Chronic Lymphocytic Leukemia

Stephen E. Spurgeon MD

Associate Professor of Medicine

Lymphoma Program Director

Distinguished Scholar in Leukemia and Lymphoma Research

Knight Cancer Institute at Oregon Health & Science University

CLL-"Best" initial therapy

- Is watchful waiting still the best option?
- Any role for chemotherapy?
- MRD negativity as a treatment goal
- Ongoing Treatment with BTKi
 - Which BTKi?
 - In combination?
 - Does this really need to continue forever?
- Fixed duration therapy incorporating MRD

Watchful Waiting (worrying)

-original watchful waiting data based primarily on immediate treatment with chlorambucil

-Can we define a high risk subset that would benefit from earlier treatment

Defining High Risk Disease – CLL IPI

Characteristic	Points (10)
Age > 65	1
Rai Stage I-IV	1
B2M ≥ 3.5	2
IGHV UNmutated	2
17p deletion or p53 mutation	4

Low risk: 0-1 Intermediate Risk: 2-3 High Risk: 4-6 Very High Risk: 6-10

Lancet Oncology Volume 17, Issue 6, June 2016, Pages 779-790

Early treatment with FCR versus watch and wait in patients with stage Binet A high-risk chronic lymphocytic leukemia (CLL): a randomized phase 3 trial

High risk = ≥ 2 risk factors: Doubling time <12 months, serum thymidine kinase >10 U/L, unmutated IGHV genes, and unfavorable cytogenetics (del(11q)/del(17p)/trisomy 12).

Leukemia. 2020; 34(8): 2038–2050.

The CLL12 trial: ibrutinib vs placebo in treatmentnaïve, early-stage chronic lymphocytic leukemia

CLL-"Best" initial therapy

- Is watchful waiting still the best option? \rightarrow YES, unless on study
- Any role for chemotherapy?
- MRD negativity as a treatment goal
- Ongoing Treatment with BTKi
 - Which BTKi?
 - In combination?
 - Does this really need to continue forever?
- Fixed duration therapy

NCCN Guidelines Treatment-naïve CLL

All recommendations are category 2A unless otherwise indicated

First-line without del(17p)	First-line with			
Frail with significant comorbidities or ≥65 and younger with significant comorbidities	with significant comorbidities or ≥65 ounger with significant comorbidities comorbidities			
Ibrutinib (Catego	ory 1)	Ibrutinib		
Acalabrutinib <u>+</u> obinutuzun	Acalabrutinib <u>+</u> obinutuzumab			
Venetoclax + obinutuzuma	Venetoclax + obinutuzumab			
Other recommended regimens: Bendamustine + anti-CD20 mAb (not recommended for frail patients); chlorambucil + obinutuzumab; HDMP + rituximab (cat2B); ibrutinib + obinutuzumab (cat2B); obinutuzumab (cat2B); chlorambucil (cat3); rituximab (cat3)	Other recommended regimens: Bendamustine + anti-CD20 mAb; FCR (preferred for IGHV-mutated CLL); FR; HDMP + rituximab (cat2B); ibrutinib + rituximab (cat2B); PCR (cat3)	Other recommended regimens: alemtuzumab <u>+</u> rituximab; HDMP + rituximab; obinutuzumab; zanubrutinib (for pts with contraindication to other BTKi)		

Ibrutinib based Regimens

Study	Arms	Clinical Data	Notes
E1912 Trial (Ph III) (<70 years old + <u>no</u> del17p) N=529	• Ibrutinib /ritux • FCR	36 mo PFS: 89% vs 73% 36 mo OS: 99% vs 92%	 Ibrutinib/ritux superior to FCR Outcomes independent of high-risk features (except IGHV-mutated)
A041202 (Ph III) (≥65 years old, <u>including</u> del17p) N=547	 Ibrutinib Ibrutinib/ritux BR 	24 mo PFS: 87% vs 88% vs 74% (I vs IR vs BR) I vs BR (HR: 0.39); I vs IR (HR: 1.00) IR vs BR (HR: 0.38) 24 mo OS: 90% vs 94% vs 95% (I vs IR vs BR)	 Ibrutinib and ibrutinib/ritux PFS are superior to BR [regardless of high-risk features (except ZAP70)]; no significant difference with ibrutinib vs ibrutinib/ritux No statistically significant difference in OS

BTKi have largely supplanted chemotherapy

Woyach JA, et al. N Engl J Med. 2018; Shanafelt TD, et al. N Engl J Med. 2019; Moreno C, et al. Lancet Oncol. 2019; Tam CS, et al. Hematologica. 2020.

