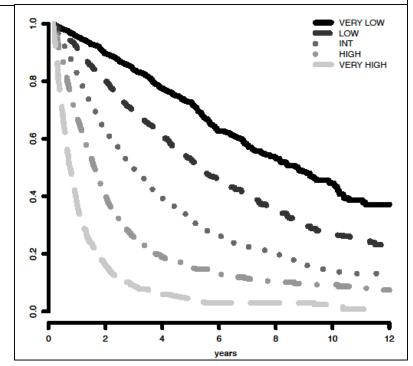
ASH Updates

MDS

Elie Traer, MD PhD Associate Professor

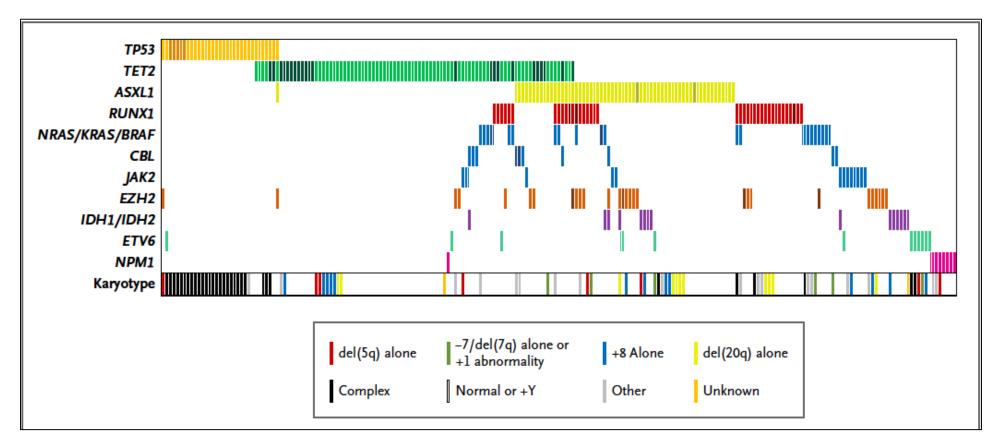
Outline

- MDS genetics and changes to risk assessment
- ARCH, CHIP, CCUS do we care? Do we treat?
- Low risk MDS new drugs and management
- High risk MDS starting to look more like AML
- Immunotherapy in MDS seems like it should work?

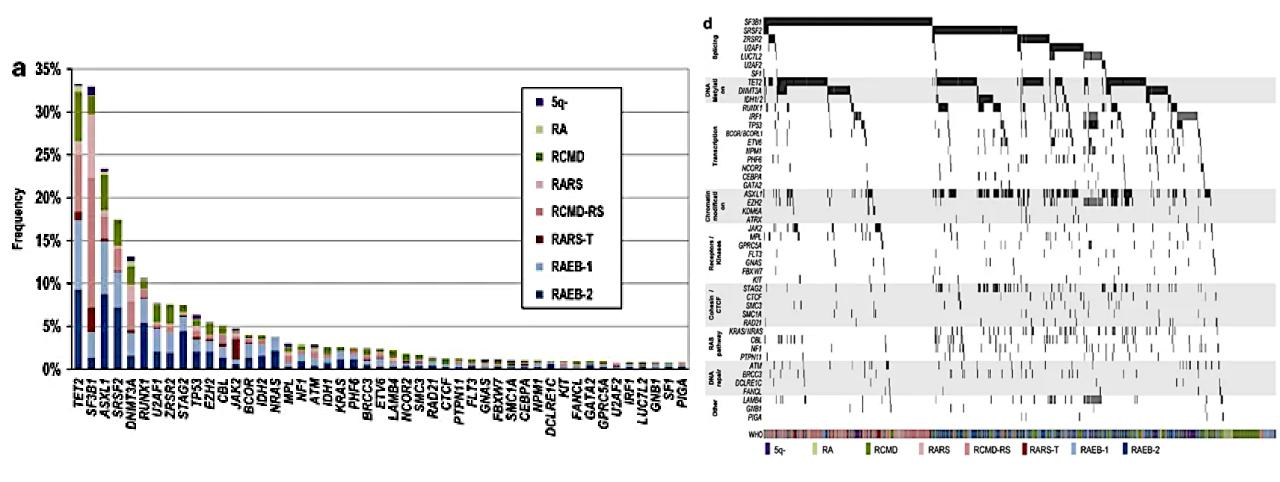

IPSS-R: Cytogenetics, blasts, CBC predict risk

Prognostic variable	0	0.5	1	1.5	2	3	4
Troghostio Variable	· · · · · ·	0.0	· ·		-	· · · · ·	-
Cytogenetics	Very good	—	Good	—	Intermediate	Poor	Very poo
BM blast, %	≤ 2	_	> 2%- < 5%	_	5%-10%	> 10%	_
Hemoglobin	≥ 10	_	8- < 10	< 8	_	_	_
Platelets	≥ 100	50-< 100	< 50	_	_	_	_
ANC	≥ 0.8	< 0.8	_	_	_	_	_

- indicates not applicable.

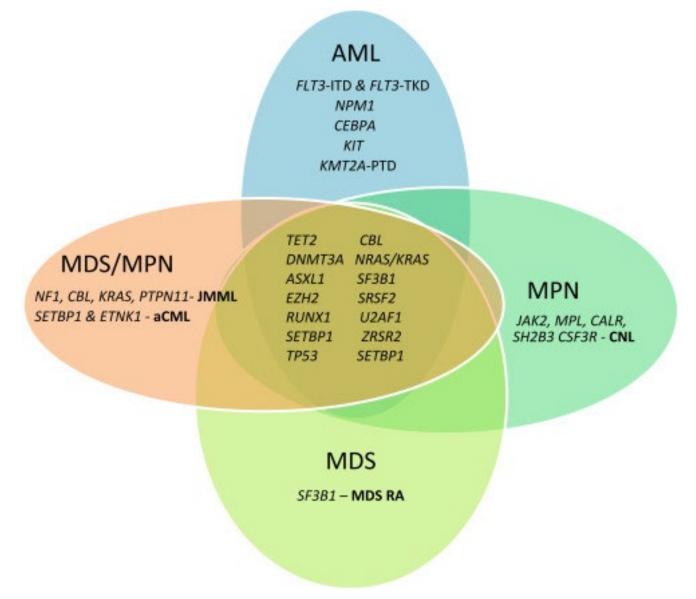

	-	
$\mathbf{\nabla}$		

Risk category	Risk score
Very low	≤ 1.5
Low	> 1.5-3
Intermediate	> 3-4.5
High	> 4.5-6
Very high	> 6


Blood. 2012;120(12):2454

MDS point mutations

N Engl J Med. 2011 364(26):2496-506


More MDS mutations

Haferlach T et al. Leukemia 2014

Spliceosome, epigenetic, transcription, chromatin mutations very common

Myeloid neoplasms – genetic overlap

Patel et al. Clin Lymph Myeloma and Leuk. July 2017, Pages S62-S74

Mutations also affect risk

Table 2. Hazard Ratios for Death in a Multivariable Model.*					
Risk Factor	Hazard Ratio (95% CI)	P Value			
Age ≥55 yr vs. <55 yr	1.81 (1.20–2.73)	0.004			
IPSS risk group					
Intermediate-1 vs. low	2.29 (1.69–3.11)	<0.001			
Intermediate-2 vs. low	3.45 (2.42-4.91)	<0.001			
High vs. low	5.85 (3.63-9.40)	<0.001			
Mutational status					
TP53 mutation present vs. absent	2.48 (1.60–3.84)	<0.001			
EZH2 mutation present vs. absent	2.13 (1.36–3.33)	<0.001			
ETV6 mutation present vs. absent	2.04 (1.08-3.86)	0.03			
RUNX1 mutation present vs. absent	1.47 (1.01–2.15)	0.047			
ASXL1 mutation present vs. absent	1.38 (1.00–1.89)	0.049			

N Engl J Med. 2011 364(26):2496-506

SF3B1 mutations – improved OS!

Blood 2011 118(24):6239-46

* Not independent of morphology

Development of IPSS-M: Background and Method

- Current risk stratification guidelines, including IPSS/IPSS-R, do not account for mutations that are now recognized to affect prognosis in MDS^{1,2}
- Current report details efforts by the IWG-PM to integrate key mutations into the IPSS/IPSS-R, yielding the IPSS-M
 - Developed in an IWG discovery cohort (n = 2957) and validated in a Japanese cohort (n = 754)

Development of IPSS-M: Patient Characteristics and Molecular Characterization in Discovery Cohort

 Inclusion criteria: diagnostic samples; blasts <20%, WBC <13 x 10⁹/L

Characteristic	All Patients (N = 2957)
Median age, yr (95th range)	72 (39-88)
Therapy-related MDS, %	8
Treated with disease- modifying agents according to guidelines, %	30
Median follow-up, yr	3.8
≥1 oncogenic lesion, %*	94
Median number oncogenic lesions per patient, n (range)	4 (0-20)
*18 genes mutated in >1% of natients	

- Molecular characterization: conventional cytogenetics; assessed oncogenic mutations from 152 genes (VAF >2%)
 - Findings: 48 genes mutated in ≥1% of patients; ≥1 oncogenic mutation in 94% of patients

*48 genes mutated in >1% of patients.

Bernard. ASH 2021. Abstr 61.

