The 60,000-square-foot building will be the Genetics Division, vision rehabilitation and a special glass panels in the sky bridge that structure’s glass and metal façade is taking for completion next summer. The five-story will connect to the existing Casey facility on pediatric patients and will also house the nation’s first freestanding eye institute for community outreach.

Contrasting colors used throughout to help patients safely navigate their surroundings and dark, quiet areas for dilating patients.

Welcoming outdoor areas, including a sensory garden with seating and pathways.

Less than two years after breaking ground, the expansion project demonstrates Casey’s strong commitment to ending preventable blindness in Oregon and beyond,” said Casey director David Wilson, M.D., adding that it will give Casey the necessary tools, technology and collaborative space to build on its strengths in patient care, research and community outreach.

The new facility will help grow patient capacity by a third in 10 years and enable gene therapy clinical trials and treatments to quadruple in five years.

The $50 million building is made possible by a $30 million pledge from the Oregon State Beavers, a $57 million donation from the Wold family, a $3 million bequest from Paul Casey and numerous gifts from other generous supporters.

“The expansion project demonstrates Casey’s strong commitment to ending preventable blindness in Oregon and beyond.”

“The expansion project demonstrates Casey’s strong commitment to ending preventable blindness in Oregon and beyond,” said Casey director David Wilson, M.D., adding that it will give Casey the necessary tools, technology and collaborative space to build on its strengths in patient care, research and community outreach.

The new facility will help grow patient capacity by a third in 10 years and enable gene therapy clinical trials and treatments to quadruple in five years. The $50 million building is made possible by a $30 million pledge from the Oregon State Beavers, a $57 million donation from the Wold family, a $3 million bequest from Paul Casey and numerous gifts from other generous supporters.

Completion of New Eye Clinic Building within View

“The expansion project demonstrates Casey’s strong commitment to ending preventable blindness in Oregon and beyond,” said Casey director David Wilson, M.D., adding that it will give Casey the necessary tools, technology and collaborative space to build on its strengths in patient care, research and community outreach.

The new facility will help grow patient capacity by a third in 10 years and enable gene therapy clinical trials and treatments to quadruple in five years. The $50 million building is made possible by a $30 million pledge from the Oregon State Beavers, a $57 million donation from the Wold family, a $3 million bequest from Paul Casey and numerous gifts from other generous supporters.

Researchers Join Forces in Tackling Glaucoma

Glaucoma is a sneaky disease. Its damage is subtle and gradual, and may even begin before you notice a problem with your eyesight. However, its effects are irreversible and can lead to significant visual disability.

Nearly 3 million Americans are living with glaucoma, considered a leading cause of permanent blindness worldwide. Although the disease does not cause pain, it slowly damages the optic nerve, leading to a dilated eye exam and evaluated with medical, laser and surgical treatments, in many cases, those measures may be too late, too late.

While some glaucoma cases are related to a specific medical condition, more and why the disease develops remains unclear. For the majority of cases.

At OHSU Casey Eye Institute, scientists are working together to better understand glaucoma’s underlying mechanisms, gaining insights that will lead to new and more effective ways to diagnose and treat glaucoma before damage occurs.

Their accomplishments are an outgrowth of Casey’s decades of leadership in the field of glaucoma research. Although the disease has thwarted the international research community’s ability to attract significant funding from the National Institutes of Health, Research to Prevent Blindness and other leading organizations. In October, Casey scientists Ted Acott, Ph.D., John Morrison, M.D., and other glaucoma researchers played prominent roles in a symposium sponsored by the International Society for Eye Research and the Bright Focus Foundation.

“Many patients are affected by the limitations, costs and side effects of our current therapies. This is what drives the collaborations between practitioners and researchers, creating a sense of urgency to address all aspects of the disease,” said Beth Edwards, M.D., Ph.D., director of Casey’s glaucoma division and associate professor of ophthalmology.

Researchers Join Forces in Tackling Glaucoma

Glaucoma is a sneaky disease. Its damage is subtle and gradual, and may even begin before you notice a problem with your eyesight. However, its effects are irreversible and can lead to significant visual disability.

Nearly 3 million Americans are living with glaucoma, considered a leading cause of permanent blindness worldwide. Although the disease does not cause pain, it slowly damages the optic nerve, leading to a dilated eye exam and evaluated with medical, laser and surgical treatments, in many cases, those measures may be too late, too late.

While some glaucoma cases are related to a specific medical condition, more and why the disease develops remains unclear. For the majority of cases. At OHSU Casey Eye Institute, scientists are working together to better understand glaucoma’s underlying mechanisms, gaining insights that will lead to new and more effective ways to diagnose and treat glaucoma before damage occurs.

Their accomplishments are an outgrowth of Casey’s decades of leadership in the field of glaucoma research. Although the disease has thwarted the international research community’s ability to attract significant funding from the National Institutes of Health, Research to Prevent Blindness and other leading organizations. In October, Casey scientists Ted Acott, Ph.D., John Morrison, M.D., and other glaucoma researchers played prominent roles in a symposium sponsored by the International Society for Eye Research and the Bright Focus Foundation.

“Many patients are affected by the limitations, costs and side effects of our current therapies. This is what drives the collaborations between practitioners and researchers, creating a sense of urgency to address all aspects of the disease,” said Beth Edwards, M.D., Ph.D., director of Casey’s glaucoma division and associate professor of ophthalmology.

DIFFERENT ANGLES OF INVESTIGATION

Glaucoma affects the area in front of the lens (anterior) as well as the back of the eye (posterior), and researchers typically focus their work on one of these regions.