642 Ibrutinib Plus Rituximab Is Superior to FCR in Previously Untreated CLL: Results of the Phase III NCRI FLAIR Trial

N = 771 Median age = 62 FCR vs. IR Follow up = 57 months

•The PFS significantly better for IR in patients with IGHV unmutated CLL (HR: 0.41; p<0.001), but not for patients with IGHV mutated CLL

No OS difference

-8 vs. 2 cardiac/sudden deaths in ibrutinib arm (7 of 8 hx of HTN)

-6 cases (1.6%) of MDS/AML in FCR (1 in IR)

-Significantly improved OS compared to prior FCR studies

Low-burden TP53 mutations in CLL: clinical impact and clonal evolution within the context of different treatment options

•Genomic complexity associated with inferior survival

•Clonal and subclonal TP53 and clonal NOTCH1 mutations predicted for shorter overall survival together with the IGHV mutational status.

• May occur in chemotherapy treated patients and Untreated patients

CLL-"Best" initial therapy

- Is watchful waiting still the best option? \rightarrow YES, unless on study
- Any role for chemotherapy? \rightarrow not really....
- Ongoing Treatment with BTKi
 - Which BTKi?
 - In combination?
 - Does this really need to continue forever?
- MRD negativity as a treatment goal
- Fixed duration therapy

Ibrutinib Monotherapy in TN CLL Phase III, RESONATE-2 Trial

≥65 years old; excluded del17p; N=269

Burger JA, et al. Leukemia. 2020.

Acalabrutinib Monotherapy and Combination *Phase III, ELEVATE-TN Trial*

2636 Sudden or Cardiac Deaths on Ibrutinib-Based Therapy Were Associated with a Prior History of Hypertension or Cardiac Disease and the Use of ACE-Inhibitors at Study Entry: Analysis from the Phase III NCRI FLAIR Trial

Table 1: Contingency tables of sudden or cardiac death, hypertension or prior history of cardiac disorder and baseline ACE inhibitor-use in treated patients in the FLAIR trial.

FCR arm		Suc	lden or card	iac death	IR arm		Sudden or cardiac death			
		No	Yes	Total			No	Yes	Total	
Hypertension or prior history of cardiac	No	291	2	293	Hypertension or prior history of cardiac	No	290	1	291	.39
lisorder (on treatment at trial entry)	Yes	85	0	85	disorder (on treatment at trial entry)	Yes	86	7	93	7.59
	Total	376	2	378	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Total	376	8	384	
		Relativ Fisher's	e Risk NE* Exact P NE*	ŝ			Relative Risk 23 Fisher's Ex	.6, 95%CI (act P = 0.00	2.9-490) 003	
		No	Yes	Total			No	Yes	Total	
	No	339	2	341		No	336	1	337	
ACE inhibitor	Yes	37	0	37	ACE inhibitor	Yes	40	7	47	15
	Total	376	2	378		Total	376	8	384	
		Relativ Fisher's	e Risk NE* Exact P NE*	5 5			Relative Risk 50 Fisher's Ex	.2, 95%CI (act P < 0.0	6.3-399) 001	

In the IR arm, none of the 46 pts receiving cardiac medication but not ACEi had a sudden or cardiac death suggesting that the risk was not simply a prior history of HT or cardiac disorder.

BTK Inhibitor Toxicity Differs Based on TKI Selectivity

All Grades

1	_	Ibru	Acala	Zanu
	Anemia	27	14	22
	Neutropenia	23	10.6	53
	Thrombocytopenia		7.3	32
	Infection	83	79.4	75.8
	Diarrhea	53	34.6	23.8
	Fatigue	36	18.4	1
Upper r	espiratory infection	29	18.4	39
	Arthralgia	22	15.6	17.4
	Pneumonia	18	7.3	25
	Hypertension	21	6.7	15.4
≥40	Headache	17	36.9	1
≥30	Atrial fibrillation	11	3.9	1
≥20	Rash	35	14	36
210	Bleeding/Bruising	55	39.1	28.4
Median	treatment exposure	29mon	27.7mon	6mon
	Numbers	330	179	118
	Patients	CLL/SLL	CLL/SLL	MCL

Grades 3–5

В	Ibru	Acala	Zanu
Anemia	7	6.7	8
Neutropenia	18	9.5	15
Thrombocytopenia	6	2.8	5
Infection	31	14	10.8
Diarrhea	5	0.6	0.8
Fatigue	3	1.1	/
Upper respiratory infection	1	0	0
Arthralgia	2	0.6	3.4
Pneumonia	12	2.2	10
Hypertension	7	2.2	3.4
Headache	2	1.1	1
≥ 10 Atrial fibrillation	5	0	1
27.5 >5 Rash	3	0.6	0
≥2.5 Bleeding/Bruising	6	1.7	3.4
Iedian treatment exposure	29mon	27.7mon	6mon
Numbers	330	179	118

