
Iron!

Tom DeLoughery, MD MACP FAWM @bloodman **Oregon Health & Science University**

HEMATOLOGY

DISCLOSURE

<u>Current Relevant Financial Relationship(s)</u>
None

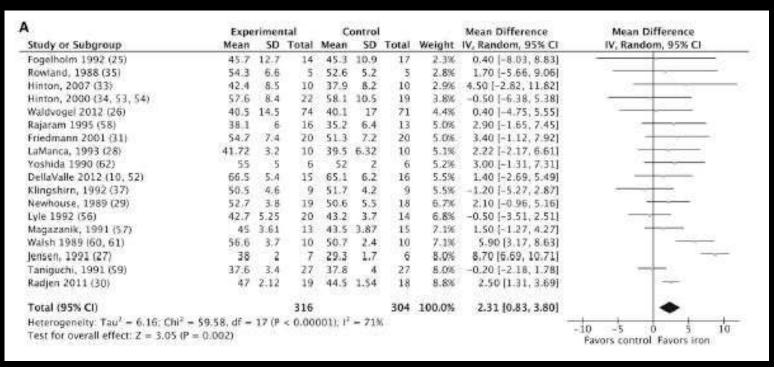
Key Concepts

- Iron is good!
- Iron deficiency diagnosis and treatment

Iron Deficiency alone – without anemia – leads to symptoms

Non Blood Effects of Fe Deficiency

- Iron is important in a variety of enzyme system
- Muscle second greatest user of iron
- CNS iron also important
- Iron deficiency important above and beyond just anemia


Iron for Fatigue

- Two RCT with oral iron show benefit with ferritin < 50 ng/mL
- Should be consider for fatigue and ferritin < 50 ng/mL

Iron and Athletes

- 33-80% of female athletes and 10-17% of male iron deficient
- Lack of iron effects:
 - Maximal exercise ability
 - Endurance
 - -Strength
 - Cold tolerance

Benefit of treating Non-Anemic Fe Def: VO₂max

J. Nutr. 144: 906-914, 2014.

Submaximal

A	Exp	eriment	tal		Control			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Rowland, 1988 (35)	165	14	7	175	13	7	5.1%	-10.00 [-24.15, 4.15]	
Hinton, 2007 (33)	149	13	10	153	15	10	6.8%	-4.00 [-16.30, 8.30]	
LaManca, 1993 (28)	164	9.49	10	172	12.65	10	10.7%	-8.00 [-17.80, 1.80]	
Hinton, 2000 (34, 53, 54)	170	14.07	22	170	13.08	19	14.8%	0.00 (-8.32, 8.32)	-
Zhu, 1998 (36, 63)	171	9	20	176	10	17	26.8%	-5.00 [-11.18, 1.18]	
Friedmann 2001 (31)	178	7	20	181	. 10		35.8%	-3.00 (-8.35, 2.35)	
Total (95% CI)			89	į		83	100.0%	-4.05 [-7.25, -0.85]	•
Heterogeneity: Tau2 = 0.00; Chi2	= 2.45, df = 1	$5 \cdot IP = I$	0.781:1	= 0%				19	10 10 10 10 10
est for overall effect: Z = 2.48 P = 0.01)							-20 -10 0 10 20 Favors iron Favors control		

5	Expe	Control			Mean Difference		Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Rowland, 1988 (35)	71.1	10.4	5	82.1	9.1	5	3.2%	-11.00 [-23.11, 1.11]	
LaManca, 1993 (28)	76.2	6.32	10	80.8	6.64	10	11.3%	-4.60 [-10.28, 1.08]	
Hinton, 2000 (34, 53, 54)	61.8	7.04	22	50.7	6.71	20	16.9%	1.10 [-3.06, 5.26]	
Zhu, 1998 (36, 63)	83	6.3	20	88.5	5.2	17	19.2%	-5.50 [-9.21, -1.79]	
Klingshirn, 1992 (37)	74.22	3	9	77.16	3.73	9	22.5%	-2.94 [-5.07, 0.19]	
Friedmann 2001 (31)	86	4	20	87	4	20	26.8%	-1.00 [-3.48, 1.48]	-
Total (95% CI)			86			81	100.0%	-2.68 [-4.94, -0.41]	•
Heterogeneity: Tau1 = 3.40; Chi	= 9.25, df = !	5 (P =	0.10);	z = 469	6			STATE OF STATE	45 45 45 3
Test for overall effect: $Z = 2.31$	(P = 0.02)								-20 -10 0 10 2 Favors iron Favors contr

FIGURE 3. Effects of daily iron supplementation on submaximal exercise performance in women of reproductive age. Daily iron

