joint above + joint below


Upper extremity injuries

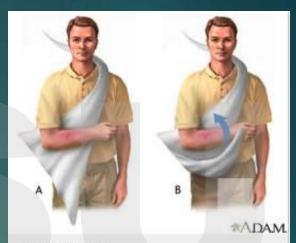
Where is the most common location of injury to the upper extremity?

The hand is the most commonly injured part of the upper extremity – includes lacerations, bites, burns, fractures and dislocations.



Upper extremity injuries: shoulder

- Fall on an outstretched arm
- Fall with a direct blow at the shoulder
- Traction injuries (climbing)


Upper extremity injuries: shoulder

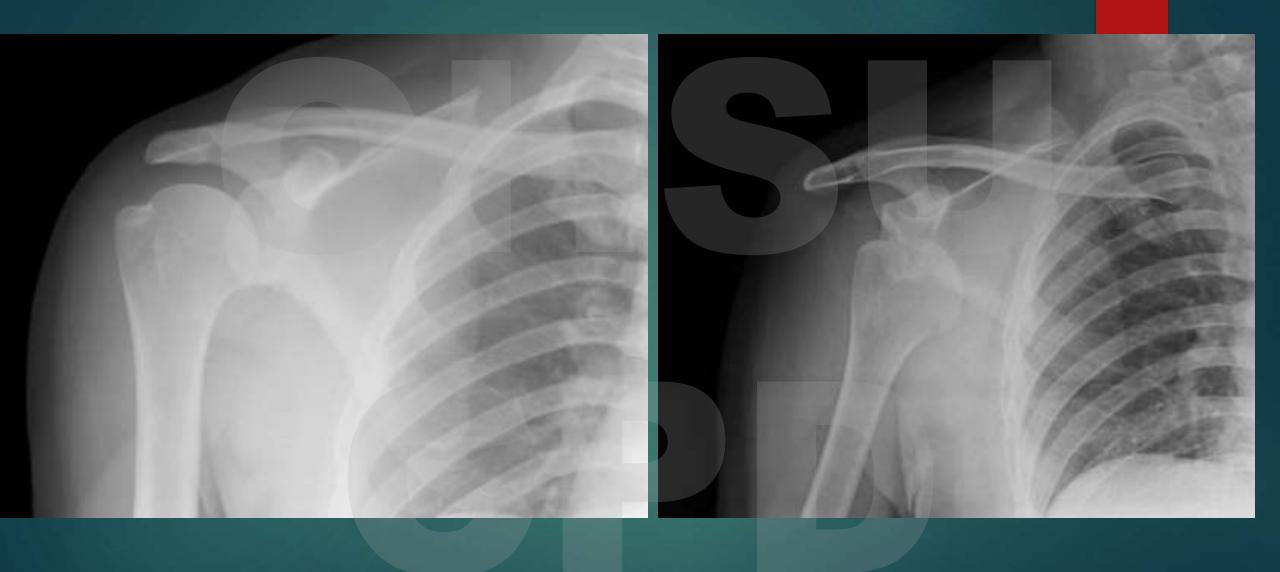
- Fall on an outstretched arm
- Fall with a direct blow at the shoulder
- Traction injuries (climbing)
- Shoulder sprain/strain does not need immobilization unless pain control is an issue

Shoulder girdle fractures

- Proximal humerus
- Scapula
- Clavicle
- ▶ These are often stable
 - Sling and swathe immobilization
 - keep wrist and hand freely mobile
- Make sure neurovascular (and cardiopulmonary) status is checked
 - Small chance of PTX with a clavicle fracture

Procedure, part 1

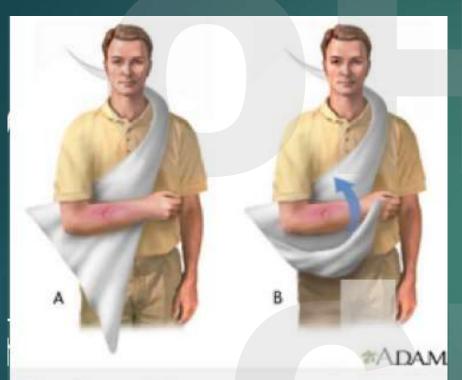
To create a sling and swathe, begin with a triangular cloth or bandage draped under one arm and over the opposite shoulder.