Patients CLL/SLL CLL/SLL

FDA Prescribing

MCL

ELEVATE-RR: Phase 3 Randomized Non-inferiority Open-Label Trial^{1,2}

Patients (N=533) Key Inclusion Criteria

- Adults with previously treated CLL requiring therapy (iwCLL 2008 criteria¹)
- Presence of del(17p) or del(11q)^a
- ECOG PS of ≤2

Stratification

- del(17p) status (yes or no)
- ECOG PS (2 vs ≤1)
- No. prior therapies $(1-3 \text{ vs } \ge 4)$

Key exclusion criteria: Significant CV disease; concomitant treatment with warfarin or equivalent vitamin K antagonist; prior treatment with ibrutinib, a BCR inhibitor, (eg, BTK, PI3K, or Syk inhibitors) or a BCL-2 inhibitor (eg, venetoclax)

1. Hallek M, et al. *Blood*. 2008;111:5446-56. 2. Byrd JC, et al. Presented at ASCO Virtual Annual Meeting; June 4-8,2021.

NCT02477696 (ACE-CL-006). ^aBy central laboratory testing. ^bContinued until disease progression or unacceptable toxicity. ^cConducted after enrollment completion and accrual of ≈250 IRC-assessed PFS events. Afib, atrial fibrillation; BCL-2, B-cell leukemia/lymphoma-2; BCR, B-cell receptor; BID, twice daily; BTK, Bruton tyrosine kinase; CLL, chronic lymphocytic leukemia; CV, cardiovascular; del, deletion; ECOG PS, Eastern Cooperative Oncology Group performance status; IRC, independent review committee; iwCLL, International Workshop on CLL; PFS, progression-free survival; PI3K, phosphatidylinositol 3-kinase; PO, orally; QD, once daily; Syk, spleen tyrosine kinase.

Primary Endpoint: Noninferiority Met on IRC-Assessed PFS

Median follow-up: 40.9 months (range, 0.0-59.1)

CI, confidence interval; IRC, independent review committee; PFS, progression-free survival. Byrd JC, et al. Presented at ASCO Virtual Annual Meeting; June 4-8, 2021.

IRC-Assessed PFS in Patients With del(17p) or del(11q)

Cl, confidence interval; del, deletion; IRC, independent review committee; PFS, progression-free survival. Byrd JC, et al. *J Clin Oncol*. 2021;39(31):3441-3452.

Secondary Endpoints

ITT population	Acalabrutinib (n=266)	Ibrutinib (n=263)	Difference in TEAE incidence rates [acalabrutinib minus ibrutinib], %	<i>P</i> value ^b
Atrial fibrillation/flutter, all Grades, n (%)	25 (9.4)	42 (16.0)	-6.6	0.0228
95% Cl ^a	(6.4-13.5)	(12.0-20.9)	(-12.20.9)	
Infections, Grade ≥3, n (%)	82 (30.8)	79 (30.0)	+0.8	0.8777
95% Cl ^a	(25.6-36.6)	(24.8-35.8)	(-7.1-8.6)	
Richter's transformation, n (%)	10 (3.8)	13 (4.9)	-1.2	0.5131
95% Cl ^a	(2.1- 6.8)	(2.9- 8.3)	(-4.7-2.3)	

≥5% difference between arms are highlighted; green favors acalabrutinib, red favors ibrutinib.
 ^a95% CI based on Normal approximation (with use of Wilson's score).
 ^bBased on Cochran-Mantel-Haenzel test stratified by del(17p) status (yes vs no) and number of prior therapies (1 to 3 vs ≥4).

BTKi, Bruton tyrosine kinase inhibitor; CI, confidence interval; del, deletion; ITT, intention to treat; TEAE, treatment-emergent adverse event.