J. Nutr. 144: 906–914, 2014.

Iron and Athletes

- Low iron even without anemia affects performance
 - Decrease muscle stores?
- Consider screening female athletes
- Check fatigued athletes
- RCT show improvement in performance treating non-anemic iron deficiency

Other Effects of Low Iron

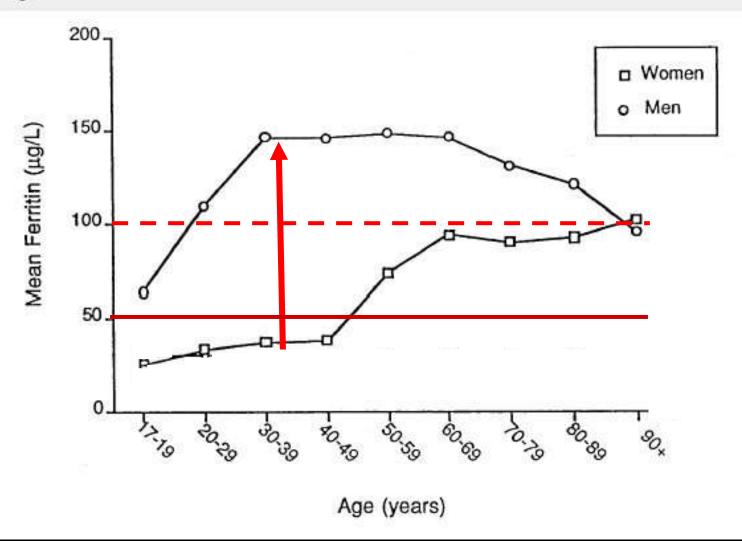
- Restless legs
 - -Ferritins < 100 ng/mL</p>
 - -Lack of CNS Iron
- Alopecia
 - -Ferritins < 100 ng/mL
- Pulmonary hypertension
- Heart failure
- Acute mountain sickness

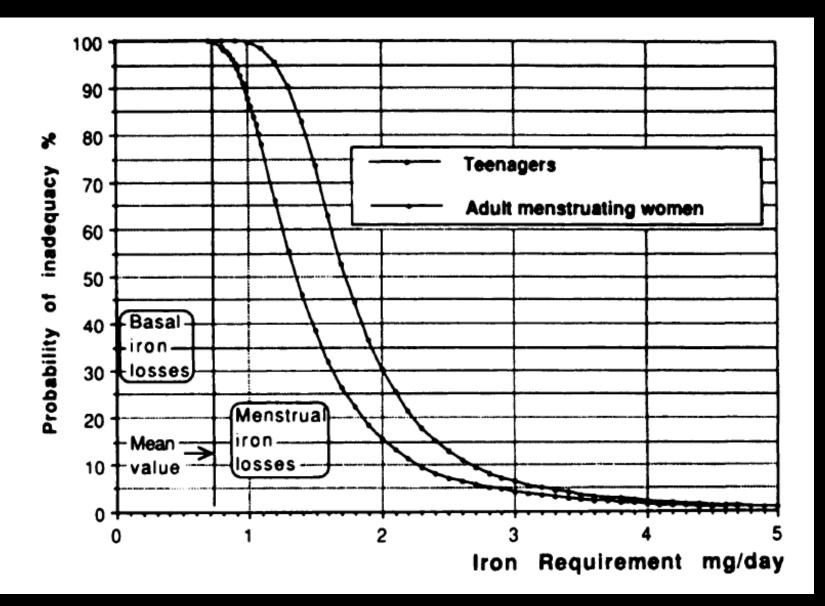
Most women are iron deficient

Statistical Iron Deficiency

- Laboratory values for ferritin reflect arbitrary criteria and not physiology
- Ranges of "normal" unrealistic for:
 - -Women
 - Older patients

Women and Iron


- No physiologic reason that women should have different ranges of normal for ferritin
 - -85% of 20 year old men have ferritin over 50 ng/mL
 - -25% of 20 year old women do
- Often overlooked cause of fatigue
 - Benefit of raising ferritin > 50 ng/mL