Development of IPSS-M: Association Between Gene Mutations and Clinical Endpoints in Discovery Cohort

- After adjusting for age, sex, MDS type (primary vs therapy related), and IPSS-R raw score, multiple genes were associated with adverse outcomes including LFS (14 genes), OS (16 genes), and AML transformation (15 genes)¹
- Strongest associations found with:
 - TP53 multi-hit (multiple mutations, mutation with deletion or copy-neutral LoH)² (7% of patients)
 - MLL partial tandem duplication (2.5% of patients)
 - FLT3 mutations (1.1% of patients)

Development of IPSS-M: Association Between Gene Mutations and Clinical Endpoints in Discovery Cohort

- SF3B1 mutations were associated with favorable outcomes, modulated by pattern of comutations
 - *SF3B1^{5q}*: concomitant isolated del(5q) (7%)
 - SF3B1^β: co-occurrence of mutations in BCOR, BCORL1, RUNX1, NRAS, STAG2, SRSF2 (15%)
 - *SF3B1*^α: any other *SF3B1* mutations

Development of IPSS-M: Model Development Steps 1 and 2

Step	Development
Encoding for clinical and molecular	 Continuous encoding of clinical variables; linear function for BM blasts, Hg Platelet values capped at 250 x 10⁹/L; ANC not included Maintained 5 IPSS-R cytogenetic categories Gene mutations incorporated as binary variables aside from <i>TP53</i> allelic state and <i>SF3B1</i> subsets accounting for comutations
Determination of	 Model fit with a Cox multivariable regression adjusted for confounder variables (age, sex, primary vs therapy-related MDS) Continuous clinical parameters IPSS-R cytogenetic categories 17 genetic variables from 16 main effect genes 1 genetic variable from 15 residual genes (<i>BCOR, BCORL1, CEBPA, ETNK1, GATA2, GNB1, IDH1, NF1, PHF6, PPM1D, PRPF8, PTPN11, SETBP1, STAG2, WT1</i>)

Slide credit: <u>clinicaloptions.com</u>

Development of IPSS-M: Model Development Steps 3 and 4

Step	Development
Construction of IPSS-M risk score as a continuous patient-specific score	 Interpretable risk scoring system Prominent 0 value established for a hypothetical average patient 1 unit increase/decrease in risk score = double/half risk
Definition of IPSS-M risk categories for discrete risk grouping	 6 risk groups established Very low: 14% Low: 33% Moderate low: 11% Moderate high: 11% High: 14% Very high: 17%

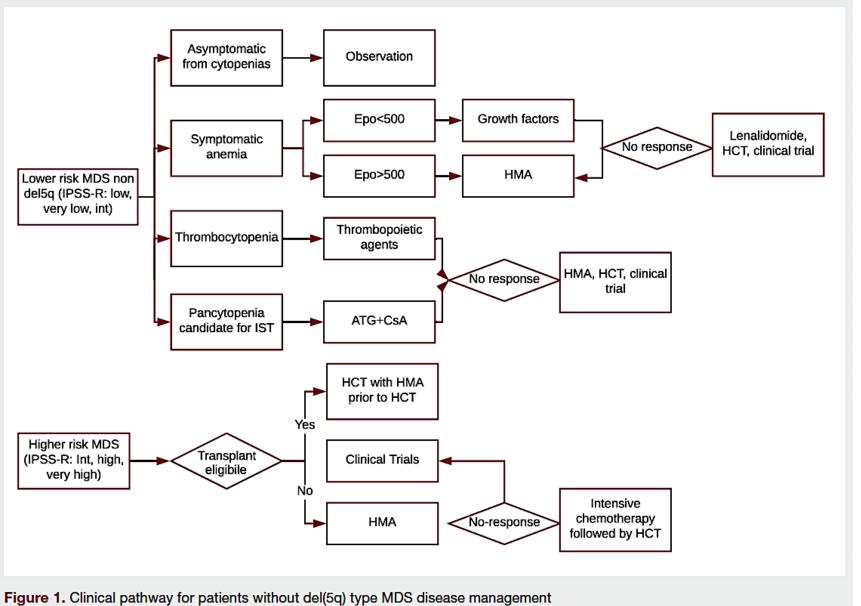
- IPSS-M demonstrated improved prognostic discrimination vs IPSS-R with 5-point increase in concordance index across all endpoints
- 46% of patients restratified from IPSS-R to IPSS-M, with 7% restratified by >1 strata

Development of IPSS-M: Clinical Applicability

- IPSS-M web calculator returns individualized risk score and category
- Strategy for missing variables: IPSS-M calculated for best, average, and worst scenarios

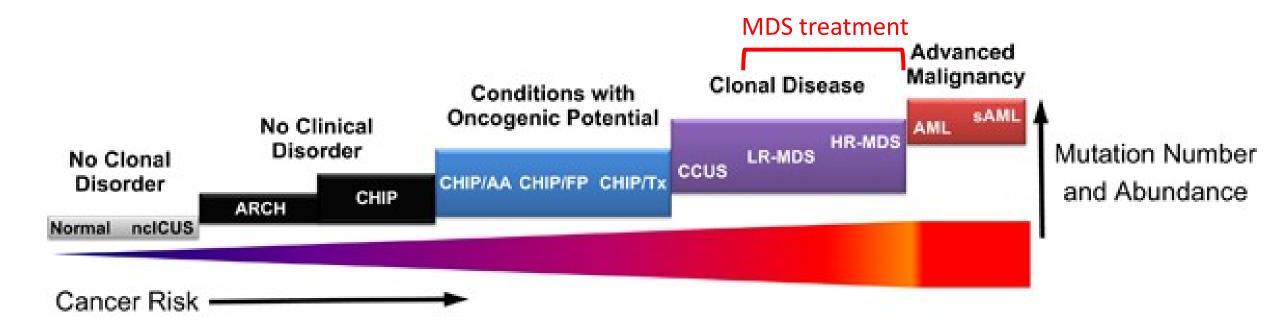
Development of IPSS-M: Conclusions

- IPSS-M combines conventional parameters with mutations in 31 key genes to improve MDS risk stratification
- Risk score is personalized as a continuous score, reproducible, and interpretable, as 1-unit increase in score doubles risk
- 6-category risk schema developed
- Includes a strategy to handle missing data and a web calculator

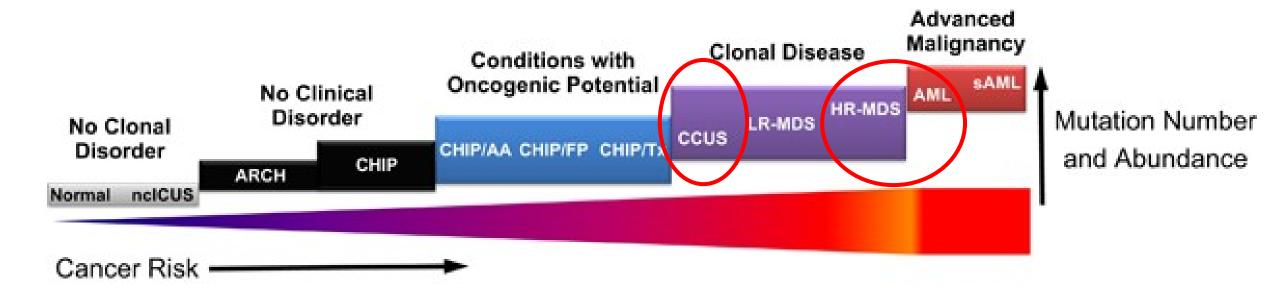

Summary

- IPSS-R is still useful, and frequently used in clinical trials
- However, mutation analysis can improve risk stratification and "highly recommended" in NCCN guidelines
- With development of targeted therapies, can be opportunities for clinical trials
 - IDH1 inhibitor in AML for R/R MDS at OHSU
- Next-gen panel should be done routinely on all new MDS pts

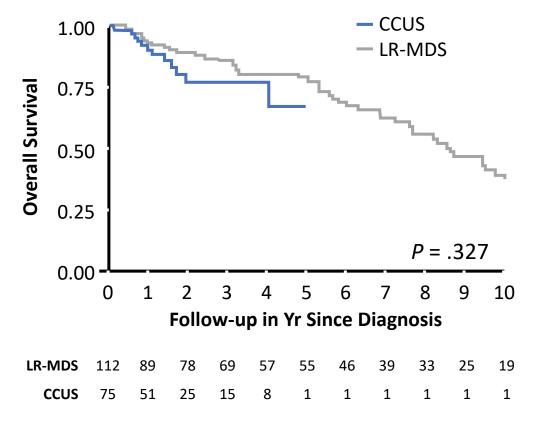
What's new


CCUS and low risk MDS

MDS treatment – 2019 summary


Faber MG et al. J Clin Pathways. 2019

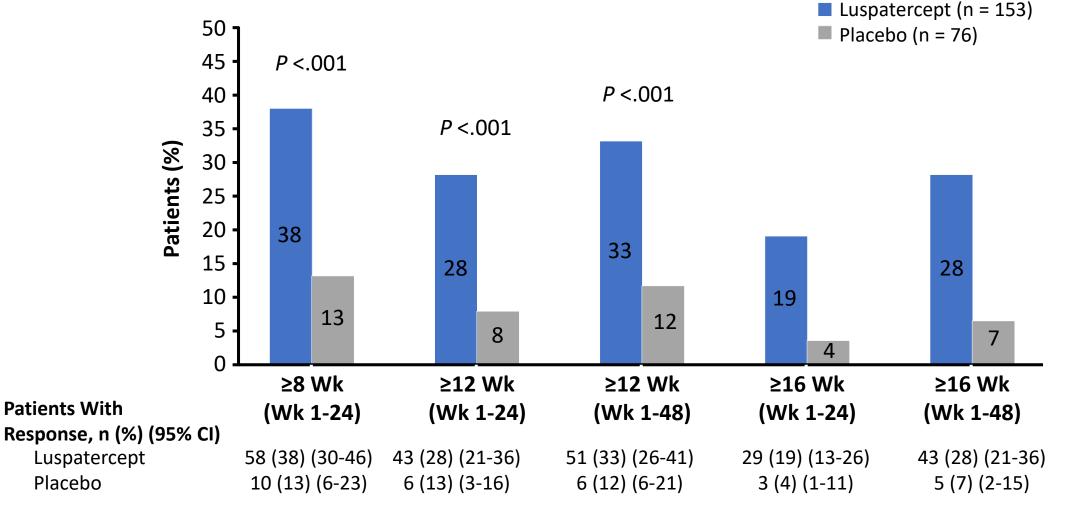
Increasing spectrum of myeloid malignancies - and terminology!


Bejar, R. CHIP, ICUS, CCUS and other four-letter words. Leukemia **31**, 1869–1871 (2017)

Changes happening at ends of spectrum

CCUS is Evolving to an Interventional State

OS in Patients with CCUS and LR-DMS

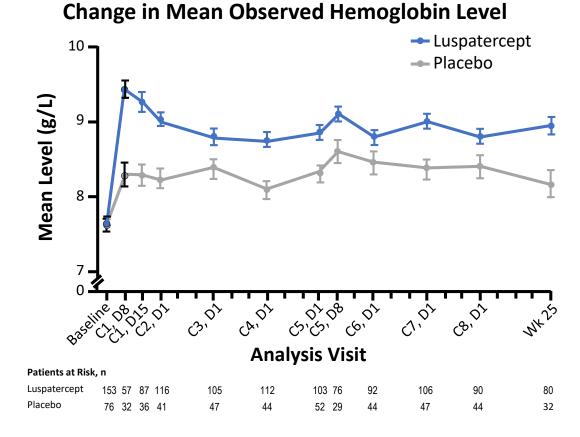

- NCT05030441: ivosidenib for patients with CCUS and mutations in IDH1
 - US multi-institutional study
 - Ivosidenib: IDH1 inhibitor, 500 mg daily for up to 18 mo
- NCT04741945: repurposing metformin as a leukemiapreventive drug in CCUS and LR-MDS
 - Denmark multi-institutional study
 - 2000 mg/daily for 12 mo with a slow up-titration 2 wk before to full dose
- NCT03418038: IV ascorbic acid in *TET2*-mutated CCUS
- Canakinumab in CCUS
 - Multi-institutional study
 - Canakinumab: a human monoclonal antibody targeting IL-1 β

Li. Blood Advances. 2021;5:2272. NCT05030441. NCT04741945. NCT03418038.