Events of Clinical Interest

	Any Gi	rade	Grade	e≥3
Events, n (%)	Acalabrutinib (n=266)	lbrutinib (n=263)	Acalabrutinib (n=266)	lbrutinib (n=263)
Cardiac events	64 (24.1)	79 (30.0)	23 (8.6)	25 (9.5)
Atrial fibrillation ^{a,f}	25 (9.4)	42 (16.0)	13 (4.9)	10 (3.8)
Ventricular arrhythmias ^b	0	3 (1.1)	0	1 (0.4)
Bleeding events ^f	101 (38.0)	135 (51.3)	10 (3.8)	12 (4.6)
Major bleeding events ^c	12 (4.5)	14 (5.3)	10 (3.8)	12 (4.6)
Hypertension ^{d, f}	25 (9.4)	61 (23.2)	11 (4.1)	24 (9.1)
Infections ^e	208 (78.2)	214 (81.4)	82 (30.8)	79 (30.0)
ILD/pneumonitis ^f	7 (2.6)	17 (6.5)	1 (0.4)	2 (0.8)
SPMs excluding NMSC	24 (9.0)	20 (7.6)	16 (6.0)	14 (5.3)

All Grade cardiac arrhythmias of unspecified origin were reported including tachycardia (2.6%), arrhythmia (0.8%) and extrasystoles (0.8%) for acalabrutinib; tachycardia (2.7%), arrhythmia (0.8%), and extrasystoles (0.4%) for ibrutinib

Higher incidence indicated in **bold red** for terms with statistical differences.

 $\ensuremath{^{\mathrm{a}}}\xspace{\mathrm{Includes}}$ events with preferred terms atrial fibrillation and atrial flutter.

^bIncludes events with preferred terms: ventricular arrhythmia, ventricular extrasystoles, and ventricular fibrillation.

^cDefined as any hemorrhagic event that was serious, Grade ≥3 in severity, or a central nervous system hemorrhage (any severity grade).

^dIncluded events with the preferred terms of hypertension, blood pressure increased, and blood pressure systolic increased.

^eMost common Grade ≥3 infections were pneumonia (acalabrutinib, 10.5%; ibrutinib, 8.7%), sepsis (1.5% vs 2.7%, respectively), and UTI (1.1% vs 2.3%).

^fTwo-sided *P* value for event comparisons <0.05 without multiplicity adjustment.

ILD, interstitial lung disease; NMSC, nonmelanoma skin cancer; SPM, second primary malignancy; UTI, urinary tract infection.

Byrd JC, et al. J Clin Oncol. 2021;39(31):3441-3452.

Cumulative Incidence and Summary of Atrial Fibrillation/Flutter of Any Grade

Acalabrutinib (N=266) HR=0.52 (95% CI: 0.32-0.86) Ibrutinib (N=263) Cumulative event rate (%) + Censored Ω З 54 57 Months Number at risk Acalabrutinib 266 183 172 Ibrutinib 263 241 185 176 143 136

n (%)	Acalabrutinib (n=266)	lbrutinib (n=263)
Afib/flutter	25 (9.4) ^{a,c}	42 (16.0) ^a
Events/100 person-months	0.366	0.721
Time to onset, median (range), months	28.8 (0.4-52.0)	16.0 (0.5-48.3)
Leading to treatment discontinuation ^b	0	7 (16.7)
Subgroup analysis		
Patients without prior history of afib/flutter	15/243 (6.2)	37/249 (14.9)
Afib/flutter events at 24 months, %	4.5	10.3

Atrial Fibrillation

aGrade ≥3 afib/flutter was reported in 13 (4.9%) in the CALQUENCE arm vs 10 (3.8%) in the ibrutinib arm.
bAmong patients with events of afib/flutter.
cDifference in Any Grade incidence rates: -6.6% (95% CI: -12.2 to -0.9); *P*=0.02.
Afib, atrial fibrillation; CI, confidence interval; HR, hazard ratio.
Byrd JC, et al. *J Clin Oncol.* 2021;39(31):3441-3452.

Cumulative Incidence of Cardiac Events

Any Grade Cardiac Event^a

^aCardiac events include cardiac arrhythmias, cardiac disorders, signs and symptoms not elsewhere classifiable, coronary artery disorders, heart failures, pericardial disorders, cardiac valve disorders, and myocardial disorders. CI, confidence interval; HR, hazard ratio.

Byrd JC, et al. J Clin Oncol. 2021;39(31):3441-3452.

Cumulative Incidence and Summary of HTN

	Acalabruti	nib (n=266)	Ibrutinib (n=263)		
Events	Any Grade	Grade ≥3	Any Grade	Grade ≥3	
HTN events ^a	25 (9.4)	11 (4.1)	61 (23.2)	24 (9.1)	
Events/100 person-months	0.444	0.133	1.243	0.435	
Patients with a history of HTN	16 (64.0)	9 (81.8)	30 (49.2)	16 (66.7)	

Percentages are based on the number of patients with the event.

^aIncludes events with the preferred terms of hypertension, blood pressure increased, and blood pressure systolic increased. CI, confidence interval; HR, hazard ratio; HTN, hypertension.

Byrd JC, et al. J Clin Oncol. 2021;39(31):3441-3452.

