Overview of scRNA-seq technology

scRNA-seq Technologies

- **Droplet**
 - 10X Chromium
 - DropSeq
 - InDrop
- **Well based**
 - sci-RNA-seq
 - SmartSeq
- **Nanowell**
 - SeqWell
- **Spatial*** (Not always single cell)
 - Nanostring
 - 10X Visium

Analysis Approaches & Tools

- **General scRNA-seq**
 - Seurat (R)
 - Monocle (R)
 - Scanpy (Python)
- **Many specialized tools**
 - Ligand & receptor interactions
 - Trajectory Inference (pseudotime)
 - Transcription Factor Enrichment
 - Geneset Enrichment

Slides prepared by Nick Calistri
Will focus on 10X + Seurat due to popularity

scRNA-seq Technologies

- Droplet
 - 10X Chromium
 - DropSeq
 - InDrop
- Well based
 - sci-RNA-seq
 - SmartSeq
- Nanowell
 - SeqWell
- Spatial* (Not always single cell)
 - Nanostring
 - 10X Visium

Analysis Approaches & Tools

- General scRNA-seq
 - Seurat (R)
- Many specialized tools
 - Ligand & receptor interactions
 - Trajectory Inference (pseudotime)
 - Transcription Factor Enrichment
 - Geneset Enrichment
10X Chromium scRNA-seq experimental design

- 5k-20k cells recovered per library
 - Typically want ~10x target as input

- 20k reads per cell

- 1-8 conditions/samples per experiment
 - >1 requires multiplexing

- ~$4000 cost with sequencing

Hwang et al.
Typical Seurat Workflow

- ~37,000 Features (genes)
- 2,000-5,000 Variable Features
- 10-50 PCs
- UMAP
- Clustering
- Differential Expression
Typical Seurat Workflow

- 37,000 Features (genes)
- 2,000-5,000 Variable Features
- n Cells
- 10-50 PCs
- Clustering
- UMAP
- Differential Expression

2700 cells
58 seconds elapsed time (standard desktop)

Disclaimer: Parameters should be optimized for the specific data set
Seurat default plots can quickly visualize results

UMAP

Heatmap

Violin Plot

```r
DimPlot(so, 
  label = TRUE, 
  label.size = 6) +
coord_equal()+
theme(legend.position = 'none')

goi <- c('CD3E', 'CCR7', 'CD4', 'CD8A', 'CD14', 'CD74')
DoHeatmap(so, 
  features = goi)

VlnPlot(so, 
  features = 'GZMB')
```
Additional computational methods

Integration

Liger

INMF approach for learning across:
- Sequencing technologies
- -omic modalities
- Cross species

Welch et al, cell 2019
Kriebel and Welch, Nat.comm 2022

Ligand & Receptor Interactions

NicheNet

Imputes ligand-receptor interactions by:
- Evaluating ligand and receptor expression
- Cross checking with PPI network and downstream DEG

Browaeys et al, Nat.Methods 2020

Trajectory Inference

DynVerse

Unified interface for TI:
- 50+ dockerized TI method
- GUI interface to help select appropriate algorithms/methods

Cannoodt, Saelens et al, Nat.Biotech 2019
Links and resources

• **General scRNA-seq:**
 • Seurat: https://satijalab.org/seurat/
 • Monocle: https://cole-trapnell-lab.github.io/monocle3/

• **Integration:**
 • Seurat: https://satijalab.org/seurat/articles/integration_introduction.html
 • Harmony: https://portals.broadinstitute.org/harmony/
 • Liger: https://github.com/welch-lab/liger

• **Interaction analysis:**
 • NicheNetR: https://github.com/saeyslab/nichenetr
 • Natmi: https://github.com/forrest-lab/NATMI
 • Remi: https://github.com/plevritis-lab/REMI

• **Trajectory Inference**
 • Monocle: https://cole-trapnell-lab.github.io/monocle3/docs/trajectories/
 • Velocyto: http://velocyto.org/
 • DynVerse: https://dynverse.org/