Iron Requirements

- Men: 14 ug/kg/day
 - −~ 1mg/day
- Women:
 - -~2.4-3.4 mg/day

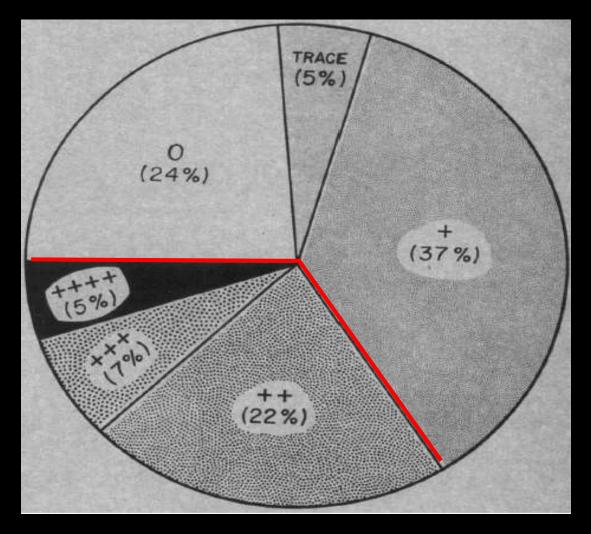

Gender and Ferritin

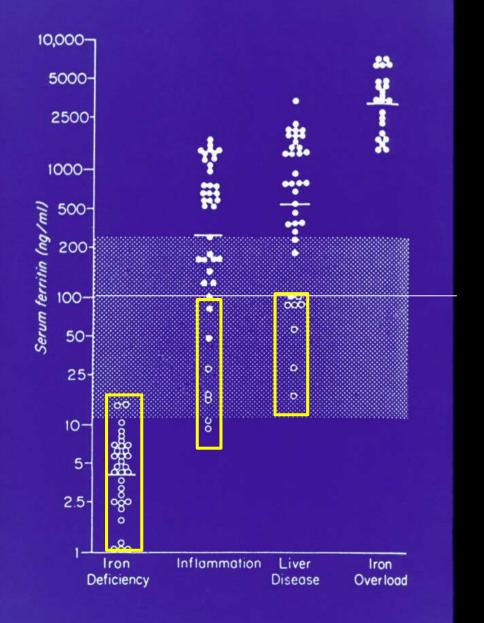
Figure 1

Most Women have Low Iron Stores

JAMA, Mar 1967; 199: 897 - 900

The serum ferritin is the best – and only test-needed to diagnose iron deficiency

Diagnosis of Iron Deficiency Anemia

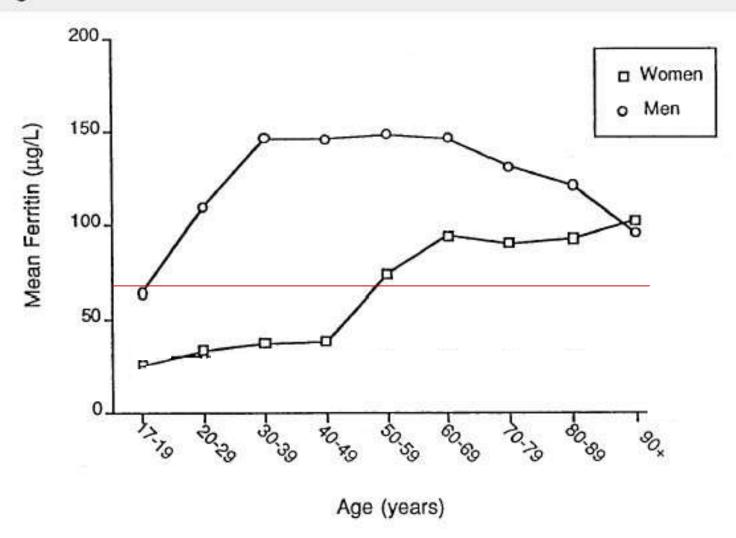

- MCV
- Serum iron
- TIBC
- Iron saturation
- Ferritin
- Bone marrow tests

Testing for Iron Deficiency

- "Classic" tests only helpful in few patients
- Tests affected by concurrent illness and age
 - -Fe: VARIES WILDLY
 - MCV: lacks sensitivity and specificity
 - -RDW: totally and completely worthless
 - Saturation: low in both ACD and iron deficiency

Serum Ferritin

- Serum ferritin proportional to iron stores
- Needs iron to be produced
 - –Acute phase reactant only in presence of iron
- Most accurate non-invasive test of iron stores!


N Engl J Med. 1974 May 30;290(22):1213-6.