Blood (2021) 138 (Supplement 1): 3721

Zanubrutinib on the way

Final Response Analysis of ALPINE Trial Shows Superior ORR With Zanubrutinib Vs Ibrutinib in CLL

April 11, 2022 Kristi Rosa

	ORR	12 month PFS	Afib/aflutter	discontinuation
Zanubrutinib	80.4%	94.9%	4.6%	13%
Ibrutinib	72.9%	84%	12.0%	17.6%

Median f/u 24 months

Phase 3 Alpine study in R/R CLL, n = 415, median age 67

Blood (2019) 133 (22): 2452-2455.

Figure 1. Swimmers plot of patients enrolled

This figure provides a snapshot of all patients enrolled in the study that received medication. Each bar represents one subject in the study. Patients started treatment at time point zero. First response assessment occurred eight months after initiation of therapy according to iWCLL 2018 guidelines.

Blood 2020 Suppl (1) 33-34

CLL-"Best" initial therapy

- Is watchful waiting still the best option? \rightarrow YES, unless on study
- Any role for chemotherapy? \rightarrow not really....
- Ongoing Treatment with single agent BTKi
 - Which BTKi? \rightarrow acalabrutinib
 - In combination? \rightarrow no
 - Treatment interruption? \rightarrow ? Perhaps ?
- MRD negativity as a treatment goal
- Fixed duration therapy

MRD- Is this the goal of CLL directed therapy?

MRD

- Not applicable to continuous BTKi
- MRD negativity is associated with longer PFS with fixed duration therapy

-FCR, MCF* (10⁻⁴) in marrow gold standard

-outcomes the same irrespective of number of FCR cycles

- What is the best platform to use?
 - MCF or NGS?
- What should one do with the information?
- Should I monitor MRD serially?

Potential diversity (IgH): ~1011

NGS more sensitive than MCF

clonoSEQ is quantitative

RESULTS SUMMARY

- Genomic DNA was extracted from a blood sample.
- 6 of the 6 dominant sequences identified in a diagnostic sample from this patient were still present in this current sample.
- 121 copies of the dominant sequence determining the MRD result (IGK Sequence C) were observed out of 3,275,992 total nucleated cells evaluated from this sample.
- The results obtained from this assay should always be used in combination with the clinical examination, patient medical history, and other findings.

Fixed Duration Therapy

MRD as a meaningful endpoint

71 A Randomized Phase III Study of Venetoclax-Based Time-Limited Combination Treatments (RVe, GVe, GIVe) Vs Standard Chemoimmunotherapy (CIT: FCR/BR) in Frontline Chronic Lymphocytic Leukemia (CLL) of Fit Patients: First Co-Primary Endpoint Analysis of the International Intergroup GAIA (CLL13) Trial

Figure 1. Comparison of uMRD rates by flow and treatment responses (CR: complete response; CR: complete response with incomplete bone marrow recovery; PR: partial response; SD: stable disease; PD: progressive disease)

N=926 pts (CIT: 229 (150 FCR, 79 BR), RVe: 237, GVe: 229, GIVe: 231

Venetoclax + Obinutuzumab in TN CLL *Phase III, CLL14 Trial*

≥65 years or older or <65 years + coexisting conditions (N=432)

Conclusion: MRD negative disease with venetoclax correlates with improved PFS

Fischer K, et al. N Engl J Med. 2019; Al-Sawaf O, et al. Lancet Oncol. 2020.

PFS 17p/p53: 49 vs 21 months (p = .03)

Median follow up 52.4 months

J. Clin Onc. 2021 Dec 20;39(36):4049-4060

Ibrutinib plus venetoclax CAPTIVATE-MRD Cohort: Study Design

High Rates of Undetectable MRD Sustained Over Time in MRD-Evaluable Patients

- Proportion of patients with undetectable MRD in peripheral blood increased over the 12 cycles of combination therapy
- In patients with undetectable MRD at cycle 16 in peripheral blood with matched bone marrow samples, 93% had undetectable MRD in both peripheral blood and bone marrow

First-Line Treatment with Ibrutinib (Ibr) Plus Venetoclax (Ven) for Chronic Lymphocytic Leukemia (CLL): 2-Year Post-Randomization Disease-Free Survival (DFS) Results from the Minimal Residual Disease (MRD) Cohort of the Phase 2 Captivate Study

Time from Randomization (Cycles)

Ibrutinib

Placebo

33

Patients at Risk												
Ibrutinib	43	43	43	42	42	41	41	34	31	5	4	1
Placebo	43	43	42	41	41	40	36	28	22	2	1	0

Figure 2. Change in Best Response Rates Post-randomization

Similar Study with zanubrutinib Fully accrued in poor risk patients (SEQUOIA (BGB-3111-304) Trial)

Blood (2021) 138 (Supplement 1): 68.