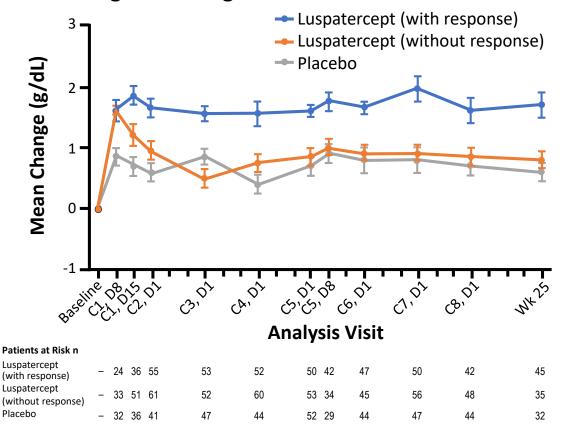
Early Erythropoiesis Stimulation in Low-Risk MDS Remains Standard of Care

- Recombinant erythropoietin can lead to long-term responses in LR-MDS
 - With MDS with isolated anemia
 - EPO levels <500 U/L, usually <200 U/L
 - Considerable variation in dose and schedule
- Low thromboembolic risk if given with lower Hgb
- Sequencing of ESAs with other therapy for LR-MDS: unclear

Luspatercept vs Placebo in MDS (MEDALIST): Red Blood Cell Transfusion Independence



Fenaux. NEJM. 2020;382:140.


Slide credit: clinicaloptions.com

CO

MEDALIST: Change in Hemoglobin Levels

Change in Hemoglobin Level From Baseline

Slide credit: <u>clinicaloptions.com</u>

MEDALIST: Adverse Events

$\Delta \Gamma$ in >10% of potionts*		ercept 153)	Placebo (n = 76)	
AE in ≥10% of patients*	Any Grade	Grade 3	Any Grade	Grade 3
 General or administration- site condition Fatigue Asthenia Peripheral edema 	41 (27) 31 (20) 25 (16)	7 (5) 4 (3) 0	10 (13) 9 (12) 13 (17)	2 (3) 0 1 (1)
 Gastrointestinal disorder Diarrhea Nausea⁺ Constipation 	34 (22) 31 (20) 17 (11)	0 1 (1) 0	7 (9) 6 (8) 7 (9)	0 0 0
Nervous system disorder Dizziness Headache	30 (20) 24 (16)	0 1 (1)	4 (5) 5 (7)	0 0
Musculoskeletal/connective tissue disorder Back pain [†] Arthralgia	29 (19) 8 (5)	3 (2) 1 (1)	5 (7) 9 (12)	0 2 (3)

AE in >10% of notionts*	•	ercept 153)	Placebo (n = 76)	
AE in ≥10% of patients*	Any Grade Grade 3		Any Grade	Grade 3
Respiratory, thoracic, or mediastinal disorder Dyspnea Cough	23 (15) 27 (18)	1 (1) 0	5 (7) 10 (13)	0 0
Infection or infestation ■ Bronchitis [†] ■ UTI [†]	17 (11) 17 (11)	1 (1) 2 (1)	1 (1) 4 (5)	0 3 (4)
Injury, poisoning or fall	15 (10)	7 (5)	9 (12)	2 (3)

Lenalidomide and Eltrombopag for Low-Risk/ Intermediate-Risk MDS: Study Design

Multicenter, open-label phase II trial

If PLTs <50,000

If PLTs <50,000

Patients ≥18 yr with lowrisk/intermediate-1—risk MDS per IPSS (or non-proliferative CMML); symptomatic anemia untransfused with Hb ≤10 g/dL or with RBC transfusion dependence, or PLTs <50,000 with Hb >10 g/dL; no prior exposure to LEN (for >2 mo) or ELT (N = 52)

Ĺ	Arm A: PLTs ≥50,000 LEN 10 mg PO QD on Days 1-21 (n = 28)	100-300 mg until PLTs 2 2 wk; pat	and ELT PO QD given 50,000 for ients then ed LEN	LEN d/c and ELT 100-300 mg PO QD given until PLTs ≥50,000 for 2 wk; patients then resumed LEN + ELT in combination
r	Arm B: PLTs <50,000 ELT 100-300 mg PO QD on Days 1-28 until PLTs ≥50,000 for 2 wk, then followed treatment scheme in Arm A (n = 24)			ere allowed to stay on ELT alone if ed HI-E and HI-PLT on ELT

Primary endpoints: HI (per 2006 IWG criteria), safety and tolerability

Secondary endpoints: HI duration, time to HI, clinically significant bleeding events, BM response (CR + PR), cytogenetic response

Lenalidomide and Eltrombopag for Low-Risk/ Intermediate-Risk MDS: Baseline Characteristics

Characteristic	ELT (n = 21)	LEN (n = 16)	ELT + LEN (n = 15)	Total (N = 52)
Mean age, yr (range)	68 (34-93)	74 (59-86)	73 (56-85)	71 (34-93)
Male, n (%)	17 (81)	9 (56)	11 (73)	36 (71)
Mean Hb, g/dL (range)	8.6 (6.1-11.7)	8.2 (6.2-9.5)	8.14 (6.4-10.8)	8.35 (6.1-11.7)
Mean PLT count, cells/mm ³ (range)	21.8 (1-97)	256.7 (88-457)	133.5 (16-280)	126.3 (1-457)
Treatment naïve, n (%)	NR	NR	NR	21 (40)
 IPSS risk, n (%) Very low Low Intermediate 	0 6 15	1 8 7	0 10 5	1 (2) 24 (46) 27 (52)
MDS WHO category, n (%) MDS-SLD MDS-MLD MDS-RS-SLD MDS-RS-MLD MDS-EB-1 MDS del(5q) CMML	0 18 0 0 1 0 2	5 3 6 0 1 1 0	0 6 3 3 1 1 1	5 (10) 27 (52) 9 (17) 3 (6) 3 (6) 2 (4) 3 (6)

Lenalidomide and Eltrombopag for Low-Risk/ Intermediate-Risk MDS: Safety

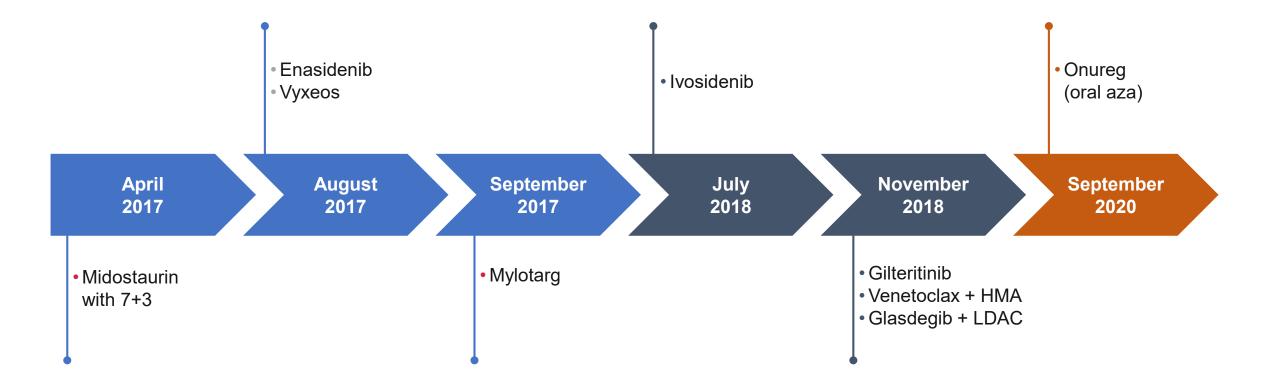
ELT		LE	N
Grade 3	Grade 4	Grade 3	Grade 4
0	0	3 (6)	0
0	0	3 (6)	6 (12)
0	0	0	1 (2)
0	0	6 (12)	3 (6)
1 (2)	0	2 (4)	0
1 (2)	0	0	0
0	0	1 (2)	0
0	0	2 (4)	0
0	0	1 (2)	0
2 (4)	0	0	0
	Grade 3 0 0 0 0 1 (2) 1 (2) 1 (2) 0 0 0 0 0 0 0 0 0 0 0 0 0	Grade 3 Grade 4 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0	Grade 3Grade 4Grade 3003 (6)003 (6)0000001 (2)02 (4)001 (2)002 (4)002 (4)001 (2)

• 3 deaths occurred

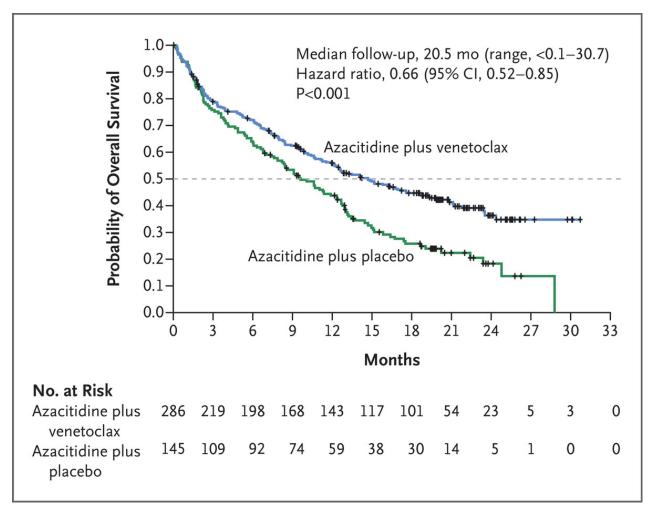
- 1 each due to pneumonia, sepsis, and gallbladder cancer
- 2 patients had major bleeding events
- 1 patient on ELT had reversible increase in peripheral blasts during an episode of acute cholecystitis
- 1 patient developed BM fibrosis after 6 yr on ELT
- 5 patients discontinued treatment due to AEs

Lenalidomide and Eltrombopag for Low-Risk/ Intermediate-Risk MDS: Efficacy

Efficacy Outcome	ELT (n = 21)	LEN (n = 16)	ELT + LEN (n = 15)	Total (N = 52)
ORR (ITT), %	33	38	33	35
Evaluable responses, %				
RBC-TI	24	46	21	30
HI-PLT	35	0	21	20
 Bilineage response 	29	0	14	16
CR	6	0	14	7
Median TTR, wk (range)	9.4 (6-12.4)	10.9 (2.4-16)	9.9 (2-20)	10.05
Median DoR, wk (range)	102 (8-295)	63 (25-141)	66 (8.3-107)	77.08


 At the time of data cutoff (Sept 22, 2021), 2 patients on ELT, 1 patient on LEN, and 2 patients on ELT + LEN are still on trial with ongoing responses Lenalidomide and Eltrombopag for Low-Risk/ Intermediate-Risk MDS: Investigators' Conclusions

- Treatment with ELT and LEN showed good efficacy and safety in patients with low-risk/intermediate-risk MDS
 - ORR of 35% in ITT population
 - Median DoR: 1.5 yr
 - Acceptable safety profile
- ELT monotherapy yielded responses with a sizeable proportion of bilineage responses
- 1 patient developed BM fibrosis and only 1 patient had transient increase in blasts, allaying these preexisting safety concerns


What's new

High risk MDS – starting to look more like AML! And even being incorporated into AML trials

9 drugs approved in AML since 2017!