Procedure, part 2

Tie the two ends of the cloth behind the neck, as shown at left. Pin the remaining elbow corner up onto the body of the sling. Use another bandage, a belt, or a strap/webbing to secure the arm to the chest, as shown at right.

Upper extremity: shoulder dislocation

- The most commonly dislocated major joint
- Classified by directionality which direction the humeral head goes with respect to the glenoid
 - ▶ Anterior is the most common
- ► Fall, direct blow
- Immediate pain and inability to move the shoulder
- +/- visible deformity
 - "squaring" in an anterior dislocation



- Examine the whole extremity
 - Axillary nerve status
 - Consider fractures
- Your "moves" depend on directionality.
 - If you don't know any techniques, immobilize the shoulder in situ and evacuate
- ▶ Sling and Swathe

Shoulder/arm: sling and swathe

Procedure, part 1

To create a sling and swathe, begin with a triangular cloth or bandage draped under one arm and over the opposite shoulder.

Procedure, part 2

Tie the two ends of the cloth behind the neck, as shown at left. Pin the remaining elbow corner up onto the body of the sling. Use another bandage, a belt, or a strap/webbing to secure the arm to the chest, as shown at right.

Other upper extremity fractures

- Humeral shaft
 - Gentle in-line traction if angulated
 - ► CHECK NV STATUS radial nerve
 - Sling and swathe joint above and below
- Elbow dislocation
 - ▶ Can be difficult to reduce
 - ▶ Gentle elbow extension OK
 - Immobilize elbow and wrist, consider a sling
- Forearm and hand fractures
 - Deformities are common
 - ▶ Gentle in-line traction OK
 - ▶ Splint
 - joint above and joint below
 - bulk hand splint in position of function

Upper extremity splinting

Upper extremity splinting

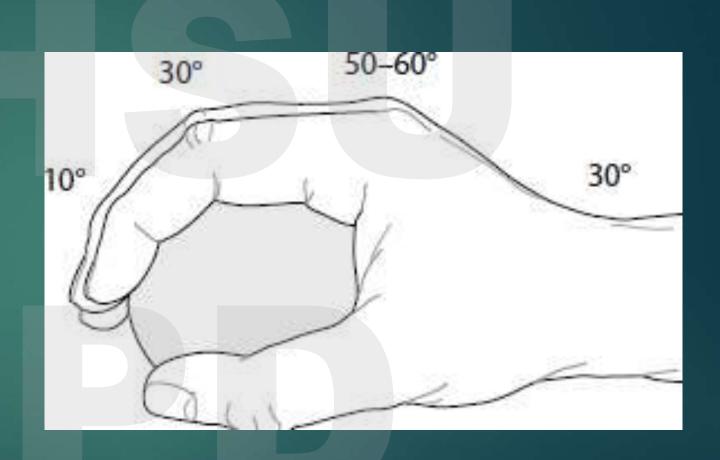
Elbow flexed

Include a sling or a posterior arm splint to immobilize the elbow

Rolled up socks, glove, other object in the palm: position of function

Make sure it isn't too tight

- check circulatory status
frequently


Upper extremity splinting: improvization

- Maps
- Backcountry permits
- Magazines
- Flip flops
- Shoe inserts/orthotics
- Towels
- Clothing
- Sticks
- Bras –
 straps/elastic/padding
- Get creative!