67 Zanubrutinib in Combination with Venetoclax for Patients with Treatment-Naïve (TN) Chronic Lymphocytic Leukemia (CLL) or Small Lymphocytic Lymphoma (SLL) with del(17p): Early Results from Arm D of the SEQUOIA (BGB-3111-304) Trial

Table: Preliminary Summary of Safety and Efficacy

Safety							
	TN del(17p) CLL/SLL (n = 35)						
Median follow-up, mo (range)	9.72 (4.53–16.36)						
Any AE, n (%)	29 (82.9)						
Grade ≥3 AE, n (%)	13 (37.1)						
Serious AE, n (%)	4 (11.4)						
Treatment discontinuation due to AE, n (%)	1 (2.9)						
Fatal AE, n (%)	1 (2.9)						
Efficacy (Best Response)							
	TN del(17p) CLL/SLL (n = 31)						
Median follow-up, mo (range)	11.2 (3.0–18.5)						
ORR (CR/CRi, PR, or PR-L), n (%) [95% CI]	30 (96.8) [69.7–95.2]						
CR/CRi	4 (12.9)						
PR	22 (71.0)						
PR-L	4 (12.9)						
SD	1 (3.2)						
PD	0 (0)						

AE, adverse event; CLL, chronic lymphocytic leukemia; CR, complete response; CRi, CR with incomplete hematological recovery; ORR, overall response rate; PD, progressive disease; PR, partial response; PR-L, PR with lymphocytosis; SD, stable disease; SLL, small lymphocytic lymphoma; TN, treatment-naïve.

A Phase 2 Study Evaluating the Addition of Ublituximab and Umbralisib (U2) to Ibrutinib in Patients with Chronic Lymphocytic Leukemia (CLL): A Minimal Residual Disease (MRD)-Driven, Time-Limited Approach

Figure 1 Prior Ibrutinib treatment, MRD status, and time on therapy

MRD in the relapsed setting: Venetoclax + Rituximab in R/R CLL Phase III, MURANO Trial

uMRD, undetectable minimal residual disease; EOCT, end of combination therapy; EOT, end of therapy; NR, not reached.

Kater AP, et al. J Clin Oncol. 2019; Kater AP, et al. ASH. 2020. Abstract 125.

Fixed Duration and How do I use MRD in 2022

- Prefer clonoSEQ platform
 - Avoids the need for BM bx, quanititative
- Can I stop treatment early?
- Continue therapy in high risk patients and/or those who continue to have a response
- No role for continuous/surveillance monitoring in the majority of patients outside of a clinical trial
 - exception: patients with history of AIHA/ITP?

UM IgHV 17p/p53 Complex karyotype

Mutated IgHV Major cardiac risk factors

*If early in disease course, change BTKI, dose reduction

The Next Phase Drugs in Development

Bond DA, Woyach JA. Curr Hematol Malig Rep. 2019.

Pirtobrutinib is a Highly Potent and Selective Non-Covalent (Reversible) BTK Inhibitor

Kinome selectivity¹ Highly selective for BTK

Xenograft models *In vivo* activity similarly efficacious as ibrutinib in WT; superior in C481S

- Nanomolar potency against WT & C481-mutant BTK in cell and enzyme assays²
- >300-fold selectivity for BTK vs 370 other kinases²
- Due to reversible binding mode, BTK inhibition not impacted by intrinsic rate of BTK turnover²
- Favorable pharmacologic properties allow sustained BTK inhibition throughout dosing interval²

BID, twice-daily; BTK, Bruton tyrosine kinase. ¹Mato et al, *Lancet*, 2021:397:892-901. ²Brandhuber BJ, et al. *Clin. Lymphoma Myeloma Leuk*. 2018.18:S216. Illustration reproduced courtesy of Cell Signaling Technology, Inc. (www.cellsignal.com).