Iron Deficiency

- Serum ferritin is <u>BEST</u> non-invasive test of iron status
 - -> 100 ng/mL rules out iron deficiency
 - Lower limit changes with age and condition
 - Patient over 65 with ferritin < 50 ng/mL all iron deficient

Age and Ferritin

Figure 1

Guyatt Review

- Ferritin only blood test to order
- Laboratory cut-off not optimal
- Likelihood of iron deficiency does not fall until ferritins > 40ng/mL
 - -> 70ng/mL with inflammation
- Ferritins > 100 ng/mL rule-out iron deficiency

J Gen Intern Med. 1992 Mar-Apr;7(2):145-53

Ferritin: Bottom Line

- Ignore lab reference ranges!
 - < 15 ng/ml 100% specific
 - > 100 ng/ml rules-out
- In older patients ferritins
 - < 100ng/ml consider Gl work-up

Athletes: Ferritin

- All agree ferritins < 20ng/dl
- Literature goes up to 60ng/dl
- Two choices
 - < 50ng/dl if symptomatic</p>
 - -< 20ng/dl or < 35ng/dl and < 20% saturation</p>

Functional Iron Deficiency

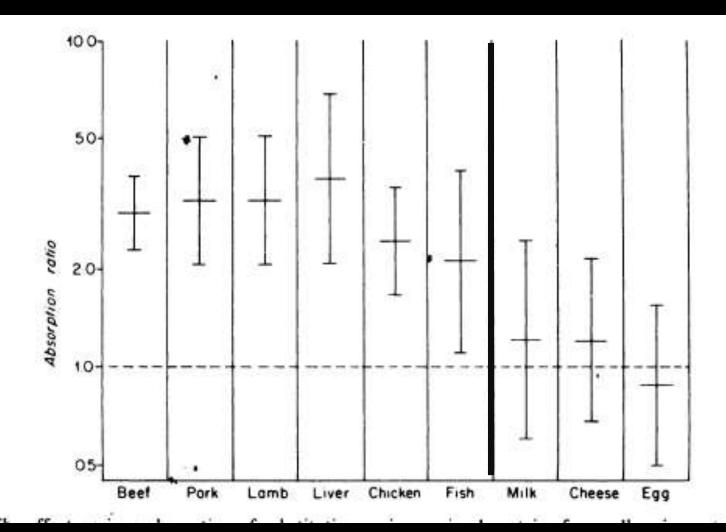
- Ferritins < 100: lack of marrow iron
- Ferritins > 100 but low sat: Failure to mobilize iron
 - Epo treatment
 - Heart failure
 - Anemia of chronic disease
- Hepcidin blockers?
- Aggressive IV iron

Trial of Oral Iron

- Effected by inflammation and compliance
- Useful in young women

Bone Marrow

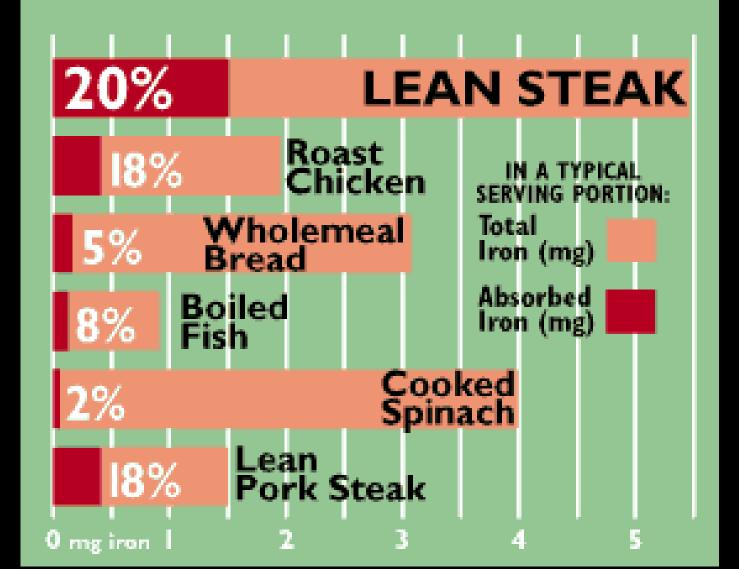
- Direct measure of iron stores
- "Gold standard"
- Invasive and expensive


Summary

- RDW, serum iron, saturation: worthless
- TIBC: specific but not sensitive
- Ferritin: best non-invasive test
- Bone marrow: gold standard

Diet does matter

Dietary Iron


- Heme iron 10x better absorbed than non-heme iron
- Meat protein improves iron absorption