Hand specifics

- Finger dislocations are very common
- OK to reduce reverse the deformity
- Buddy taping is helpful
- Popsicle sticks, regular sticks, pencils/pens
- When in doubt immobilize the hand in the "position of function"
 - Least likely to cause harm for the widest variety of injury
 - Put the hand in this position and wrap it up

Lower extremity injuries

Above the knee

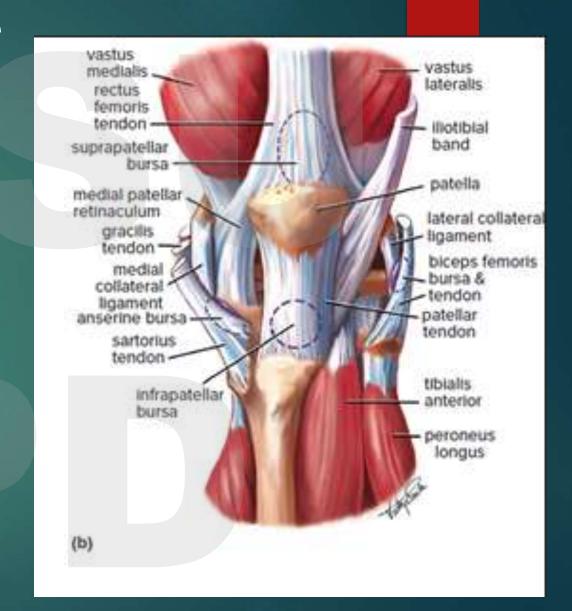
- Higher energy
- High likelihood of evacuation
- ▶ Hip / pelvis fracture
- ▶ Hip dislocation
- ▶ Femur fracture
- Not going to cover much on this most of these people will not be able to walk/self-evacuate in any capacity.

Knee and below

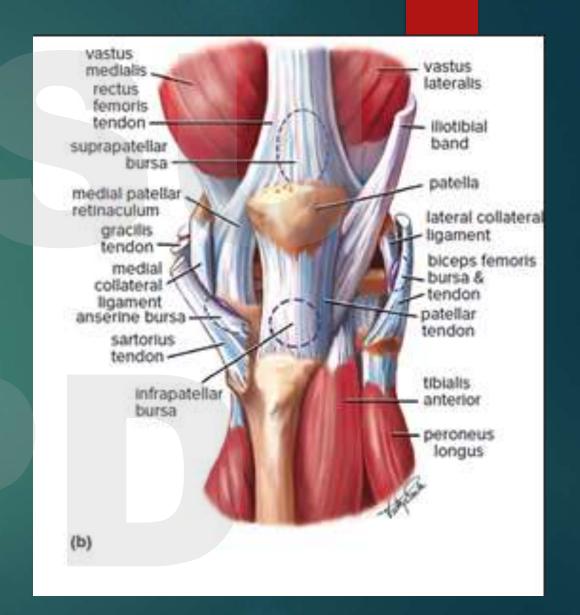
- Spectrum of severity
- Ankle sprains are #1
- Knee sprains (various ligamentous and meniscus injuries) #2
- Knee vs patellar dislocations
- Patellar injuries
- Tibia fractures
 - High energy
 - High risk of open fracture or compartment syndrome
- Foot and ankle fractures

Hip fractures and dislocations

- ▶ High energy injuries
- Unless you REALLY know what you're doing, don't try to reduce these
 - OK to pull gentle in-line traction to reduce gross deformity
 - Secure to contralateral leg (padding, tape, bandages) and carry vs. potentially crutch out – can't bear weight
- Evacuate


Femur fractures

- High energy mechanism make sure to look for other injuries
- Can't really "splint" the femur well, unless the fracture is close to the knee
- Padding and can secure to contralateral leg
 - ► The "BUFF" splint: Big, Ugly, Fat, Fluffy
- Evacuate: these need urgent surgery


Injuries about the knee

- ▶ 3 major categories
 - Soft tissue: patellar "tendon," quadriceps tendon, other ligamentous structures
 - Dislocation: patella versus tibiofemoral joint
 - Fracture: distal femur, proximal tibia, patella