Pirtobrutinib, A Highly Selective, Non-covalent (Reversible) BTK Inhibitor In Previously Treated CLL/SLL: Updated Results From The Phase 1/2 BRUIN Study

Anthony R. Mato¹, John M. Pagel², Catherine C. Coombs³, Nirav N. Shah⁴, Nicole Lamanna⁵, Talha Munir⁶, Ewa Lech-Maranda⁷, Toby A. Eyre⁸, Jennifer A. Woyach⁹, William G. Wierda¹⁰, Chan Y. Cheah¹¹, Jonathan B. Cohen¹², Lindsey E. Roeker¹, Manish R. Patel¹³, Bita Fakhri¹⁴, Minal A. Barve¹⁵, Constantine S. Tam¹⁶, David J. Lewis¹⁷, James N. Gerson¹⁸, Alvaro J. Alencar¹⁹, Chaitra S. Ujjani²⁰, Ian W. Flinn²¹, Suchitra Sundaram²², Shuo Ma²³, Deepa Jagadeesh²⁴, Joanna M. Rhodes²⁵, Justin Taylor¹⁹, Omar Abdel-Wahab¹, Paolo Ghia²⁶, Stephen J. Schuster¹⁸, Denise Wang²⁷, Binoj Nair²⁷, Edward Zhu²⁷, Donald E. Tsai²⁷, Matthew S. Davids²⁸, Jennifer R. Brown²⁸, Wojciech Jurczak²⁹

¹Memorial Sloan Kettering Cancer Center, New York, USA; ²Swedish Cancer Institute, Seattle, USA; ³University of North Carolina at Chapel Hill, Chapel Hill, USA; ⁴Medical College of Wisconsin, Milwaukee, USA; ⁵Herbert Irving Comprehensive Cancer Center, Oxford, UK; ⁹The Ohio State University, New York, USA; ⁶Department of Haematology, St. James's University Hospital, Leeds, UK; ⁷Institute of Hematology and Transfusion Medicine, Warsaw, Poland; ⁸Oxford University Hospitals NHS Foundation Trust, Churchill Cancer Center, Oxford, UK; ⁹The Ohio State University Comprehensive Cancer Center, Columbus, USA; ¹⁰MD Anderson Cancer Center, Houston, USA; ¹¹Linear Clinical Research and Sir Charles Gairdner Hospital, Perth, Australia; ¹²Winship Cancer Institute, Emory University, Atlanta, GA, USA; ¹³Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, USA; ¹⁴University of California San Francisco, San Francisco, USA; ¹⁵Mary Crowley Cancer Research, Dallas, USA; ¹⁹Peter MacCallum Cancer Center, Royal Melbourne Hospital, and University of Melbourne, Melbourne, Australia; ¹⁷Plymouth Hospitals NHS Trust - Derriford Hospital, Plymouth, UK; ¹⁹Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, USA; ¹⁹University of Miami Miller School of Medicine, Miami, USA; ²⁰Fred Hutchinson Cancer Research Center, ²¹Sarah Cannon Research Institute, Nashville, USA; ²²Department of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, ²³Robert H. Lurie Comprehensive Cancer Center of Northwester University, Chicago, IL, USA; ²⁴Cleveland Clinic, Cleveland, OH, USA; ²⁵Northwell Health Cancer Institute, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, New Hyde Park, NY; ²⁶Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milan, Italy; ²⁷Loxo Oncology at Lilly, Stamford, CT, USA; ²⁸Dana-Farber Cancer Institute and Harvard Medical School, Boston, USA

Phase 1/2 BRUIN Study: Design, Eligibility and Enrollment

Data cutoff date of 16 July 2021. ^aEfficacy evaluable patients are those who had at least one post-baseline response assessment or had discontinued treatment prior to first post-baseline response assessment. ^bOther includes DLBCL, WM, FL, MZL, Richter's transformation, B-PLL, Hairy Cell Leukemia, PCNSL, and other transformation.

BTK Pre-treated CLL/SLL Patient Characteristics

Characteristics	N = 261
Median age, years (range)	69 (36-88)
Female, n (%) Male, n (%)	84 (32) 177 (68)
ECOG PS ^a , n (%) 0 1 2	138 (53) 104 (40) 19 (7)
Median number of prior lines of systemic therapy (range)	3 (1-11)
Prior therapy, n (%) BTK inhibitor Anti-CD20 antibody Chemotherapy BCL2 inhibitor PI3K inhibitor CAR-T Stem cell transplant Allogeneic stem cell transplant Autologous stem cell transplant	261 (100) 230 (88) 207 (79) 108 (41) 51 (20) 15 (6) 6 (2) 5 (2) 1 (<1)
Reason discontinued prior BTKi, n (%) Progressive disease Toxicity/Other	196 (75) 65 (25)

Baseline Molecular Characteristics ^a						
Mutation status, n (%)						
BTK C481-mutant	89 (43)					
BTK C481-wildtype	118 (57)					
PLCG2-mutant	33 (16)					
High Risk Molecular Features, n(%)						
17p deletion	51 (28)					
TP53 mutation	64 (37)					
17p deletion or TP53 mutation	77 (36)					
Both 17p deletion and TP53 mutation	38 (27)					
IGHV unmutated	168 (84)					
11q deletion	45 (25)					

Data cutoff date of 16 July 2021. Total % may be different than the sum of the individual components due to rounding. ^aMolecular characteristics were determined centrally, in those patients with sufficient sample to pass assay quality control. 207 patients were tested for BTK and PLCG2, 180 patients for 17p deletion, 175 patients for TP53, 143 patients for 17p deletion + TP53, 200 patients for IGHV and 180 patients for 11q deletion.