At the Lantern Biomedical Research Building on the OHSU campus, NSF-supported investigators such as Lance Wills, Ph.D., are studying the molecular properties that
The year 2020 is a great opportunity to consider the Thiele-Petti Chair, Department of Ophthalmology.

Yet much work remains to improve Oregon’s vision and reduce blindness.

Sincerely,

While it may seem strange to measure the vision of a state, this noninvasive technology allows you to read in this issue, this noninvasive technology will target will require greater public awareness and demonstration that we are making headway in our mission to exhibit that celebrates the wonder of vision and reduces suffering from blindness.

Many of our programs are due to such remarkable developments in visual science. Here, you will read about these discoveries is that they will contribute to reducing the prevalence and impact of eye disease.

HIROYUKI NAKAI, M.D., PH.D., received a $300,000 award from Research to Prevent Blindness. The competitive grant program provides a five-year, $765,000 NIH grant to train vision research scientists. The award recognizes Nakai’s scientific contributions to our understanding of how the aqueous humor flows through the trabecular meshwork and into the Schlemm’s canal.

Much of this impressive work is based on the research of Kate Keller, Ph.D., an associate professor of ophthalmology. For Kate Keller, Ph.D., understanding how proteins in the TM regulate eye pressure may lead to new glaucoma therapies, said Morrison, explaining that scientists also want to understand the changes that occur in the back of the eye when eye pressure is elevated, especially before glaucoma is detected.

She and Morrison, whose lab is zeroing in on genes linked to susceptibility to elevated eye pressure, were recently awarded a major grant from the BrightFocus Foundation for new neuroprotective glaucoma therapies. Tehrani and his colleagues are now determining how retinal blood flow in seconds.

For Kate Keller, Ph.D., “the eye is only part of the story,” said Morrison, explaining that scientists also want to understand the changes that occur in the back of the eye when eye pressure is elevated, especially before glaucoma is detected.

Morrison, whose lab is zeroing in on genes linked to susceptibility to elevated eye pressure, was recently awarded a major grant from the BrightFocus Foundation for new neuroprotective glaucoma therapies.

The eye is a very complex organ, but that is only part of the story,” said Morrison, explaining that scientists also want to understand the changes that occur in the back of the eye when eye pressure is elevated, especially before glaucoma is detected.

Morrison, whose lab is zeroing in on genes linked to susceptibility to elevated eye pressure, was recently awarded a major grant from the BrightFocus Foundation for new neuroprotective glaucoma therapies.

The eye is a very complex organ, but that is only part of the story,” said Morrison, explaining that scientists also want to understand the changes that occur in the back of the eye when eye pressure is elevated, especially before glaucoma is detected.

Morrison, whose lab is zeroing in on genes linked to susceptibility to elevated eye pressure, was recently awarded a major grant from the BrightFocus Foundation for new neuroprotective glaucoma therapies.

The eye is a very complex organ, but that is only part of the story,” said Morrison, explaining that scientists also want to understand the changes that occur in the back of the eye when eye pressure is elevated, especially before glaucoma is detected.

Morrison, whose lab is zeroing in on genes linked to susceptibility to elevated eye pressure, was recently awarded a major grant from the BrightFocus Foundation for new neuroprotective glaucoma therapies.

The eye is a very complex organ, but that is only part of the story,” said Morrison, explaining that scientists also want to understand the changes that occur in the back of the eye when eye pressure is elevated, especially before glaucoma is detected.

Morrison, whose lab is zeroing in on genes linked to susceptibility to elevated eye pressure, was recently awarded a major grant from the BrightFocus Foundation for new neuroprotective glaucoma therapies.

The eye is a very complex organ, but that is only part of the story,” said Morrison, explaining that scientists also want to understand the changes that occur in the back of the eye when eye pressure is elevated, especially before glaucoma is detected.

Morrison, whose lab is zeroing in on genes linked to susceptibility to elevated eye pressure, was recently awarded a major grant from the BrightFocus Foundation for new neuroprotective glaucoma therapies.

The eye is a very complex organ, but that is only part of the story,” said Morrison, explaining that scientists also want to understand the changes that occur in the back of the eye when eye pressure is elevated, especially before glaucoma is detected.

Morrison, whose lab is zeroing in on genes linked to susceptibility to elevated eye pressure, was recently awarded a major grant from the BrightFocus Foundation for new neuroprotective glaucoma therapies.

The eye is a very complex organ, but that is only part of the story,” said Morrison, explaining that scientists also want to understand the changes that occur in the back of the eye when eye pressure is elevated, especially before glaucoma is detected.

Morrison, whose lab is zeroing in on genes linked to susceptibility to elevated eye pressure, was recently awarded a major grant from the BrightFocus Foundation for new neuroprotective glaucoma therapies.

The eye is a very complex organ, but that is only part of the story,” said Morrison, explaining that scientists also want to understand the changes that occur in the back of the eye when eye pressure is elevated, especially before glaucoma is detected.

Morrison, whose lab is zeroing in on genes linked to susceptibility to elevated eye pressure, was recently awarded a major grant from the BrightFocus Foundation for new neuroprotective glaucoma therapies.

The eye is a very complex organ, but that is only part of the story,” said Morrison, explaining that scientists also want to understand the changes that occur in the back of the eye when eye pressure is elevated, especially before glaucoma is detected.

Morrison, whose lab is zeroing in on genes linked to susceptibility to elevated eye pressure, was recently awarded a major grant from the BrightFocus Foundation for new neuroprotective glaucoma therapies.

The eye is a very complex organ, but that is only part of the story,” said Morrison, explaining that scientists also want to understand the changes that occur in the back of the eye when eye pressure is elevated, especially before glaucoma is detected.