Aza + ven: VIALE-A trial results One combo to treat all AML?

Characteristic	Azacitidine-Venetoclax Group (N=286)	Azacitidine–Placebo Gro (N=145)
Age		
Median (range) — yr	76 (49–91)	76 (60–90)
≥75 yr — no. (%)	174 (61)	87 (60)
Male sex — no. (%)	172 (60)	87 (60)
AML type — no (%)		
De novo	214 (75)	110 (76)
Secondary	72 (25)	35 (24)
Secondary AML — no./total no. (%)		
History of myelodysplastic syndrome or CMML	46/72 (64)	26/35 (74)
Therapy-related AML	26/72 (36)	9/35 (26)
ECOG performance-status score — no. (%)†		, , , ,
0-1	157 (55)	81 (56)
2–3	129 (45)	64 (44)
Bone marrow blast count — no. (%)		
<30%±	85 (30)	41 (28)
≥30 to <50%	61 (21)	33 (23)
≥50%	140 (49)	71 (49)
AML with myelodysplasia-related changes — no. (%)	92 (32)	49 (34)
Cytogenetic risk category — no. (%)	52 (52)	15 (51)
Intermediate	182 (64)	89 (61)
Normal karyotype — no.	128	62
Trisomy 8; +8 alone — no.	13	10
Poor	104 (36)	56 (39)
7 or 7g deletion — no.	20	11
5 or 5q deletion — no.	46	22
Complex, ≥ 3 clonal abnormalities — no.	75	36
	75	50
Somatic mutations — no./total no. (%)	(1/245/25)	20 (127 (22)
IDH1 or IDH2	61/245 (25)	28/127 (22)
FLT3 ITD or TKD	29/206 (14)	22/108 (20)
NPM1	27/163 (17)	17/86 (20)
TP53	38/163 (23)	14/86 (16)
Baseline cytopenia grade ≥3¶		
Anemia — no. (%)	88 (31)	52 (36)
Neutropenia — no./total no. (%)	206/286 (72)	90/144 (62)
Thrombocytopenia — no. (%)	145 (51)	73(50)
Baseline transfusion dependence — no. (%)		
Red cells	144 (50)	76 (52)
Platelets	68 (24)	32 (22)
≥2 Reasons for ineligibility to receive intensive therapy — no. (%)	141 (49)	65 (45)
AML denotes acute myeloid leukemia, CMML chronic r and TKD tyrosine kinase domain. Eastern Cooperative Oncology Group (ECOG) performa toms and higher scores indicating greater disability.		

Only cytogenetic risks of interest are shown.

¶ Cytopenia was graded according to the Common Terminology Criteria for Adverse Events.

Baseline transfusion dependence was transfusion within 8 weeks before the first dose of azacitidine-venetoclax or azacitidine-placebo or randomization.

CD DiNardo et al. N Engl J Med 2020;383:617-629.

Venetoclax and HMA in Higher-Risk MDS: Background

- HMAs remain standard of care for patients with higher-risk MDS
 - HMA treatment associated with <20% CR rate and median OS of 12-18 mo¹
- Early suggestions of higher response rate with the addition of venetoclax to HMAs in higher-risk MDS^{2,3}
- The current retrospective analysis compared clinical outcomes in patients with higher-risk MDS treated with first-line HMA, first-line HMA + venetoclax, or HMA with venetoclax given after HMA failure⁴

Venetoclax and HMA in Higher-Risk MDS: Study Design

- Retrospective analysis of clinical outcomes in patients with MDS who were classified as intermediate or higher risk by R-IPSS and received first-line treatment with HMA at Moffitt Cancer Center (N = 1193)
 - Single-agent HMA: n = 1158 (azacitidine n = 1027; decitabine n = 131)
 - First-line HMA + venetoclax*: n = 35 (azacitidine n = 26; decitabine n = 9)
 - Of patients who received single-agent HMA, n = 31 subsequently received HMA + venetoclax for R/R MDS without transformation to AML
- Response rate and median OS assessed (OS from diagnosis)
 - Median follow-up from diagnosis: 96 mo for first-line single-agent HMA, 15 mo for first-line HMA + venetoclax, 36 mo for HMA + venetoclax in R/R MDS

Venetoclax and HMA in Higher-Risk MDS: Baseline Characteristics by First-line Therapy

Characteristic	HMA Alone (n = 1127)	HMA + Ven (n = 35)	P Value	Characteristic	HMA Alone (n = 1127)	HMA + Ven (n = 35)	P Value
Mean age, yr	68.4	67.8	.76	Mean myeloblasts, %	8	13	<.005
Male, %	66	71	.5	Mean Hb, g/dL	9	9	1.0
White, %	90	97	.66	Mean WBC x 10 ⁹ /L	4	10.6	<.005
t-MDS, %	24	23	.86	Mean ANC x 10 ⁹ /L	1.8	4.1	<.005
 WHO 2016 classification, % MDS-SLD/MLD MDS-RS MDS-EB1 MDS-EB2 	18 6 33 39	4 4 9 78	.04	Platelets x 10 ⁹ /L Somatic mutations, %* • SF3B1 • TET-2 • IDH-1 • IDH-2	96 5 16 3 5	100 0 23 3 14	.80 .3 .3 .7 .056
R-IPSS, % Intermediate High Very high 	31 31 38	17 37 46	.22	 ASXL-1 TP53 NRAS 	21 27 4	46 34 11	.002 .6 .07

Venetoclax and HMA in Higher-Risk MDS: Efficacy of First-line Therapy

Best Response, %	HMA + Ven (n = 35)	HMA Alone (n = 1127)	P Value
ORR	77	40	<.005
CR	34	13	
mCR	37 (62 + HI)	11	
■ PR	3	1	
■ HI	3	15	
ASXL-1 mut	(n = 16)	(n = 106)	
ORR	87	32	<.005
■ CR	44	8	
<i>TP53</i> mut	(n = 12)	(n = 137)	
ORR	75	44	.038
■ CR	25	17	.47

Outcome	HMA + Ven (n = 35)	HMA Alone (n = 1127)	P Value
 Median OS, mo From diagnosis (95% CI) From start of 	21 (11-32)	20 (19-22)	.86
treatment*	19.4	17.2	.88
AML transformation, %	23	37	.08
AHSCT cohort ⁺	(n = 13)	(n = 256)	
Median OS, mo (95% CI)	NR	38 (27-50)	.20
2-yr OS, %	91	51	

*Median time from diagnosis to treatment was 1 mo in both arms. *Patients who went on to AHCST.

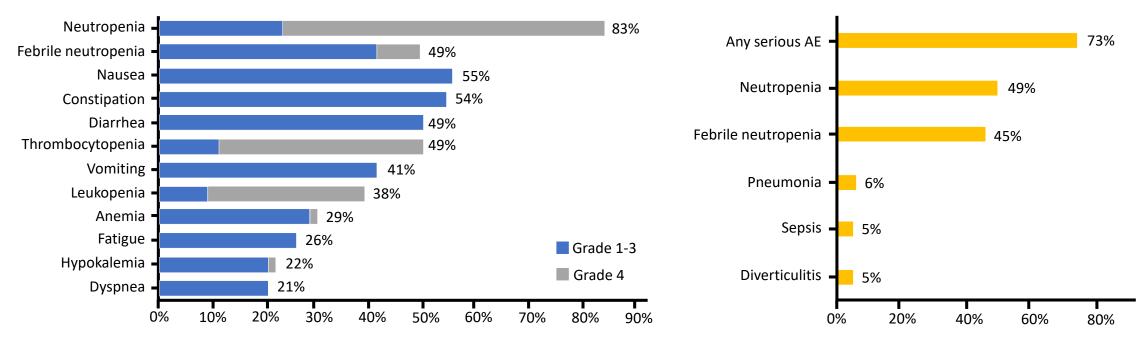
Venetoclax and HMA in Higher-Risk MDS: Conclusions

- In this retrospective analysis, treatment with first-line HMA + venetoclax was associated with significantly higher CR rates vs HMA alone in patients with higher-risk MDS, including those with ASXL-1—mutant MDS
 - Investigators suggested promising clinical activity of first-line HMA + venetoclax in patients who proceed to AHSCT
 - Caveats: small population, short follow-up of combination therapy group
 - No adverse event or dose adjustment data available
- Adding venetoclax to HMA after relapse may prolong OS
- Prospective, randomized trial needed to confirm findings

Venetoclax/Azacitidine in Treatment-Naive HR-MDS: Background

- The BCL-2 inhibitor venetoclax has shown synergy with hypomethylating agents such as azacitidine in preclinical studies and in clinical trials in patients with myeloid malignancies¹⁻⁴
 - Mechanism of action: Azacitidine targets BCL-X_L and MCL-1, and venetoclax targets BCL-2; all 3 targets are expressed on HR-MDS blast cells
- Current study undertaken to evaluate combination of venetoclax and azacitidine in patients with treatment-naive HR-MDS⁵

Venetoclax/Azacitidine in Treatment-Naive HR-MDS (Phase Ib): Study Design

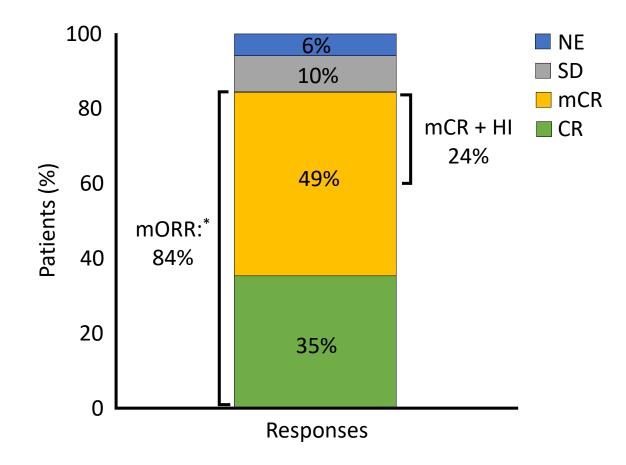

 Ongoing phase Ib clinical trial in higher-risk MDS, including assessment of molecular determinants of response