Injuries about the knee

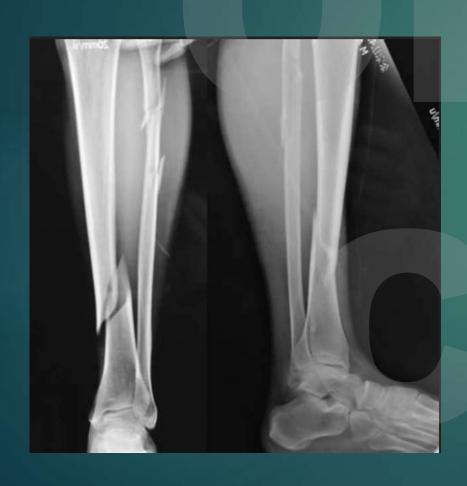
- Quad/patellar tendons
 - Forceful quadriceps contraction
 - ► Loss of extensor mechanism
 - ▶ BUFF splint, crutch it out
- Ligaments and meniscus
 - "pivoting," plant-and-twist, "bending" injuries
 - ▶ Not emergent, but painful.
 - ▶ BUFF splint, crutch it out
 - ► EXCEPTION: knee dislocation

Injuries about the knee: Dislocations

- ▶ A "knee" dislocation: tibiofemoral joint
 - Multiligamentous knee injury
 - ► At least 3: ACL/PCL/MCL/LCL
 - ▶ Highly unstable
 - High risk of vascular injury and associated fracture
 - OK to pull gentle in-line traction; also ok to leave in situ as long as there's a distal pulse. Keep checking
 - Emergency splint and get out

Injuries about the knee: Dislocations

- Patellar dislocation
 - ► Painful, typically stable
 - Usually easy to reduce
 - Pressure on the side of the patella sticking up
 - ► Gently flex the knee
 - ▶ OK to weight-bear, +/- evacuation



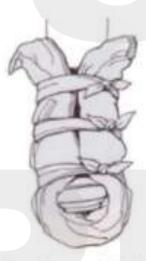
Knee fractures

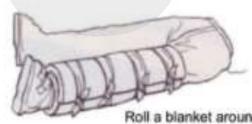
- Distal femur
- Proximal tibia
- Patella
- Gentle in-line traction if there is deformity
- ▶ BUFF splint and evacuate
 - With the exception of a clear patella fracture, you don't want these people trying to walk

Lower extremity: below the knee

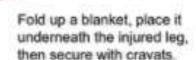
- Treatment and evacuation need depends on severity
 - ► Ankle sprains are the most common
 - ► All else: Primarily fractures. Tibia, fibula, bones of the feet
- Toes? What about toes?

A word on ankles


- Ankle sprains are the most common wilderness injury (blisters are second)
- Very wide spectrum of severity
 - "rolling" the ankle
 - Tibiotalar dislocation with multidirectional instability
- Swelling and bruising happen quickly
 - ▶ What do I do about the shoe?
- Typically the patient's ability to weightbear will dictate treatment
 - ACE wrap
 - ▶ BUFF splint