Pirtobrutinib Efficacy in BTK Pre-treated CLL/SLL Patients

Data cutoff date of 16 July 2021. *Patients with >100% increase in SPD. Data for 30 patients are not shown in the waterfall plot due to no measurable target lesions identified by CT at baseline, discontinuation prior to first response assessment, or lack of adequate imaging in follow-up. ^aEfficacy evaluable patients are those who had at least one post-baseline response assessment or had discontinued treatment prior to first post-baseline response assessment. ^bORR includes patients with a best response of CR, PR, and PR-L. Response status per iwCLL 2018 according to investigator assessment. Total % may be different than the sum of the individual components due to rounding.

Progression-free Survival in BTK Pre-treated CLL/SLL Patients

Median PFS: Not Estimable (95% CI: 17.0 months – Not Estimable)

PFS in at least BTK pre-treated patients

Median PFS: 18 months (95% CI: 10.7 months – Not Estimable)

PFS in at least BTK and BCL2 pre-treated patients

- 74% (194/261) of BTK pre-treated patients remain on pirtobrutinib
- Median follow-up of 9.4 months (range, 0.3 27.4) for all BTK pre-treated patients

Data cutoff date of 16 July 2021. Response status per iwCLL 2018 according to investigator assessment.

BTK C481 Mutation Status is not Predictive of Pirtobrutinib Benefit

Progression-free survival by BTK C481 mutation status^a in CLL/SLL patients

Data cutoff date of 16 July 2021. Response status per iwCLL 2018 according to investigator assessment. ^aBTK C481 mutation status was centrally determined and based on pre-treatment samples.

Pirtobrutinib Safety Profile

	All doses and patients (n=618)							
	Treatment-emergent AEs, (≥15%), %					Treatment-related AEs, %		
Adverse Event	Grade 1	Grade 2	Grade 3	Grade 4	Any Grade	Grades 3/4	Any Grade	
Fatigue	13%	8%	1%	-	23%	1%	9%	
Diarrhea	15%	4%	<1%	<1%	19%	<1%	8%	
Neutropeniaª	1%	2%	8%	6%	18%	8%	10%	
Contusion	15%	2%	-	-	17%	-	12%	
AEs of special interest ^b								
Bruising ^c	20%	2%	-	-	22%	-	15%	
Rash ^d	9%	2%	<1%	-	11%	<1%	5%	
Arthralgia	8%	3%	<1%	-	11%	-	3%	
Hemorrhage ^e	5%	2%	1% ^g	-	8%	<1%	2%	
Hypertension	1%	4%	2%	-	7%	<1%	2%	
Atrial fibrillation/flutter ^f	-	1%	<1%	<1%	2% ^h	-	<1%	

No DLTs reported and MTD not reached

96% of patients received ≥1 pirtobrutinib dose at or above RP2D of 200 mg daily

1% (n=6) of patients permanently discontinued due to treatment-related AEs

COVID and CLL

- \approx 70-90% hospitalized, 25-30% die from COVID (pre-vaccine)^{1,2}
 - Age > 75 and co-morbidities increase risk for death
- Patients may have active infection for months
- Survival in CLL patients has improved over the course of the pandemic³
- Antibody response rate 39% (15-80%) after initial series^{4,5}
 - Low IgG, BTKi, mAb within 1 year
 - Improved with 3rd dose (25% seroconversion)

- 1. Blood. 2020 Sep 3;136(10):1134-1143
- 2. Leukemia. 2020 Sep;34(9):2354-2363.
- 3. Blood (2021) 138 (18): 1768–1773.
- 4. Blood 2022 Feb 3;139(5):678-685.
- 5. Blood. 2021 Jun 10;137(23):3165-3173

Data generated by David Xthona Lee

Data generated by Hans-Peter Raue

Revaccinate all patients (including boosters) receiving mAb within 12 months Administer Evusheld for

-all patients on active treatment

-watchful waiting patients without an immune response Counsel on importance of rapid/early testing Administer paxlovid

THANK YOU

2022.....

Immunotherapy

Bi-specific antibodies CAR-NK and CAR-T