Patients with treatment- naive MDS with IPSS ≥1.5 (amended to include IPSS- revised int, high, very high, and planning to undergo ASCT); BM blasts <20%; ECOG PS 0-2 (n = 78)	Randomization Phase (28 Days Venetoclax)	Dose-Escalation PhaseCohort 3: Safety Exp(14 Days Venetoclax)Preliminary Safety and				•
	th IPSS ≥ 1.5 Azacitidine* + venetoclax 400 mg D1-28 (n = 5)		Azacitidine* + Venetoclax 100 mg D1-14 (n = 8)		Safety Expansion 1Safety Expansion(14 Days Venetoclax)(14 Days Venetoclax)	
	Azacitidine* + Venetoclax 800 mg D1-28 (n = 5)	/	Azacitidine* + Venetoclax 200 mg D1-14 (n = 59)		Azacitidine* + Venetoclax 400 mg D1-14	Azacitidine* + Venetoclax 400 mg D1-14
	Azacitidine* (n = 2)	Azacitidine* + Venetoclax 400 mg D1-14 (n = 8)		(n = 22)	(n = 21)	
	 No DLTs in cycle 1 2 deaths in cycle 2 Protocol amended to assess 14-d venetoclax 				 Primary endpoints Safety, establish RP2D Secondary endpoints ORR, OS 	

Slide credit: clinicaloptions.com

Venetoclax/Azacitidine in Treatment-Naive HR-MDS (Phase Ib): Safety

- Median cycles received: azacitidine, 4 (range: 1-27); venetoclax, 4 (range: 1-27)
- 30-day mortality after first dose: 1%; AEs leading to death: n = 7 (9%)

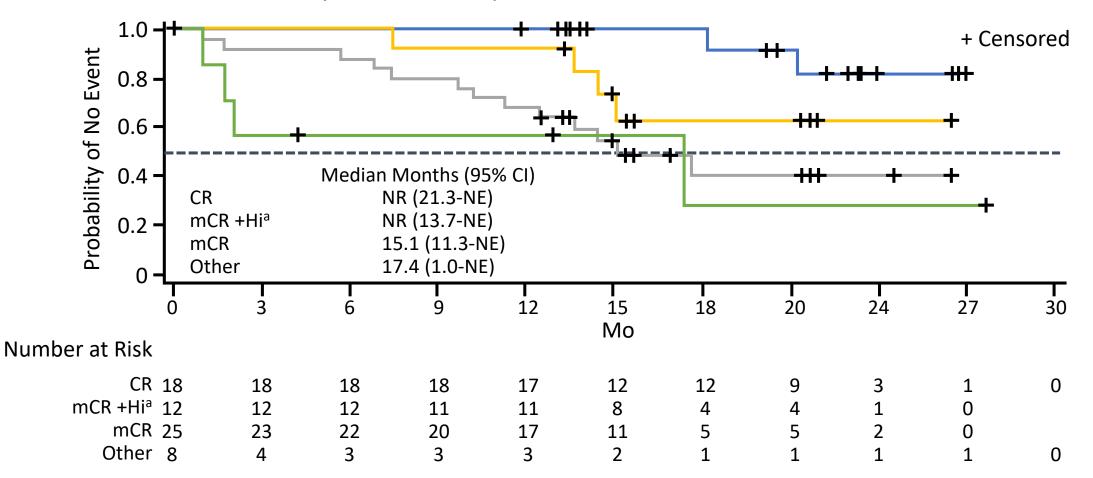


Adverse Events

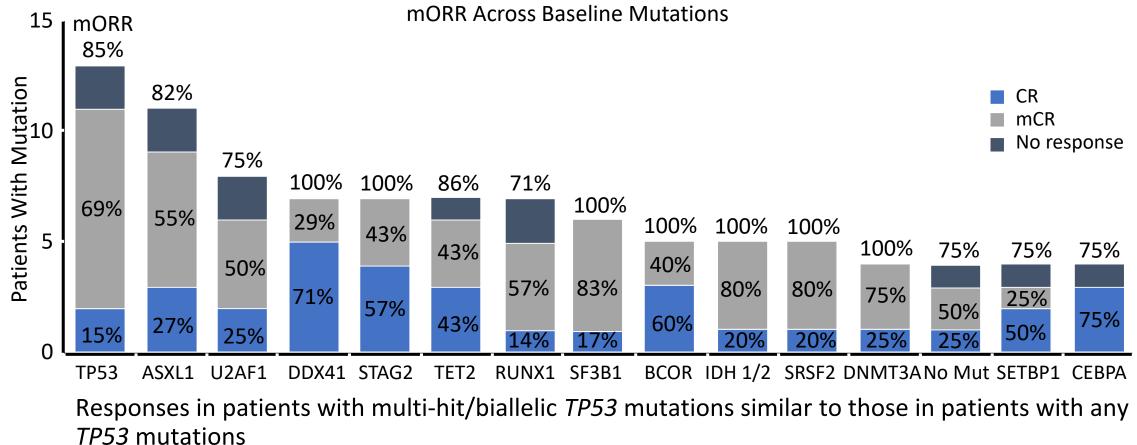
Serious Adverse Events

Slide credit: <u>clinicaloptions.com</u>

Venetoclax/Azacitidine in Treatment-Naive HR-MDS (Phase Ib): Responses

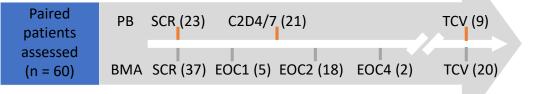


- Median time to response:
 0.9 mo (95% CI: 0.7-5.8)
- Median duration of response: 12.4 mo (95% CI: 9.9-NR)

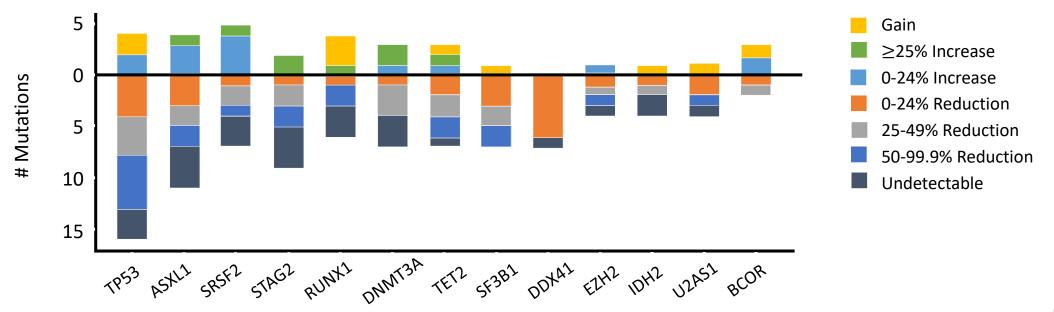

*mORR: CR + mCR + PR.

Garcia. ASH 2021. Abstr 241. Reproduced with permission.

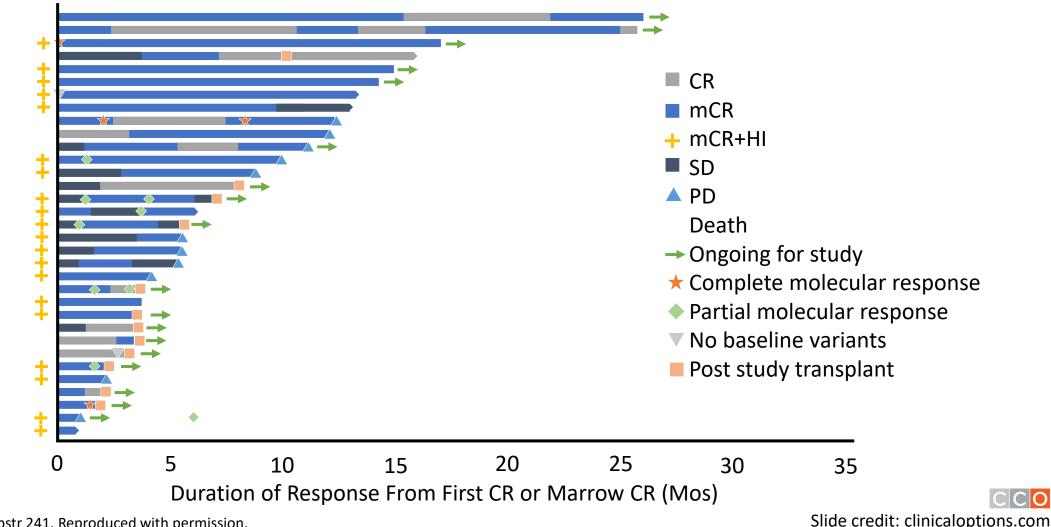
Venetoclax/Azacitidine in Treatment-Naive HR-MDS (Phase Ib): Overall Survival by Best Response at RP2D


Venetoclax/Azacitidine in Treatment-Naive HR-MDS (Phase Ib): mORR Across Baseline Mutations

CR: 28.6%; mORR: 71.4%


Venetoclax/Azacitidine in Treatment-Naive HR-MDS (Phase Ib): VAF Changes

Timing of Molecular Response Assessment



Differences in VAF for individual genes compared for similar specimen types: PB pre- vs PB post-therapy initiation or BMA pre- vs BMA post-therapy initiation

VAF Changes in Patients With ≥1 On-Treatment/TCV Sequenced Sample

Venetoclax/Azacitidine in Treatment-Naive HR-MDS (Phase Ib): Molecular Responses

Venetoclax/Azacitidine in Treatment-Naive HR-MDS (Phase Ib): Investigator Conclusions

- In this phase Ib trial, venetoclax/azacitidine had an acceptable safety profile in patients with treatment-naive higher-risk MDS
- RP2D venetoclax 400 mg on D1-14 + azacitidine 75 mg/m² induced rapid, durable responses and a high remission rate
- Clinical and molecular responses were observed across mutational profiles, including in patients with poor prognostic mutations

VERONA: Venetoclax + Azacitidine in Treatment-Naive Patients With Higher-Risk MDS