Universal / generalized splinting principles

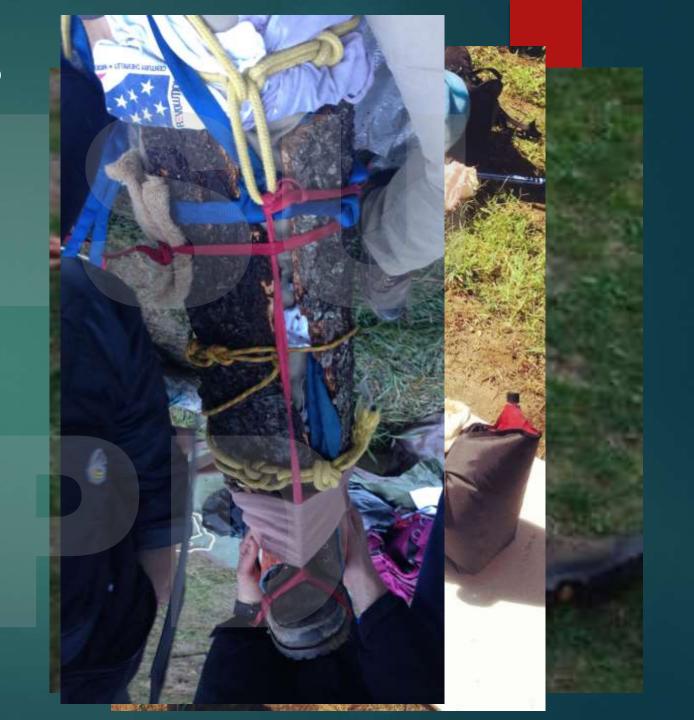
- Immobilize joint above/below: safest bet
- Neutral limb alignment whenever possible
- BUFF use what you have, padding>rigidity
- Neurovascular assessment before and after splinting – pay attention to changes in pain


Improvised Splints for Leg & Foot Injuries

For a foot or ankle injury, place a folded blanket around the bottom and sides of the foot and lower leg. Then secure it around the foot with cravats.

Roll a blanket around the injured leg, and secure it with cravats.

Wait, a BUFF splint?


BIG

UGLY

FAT

FLUFFY

Padding >> Rigidity

Lower extremity splinting: improvization

- Hiking poles
- Sticks
- Blankets
- Sleeping pads
- Tent poles
- Rain fly
- Tent footprint
- Jackets
- Sweatshirts
- Socks can be used to tie
- ▶ Bras straps, elastic, pads
- Ropes/straps/bungees

Use a strap around the shoulder to keep splint from falling down

Supplies and equipment: in an ideal world

- ACE wrap, SAM splint
- ▶ Gauze and kerlix varying sizes
- ► Trauma shears / sharp knife
- Antiseptic wipes and chlorhexidine scrub
- Heavy duty tape and medical tape
- Absorbent padding and bandages
- Drugs: NSAIDs, Acetaminophen, Benadryl, loperamide, llidocaine, sudafed
- Salt and glucose powders
- Disposable scalpel, basic suture kit
- Large-bore needle, syringe
- Gloves
- Blister pads
- SWAT-T tourniquet

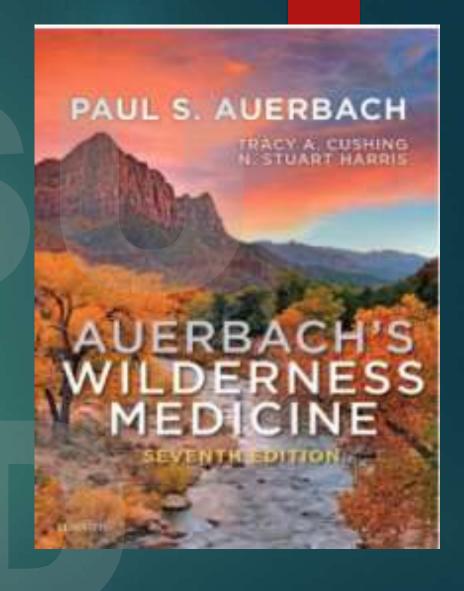
Wildernessmedical.com

Store.nols.edu

Adventuremedicalkits.com

Backcountry.com

Recommended References


- ▶ Wilderness Medicine. Auerbach PS, ed. 7th Edition
- Advanced Wilderness Life Support: the AWLS certification textbook
 - Various certification courses available
- Wilderness Medical Society: wms.org

ADVANCED WILDERNESS LIFE SUPPORT - AWLS-

COURSE OF STUDY ON WILDERNESS MEDICINE FOR MEDICAL PROFESSIONALS

https://www.backpacker.com/skills/how-to-build-a-backcountry-knee-splint/

Thanks!

Nicole Kellan Behnke, MD

nmbehnke@gmail.com