• Randomized phase III trial

Patients with newly diagnosed MDS, IPSS-R >3 (intermediate, higher, very high risk); HSCT eligible; no previous HMA or venetoclax therapy; ECOG PS ≤2 (planned N = 500) Stratified by IPSS-R, HSCT eligible vs ineligible, geography

Venetoclax 400 mg QD (Days 1-14) + + Azacitidine 75 mg/m² (7 days within 9 calendar days/28-day cycle)

Placebo + Azacitidine 75 mg/m² (7 days within 9 calendar days/28-day cycle) Until relapse, disease progression, unacceptable toxicity, or HSCT

- Primary endpoints: CR, OS
- Secondary endpoints: transfusion independence, ORR, modified ORR, QoL, PRO

Aza + ven in MDS summary

- Good activity and higher response rates
 - Similar to AML
- Toxicity and neutropenia still an issue
 - Similar to AML
- Not very durable responses... Wait for phase III results
- Good for high risk and transition to transplant (getting into CR)

CPX-351 as First-line Treatment in Higher-Risk MDS: Study Design

- Prospective study involving 12 GFM centers
- Current analysis: cohort A (untreated patients)

Patients with IPSS Int-2 or high-risk MDS; no prior treatment; <70 yr of age (N = 31)

Induction* CPX-351 Daunorubicin 44 mg/m² Cytarabine Days 1, 3, 5

Optional allo-SCT

*If <PR, second induction cycle with same daily dose; Days 1, 3 only. Optional allo-SCT after 1-4 cycles

Consolidation ≤4 cycles in responders (same daily dose x 1 day) Optional allo-SCT after

Primary endpoint: response to induction (CR, CRi, or PR)

Evaluated Days 28-42; delays due to prolonged cytopenias

Responses evaluated using ELN 2017 criteria for AML and IWG 2006 criteria for MDS

Secondary endpoints: ORR (CR/CRi/PR/HI) to induction, EFS, DoR, OS, safety, MRD

CPX-351 as First-line Treatment in Higher-Risk MDS: Safety

Hematologic Recovery, Days (Range)	Patients (n = 31)
Median days to platelets >20 x 10 ⁹ g/L	16 (0-55)
Median days to platelets >50 x 10 ⁹ g/L	28 (8-51)
Median days to ANC >1 x 10 ⁹ g/L	26 (2-60)

AEs during induction

1 grade 3 mucositis

4 grade 1-2 alopecia

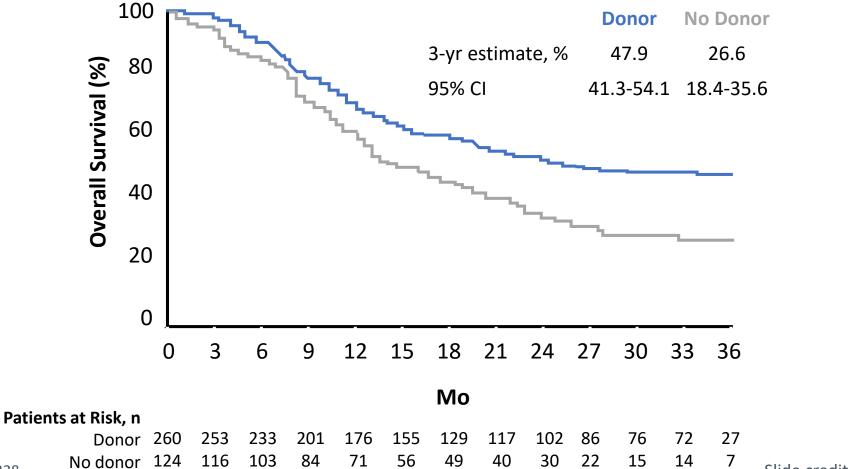
No deaths or ICU management required during induction

CPX-351 as First-line Treatment in Higher-Risk MDS: Investigators' Conclusions

CPX-351 is an effective first-line treatment for patients with higher-risk MDS/CMML, particularly to achieve blast clearance, and as a **bridge to allogeneic SCT**

Safety

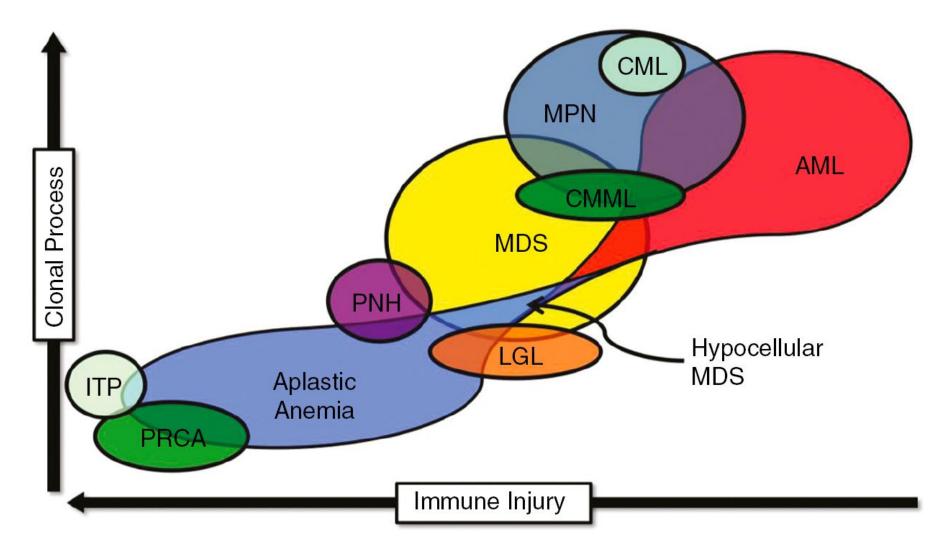
Myelosuppression not longer than classical 7 + 3 intensive chemotherapy


Mucous toxicity lower than 7 + 3, similar to that observed in AML

Normal karyotype was observed in most patients

RIC + Allogeneic HSCT Improves Survival in Higher-Risk MDS With Matched Donor

• BMT CTN 1102 study: N = 384 patients aged 50-75 yr with intermediate-2 or high-risk MDS


Nakamura. JCO. 2021;39:3328

Slide credit: clinicaloptions.com

What's new

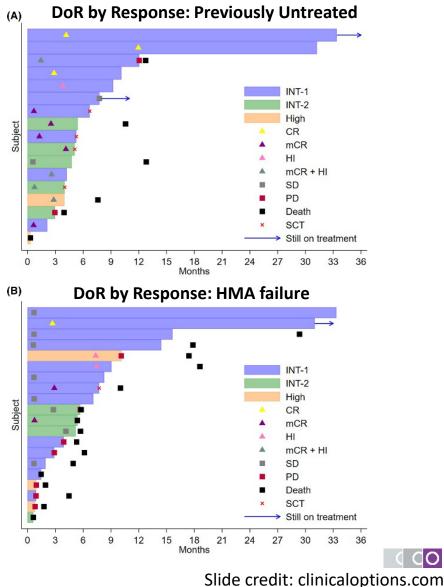
Immunotherapies... are we there yet?

Myeloid neoplasms – genetic + immune overlap

Gerds, A., Tiu, R., & Sekeres, M. (2016). Myelodysplastic/myeloproliferative neoplasm overlap syndromes. In R. Mesa & C. Harrison (Eds.), *Managing Myeloproliferative Neoplasms: A Case-Based Approach* (pp. 120-128). Cambridge: Cambridge University Press. doi:10.1017/CB09781316017852.015

Targets

- PD1/PDL1
- CD47
- TIM3

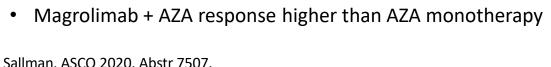

Phase II Trial: Azacitidine + Pembrolizumab in HR-MDS

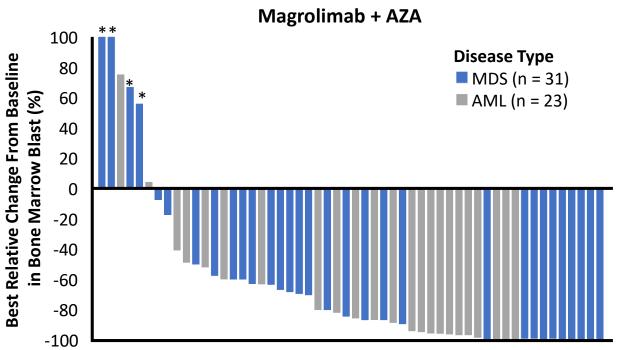
• N = 37 patients with intermediate-1 or higher-risk MDS

Result	Previously Untreated (n = 17)	HMA Failure (n = 20)
ORR, %	76	25
CR, %	18	5
Median OS, mo	Not reached	5.8
Median follow-up, mo	12.8	5.8

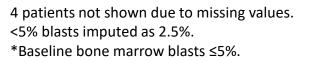
Most common toxicities: pneumonia (32%), arthralgias (24%), and constipation (24%)

Immune-related AEs requiring corticosteroids: 43%




Anti-Leukemic Activity is Observed with Magrolimab + AZA in MDS and AML

Best Overall Response*	1L MDS N = 33	1L AML N = 25
ORR	30 (91%)	16 (64%)
CR	14 (42%)	10 (40%)
CRi	-	4 (16%)
PR	1 (3%)	1 (4%)
MLFS/marrow CR	8 (24%) 4 with marrow CR + HI	1 (4%)
Hematologic improvement (HI)	7 (21%)	-
SD	3 (9%)	8 (32%)
PD	0	1 (4%)


*Response assessments per 2006 IWG MDS criteria and 2017 AML ELN criteria. Patients 🛛 🗖 with ≥ 1 post-treatment response assessment are shown. Patients not evaluable: 2 MDS patients (withdrawal of consent) and 3 AML (1 AE, 2 early withdrawal).

- Magrolimab + AZA ORR ٠
 - MDS: 91% ORR (50% CR) ٠
 - AML: 64% ORR (56% CR/CRi)
- Median time to response: 1.9 mo, more rapid than AZA alone ٠
- Magrolimab + AZA response higher than AZA monotherapy ٠

Patient

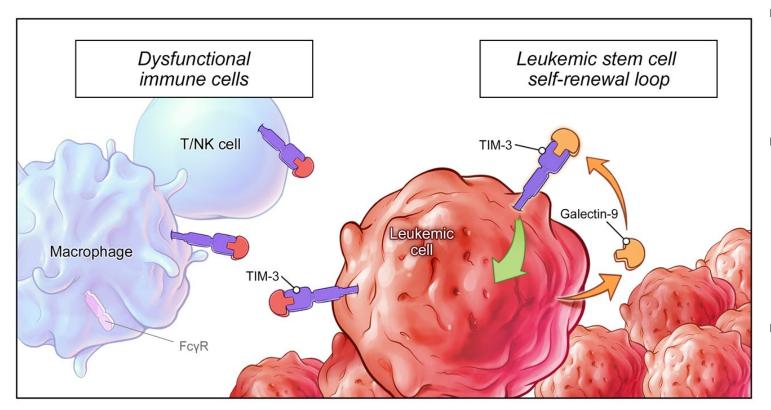
ENHANCE: Magrolimab + Azacitidine vs Placebo + Azacitidine in Treatment Naive Higher-risk MDS

• Randomized, double-blind, phase III trial

Patients with untreated intermediate to very high risk MDS by IPSS-R, adequate PS (Planned N = 520) Magrolimab* + + Azacitidine 75 mg/m² days 1-7

Placebo + Azacitidine 75 mg/m² days 1-7 Until disease progression, loss of benefit, unacceptable toxicity, or 5 yr

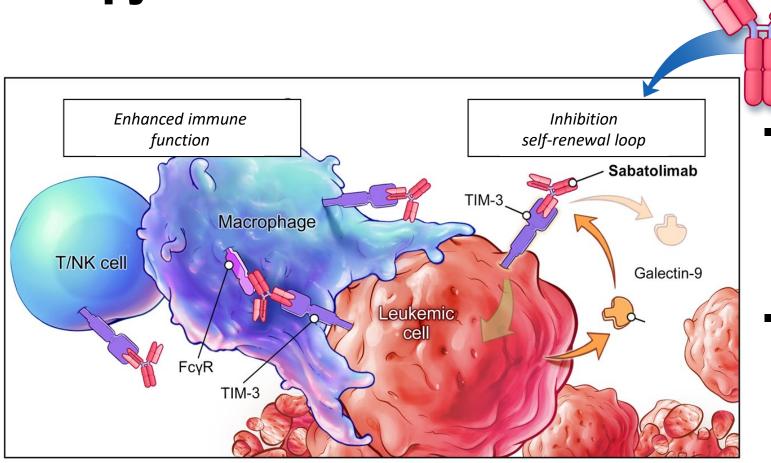
*Cycle 1: 1mg/kg priming dose on D1, D4; 15 mg/kg on D8; 30 mg/kg on D11, 15, 22. Cycle 2: 30 mg/kg once weekly (D1, 8, 15, 22). Cycle ≥3: 30 mg/kg Q2W on D1, D15.


- Primary endpoints: CR, OS
- Secondary endpoints: Duration of CR, ORR, DoR, RBC TI, PFS, EFS, MRD negative RR, time to transformation to AML, safety, PK

Open at OHSU but currently on hold – anticipate we will open again soon!!

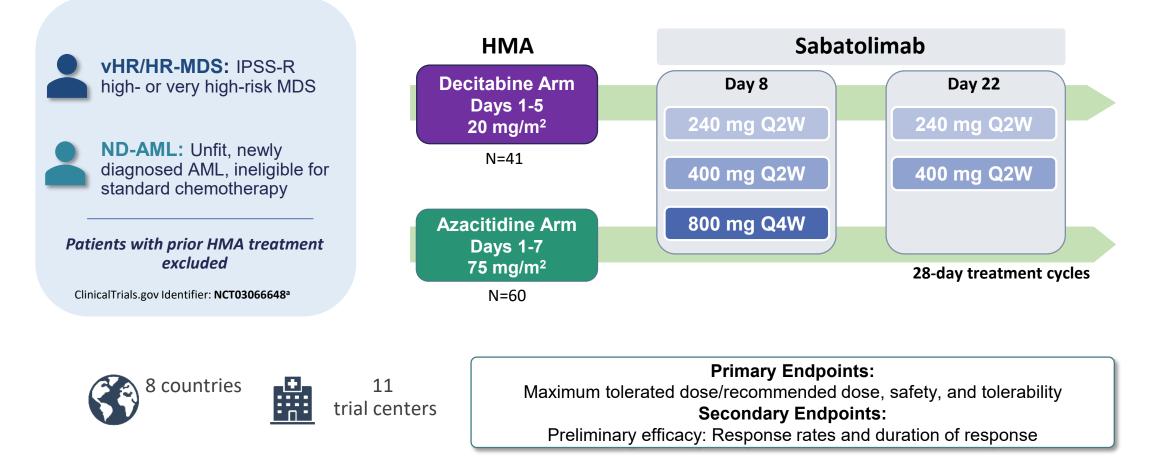
Other Agents Targeting CD47 in Development

Agent	Type of Agent	Patient Population	Phase	Trial Identifier
Lemzoparlimab (TJC4)	Anti-CD47 monoclonal Ab	Newly diagnosed patients not candidates for induction therapy (+ Aza)	II	NCT04202003
Evorpacept (ALX148)	Fusion protein, CD47/SIRPα	Newly diagnosed patients not candidates for induction therapy (+ Aza/Ven)	1/11	NCT04755244 (ASPEN-05)
TTI-622	Fusion protein, SIRPα-IgG4 Fc	Cohort: Older patients with newly diagnosed <i>TP53</i> wild- type AML (+ Aza/Ven) Cohort: Newly diagnosed <i>TP53</i> mutant AML (+ Aza)	Ι	NCT03530683
TTI-621	Fusion protein, SIRPα-IgG1 Fc	R/R hematologic malignancies	Ι	NCT02663518
DSP107	Bifunctional protein, CD47x41BB	R/R AML ≤2 prior therapies	Ι	NCT04937166


TIM-3 is an immuno-myeloid regulator expressed on immune and leukemic cells

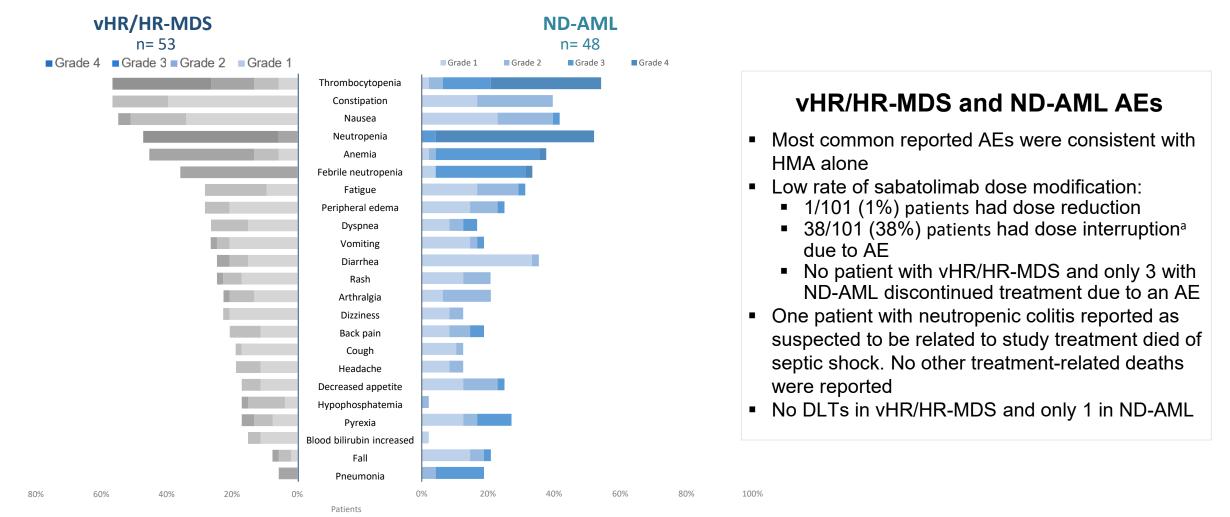
- TIM-3 plays a key role in regulating innate and adaptive immune responses^{1,2}
- TIM-3 is aberrantly expressed on LSCs and blasts, but not on normal HSCs,¹⁻⁵ which makes it a promising target in treatment for MDS and AML^{2,4,6}
- TIM-3/galectin-9 interaction forms an autocrine stimulatory loop, which promotes LSC selfrenewal^{2,7,8}

FcyR, Fc gamma receptor; HSC, hematopoietic stem cell; LSC, leukemic stem cell; NK, natural killer; TIM-3, T-cell immunoglobulin domain and mucin domain-3. 1. Pardoll DM. *Nat Rev Cancer*. 2012;12(4):252-264; 2. Das M, et al. *Immunol Rev*. 2017;276(1):97-111; 3. Kikushige Y, Miyamoto T. *Int J Hematol*. 2013;98(6):627-633; 4. Kikushige Y, et al. *Cell Stem Cell*. 2010;7(6):708-717; 5. Ngiow SF. *Cancer Res*. 2011;71(10):3540-3551; 6. Sakuishi K, et al. *Trends Immunol*. 2011;32(8):345-349; 7. Sabatos-Peyton C. AACR 2016. Oral presentation; 8. Borate U, et al. ASH 2019. Oral presentation.


Sabatolimab targets TIM-3 on immune and leukemic cells: A novel immuno-myeloid therapy

- Sabatolimab binds TIM-3 on immune cells, which enhances antileukemic immune function and phagocytic killing of LSCs and blasts¹⁻⁴
- Sabatolimab directly targets TIM-3 on LSCs, inhibiting TIM-3/galectin-9–driven self-renewal^{1,2}

1. Acharya N, et al. *J Immunother Cancer*. 2020;8(1):e000911; 2. Sabatos-Peyton C, et al. SITC 2020. Abstract 439; 3. Borate U, et al. *HemaSphere*. 2020;4(suppl 1):Abstract S185; 4. Borate U, et al. EHA 2020. Oral presentation.

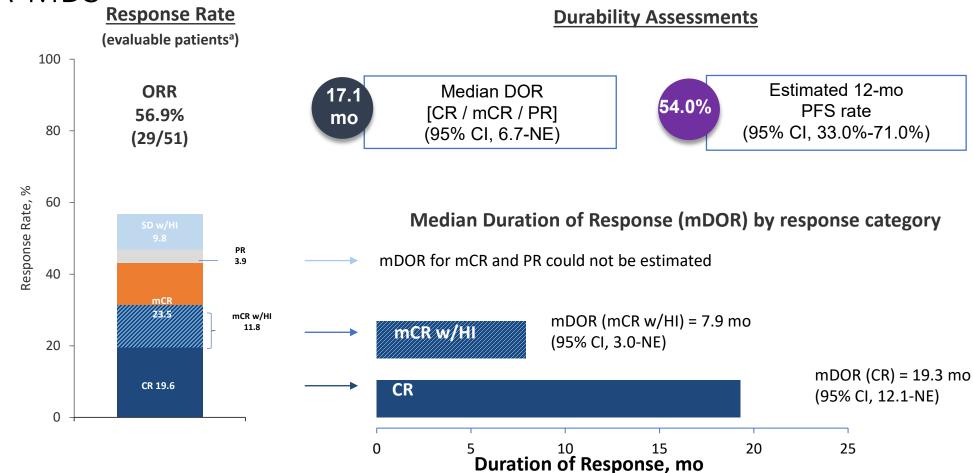

Trial design: Phase Ib study of sabatolimab + HMA in MDS and AML

^aMulti-arm, open-label, Phase Ib dose-escalation and -expansion study of sabatolimab as a single agent or in combination with HMAs or spartalizumab. AML, acute myeloid leukemia; HMA, hypomethylating agent; HR, high-risk; IPSS-R, Revised International Prognostic Scoring System; MDS, myelodysplastic syndrome; ND, newly diagnosed; Q2W, every 2 weeks; Q4W, every 4 weeks; vHR, very high-risk.

Sabatolimab + HMA was safe and well tolerated in patients with vHR/HR-MDS and ND-AML

Most commonly occurring AEs (≥15% in either population, regardless of relationship to treatment)

100%


Few patients had clinically significant possible imAEs with sabatolimab + HMA

	vHR/HR-MDS n=53		-AML =48
	Gr 1/2	Gr 1/2	Gr 3
Patients with possible imAEs regardless of relationship to study treatment ^a	7 (13.2)	5 (10.4)	5 (10.4)
Peripheral neuropathy	2 (3.8)	1 (2.1)	1 (2.1)
Acute febrile neutrophilic dermatosis	1 (1.9)	0	0
Autoimmune hepatitis	1 (1.9)	0	0
Dermatitis	1 (1.9)	1 (2.1)	0
Pericarditis	1 (1.9)	0	0
Pneumonitis	1 (1.9)	0	0
Arthritis	0	3 (6.3)	0
Colitis	0	1 (2.1)	1 (2.1)
Cutaneous vasculitis	0	0	0
Encephalopathy	0	0	1 (2.1)
Hemophagocytic lymphohistiocytosis	0	0	1 (2.1)
Hepatitis	0	0	1 (2.1)
Hypothyroidism	0	0	1 (2.1)
Immune-mediated lung disease	0	0	1 (2.1)

- 7/53 (13%) patients with vHR/HR-MDS and 10/48 (21%) patients with ND-AML experienced ≥1 possible imAEs
- No grade ≥3 possible imAEs were observed in patients with vHR/HR-MDS; no grade 4/5 possible imAEs were observed in patients with AML
- No patient with vHR/HR-MDS and 1 patient with ND-AML discontinued treatment due to a possible imAE suspected to be related to sabatolimab
- No serious late-onset sabatolimab-related imAEs were identified^b
- Of the 7 patients with vHR/HR-MDS who had an imAE, all achieved remission
- Among patients with ND-AML, the frequency of possible imAEs was similar regardless of remission status

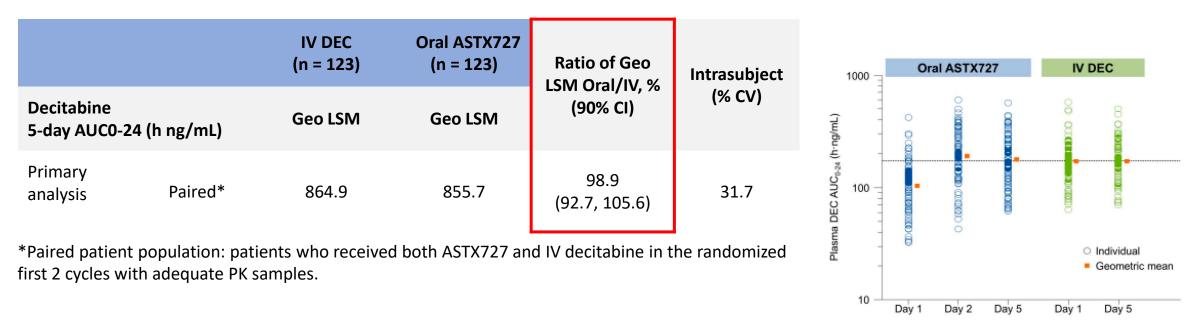
^aBased on maximum grade. Events retrieved based on pre-defined case retrieval strategy including MedDRA SMQ immune-mediated disorder terms. ^bEvents 150 days after last dose of sabatolimab

Sabatolimab + HMA demonstrates durable clinical responses in vHR/HR-MDS

^aEvaluable patients, including patients with a valid baseline and at least 1 postbaseline bone marrow assessment or if they had disease progression or disease-related death prior to the first marrow assessment.

CR, complete remission; DOR, duration of response; HI, hematologic improvement; mCR, bone marrow CR; mDOR, median duration of response; NE, not estimable; ORR, overall response rate; PFS, progression-free survival; PR, partial remission; SD, stable disease.

Conclusions


- Sabatolimab + HMA is well tolerated in MDS/AML
 - The most commonly observed AEs similar to HMA alone
 - Very few patients had clinically significant treatment-related possible imAEs
- Sabatolimab + HMA demonstrated durable clinical benefits in patients with vHR/HR-MDS and ND-AML
 - vHR/HR-MDS, ORR: 56.9%; Median DOR: 17.1 months (95% CI, 6.7-NE)
 - ND-AML, ORR: 42.5%; Median DOR: 12.6 months (95% CI, 5.2-18.0)
- Durable responses seen in patients with mutations conferring adverse risk
- The STIMULUS clinical trial program is evaluating sabatolimab-based combination therapy in multiple Phase II and III studies in MDS and AML

- Onureg approved for maintenance in AML
- Oral decitabine-cedurazedine approved for MDS
- Oral azacitidine-cedurazedine in clinical trials now

More tools for combinations, all oral regimens?

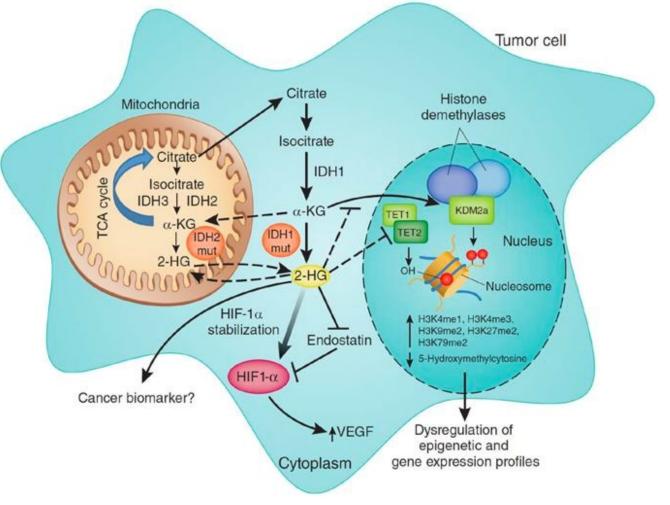
ASCERTAIN Primary Endpoint: 5-Day Decitabine AUC Equivalence

- Primary endpoint met: oral/IV 5-day decitabine AUC ~99% with 90% CI of ~93% to 106%
- All PK AUC analyses (sensitivity and secondary) confirmed findings from primary analysis

ASCERTAIN: Response in MDS/CMML (IRC)

Response Measure, n (%)	Treated Patients (N = 133)	95% CI
CR	29 (22)	15-29.8
PR	0	
Marrow CRMarrow CR with hematologic improvement	43 (32.3) 22 (16.5)	24.5-41.0 10.7-24.0
 Hematologic improvement HI: erythroid HI: neutrophils HI: platelet 	10 (7.5) 2 (1.5) 1 (0.8) 7 (5.3)	3.7-13.4 0.2-5.3 0.0-4.1 2.1-10.5
Overall response (CR + PR + marrow CR + HI) PD No response NE 	82 (61.7) 6 (4.5) 28 (21.1) 17 (12.8)	52.8-69.9 1.7-9.6 14.5-29.0 7.6-19.7

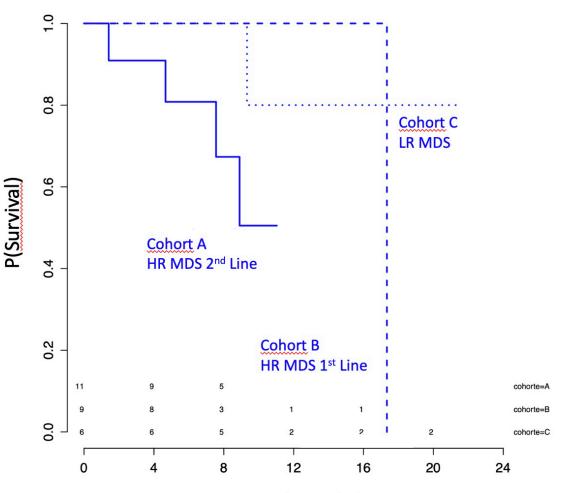
*Patients becoming transfusion independent (n)/patients transfusion dependent at baseline.


- Median duration of CR was 14.0 mo, and median duration of best response was 12.7 mo
- 26% of patients proceeded to hematopoietic cell transplantation

What's new

Targeted therapies

IDH1/2 inhibitors in myeloid malignancies


- IDH mutations cause production of 2-HG instead of α-KG
- 2-HG inhibits TET2 and methylation of DNA
- This blocks normal maturation of white blood cells
- Drugs developed to block the mutated IDH1 or IDH2 proteins

Prensner JR and Chinnaiyan AM Nature Medicine 2011

Promising data with IDH inhibitors in MDS

- Enasidenib for IDH2m in MDS
 - 3 cohorts
 - A failed HMA
 - B High Risk MDS 1st line therapy
 - C Low risk
 - Tolerable safety profile
 - N=26 patients
 - ORR (42 %) 11 patients
 - 6 CR (55%), 2 PR (18%), 2 mCR with HI (18%)
 - Encouraging results
 - Study ongoing

Time (months)

Promising data with IDH inhibitors in MDS

- Ivosidenib for IDH1m in MDS
 - 3 cohorts
 - A failed HMA
 - B High Risk MDS 1st line therapy
 - C Low risk
 - Tolerable safety profile
 - N=32 patients
 - ORR 69% (18 patients)
 - CR (46%) 12 patients, 1 PR and 5 HI
 - Encouraging results
 - Study ongoing

Trials for MDS at OHSU

<u>Low risk</u>

• ASTEX-03 – oral decitabine for low risk AML

Immunotherapy

- Aza + magrolimab phase III (hope to re-open soon)
- anti-TIM3 antibody sabatolimab opening soon

Targeted agents

• IDH1 inhibitor for R/R MDS

Thank you!

• traere@ohsu.edu