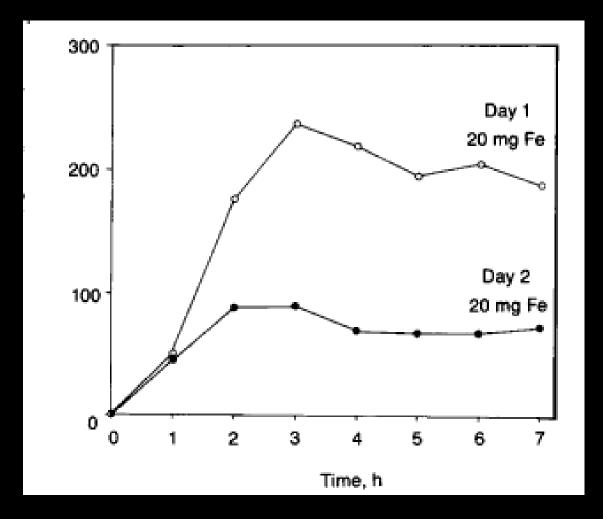
Am J Clin Nutr **August** 1976 vol. 29 no. 8 859-867

Dietary Iron

- Calcium, fiber can block iron absorption
 - Overcome by vitamin C
- Tea decreases 75-80%
- Coffee decreases 60% (5 oz!)

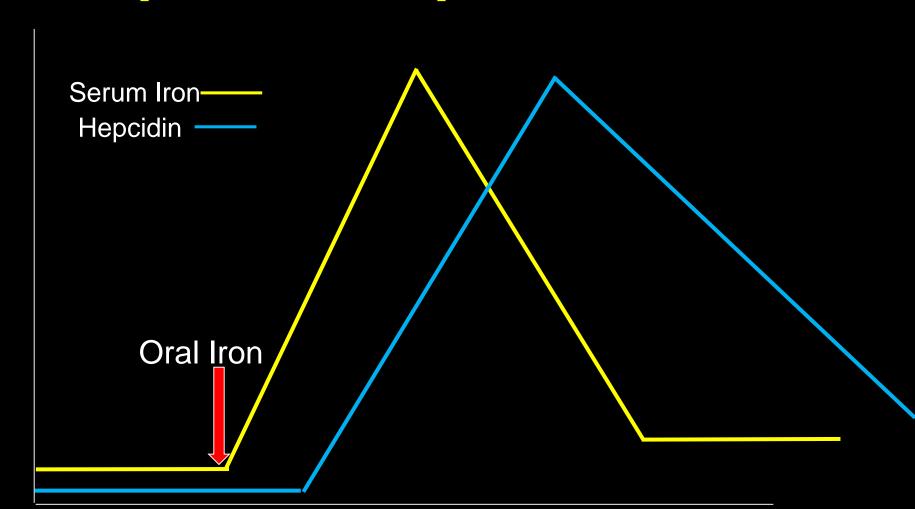
What I Tell my Patients

- If feasible increase meat in diet
- Try not to drink tea or coffee with meat
- Vitamin C helps iron asorption


Iron Skillets

- Does increase iron in food
- Amount variable
 - Acidic food
 - -Time cooked
- Spaghetti sauce
 - -0.22 mg fe/100g -> 2.10 mg fe/100g
- Apple sauce
 - 0.26 mg fe/100g -> 6.26 mg fe/100g
- Journal of Food Science 1991, 56 (2), 584-585

Iron pills – a little goes a long way


Oral Iron Pills

- Gut can only absorb a limited amount of iron
- Maxed out at ~ 10mg

(Arcin Intern Med 1987;147:489-491)

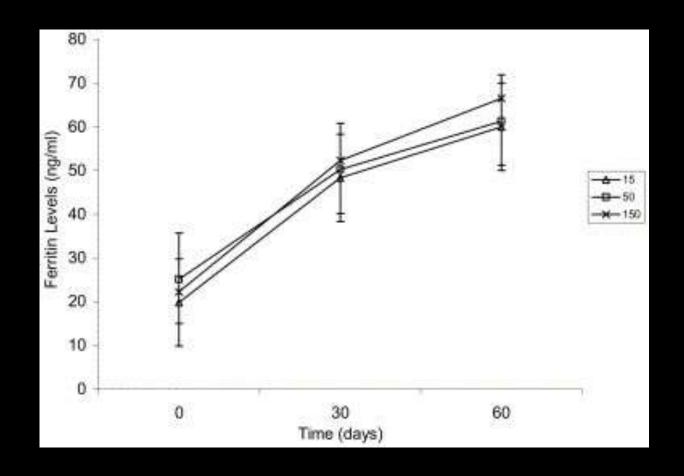
Hepcidin Response to Iron

Does Alternate-Day Dosing of Oral Iron Therapy Improve Iron Absorption?

Allan S. Brett, MD, reviewing Stoffel NU et al. Lancet Haematol 2017 Oct 9

Daily Dosing 14 days

Alternate-Day Dosing 28 days


0	M 0 0	0	0 0	T 0 0	F 0	0	16%	Fractional Absorption	21%	0	M 0	0	0 0	0	F 0	0
131			3	1 mg	Total Absorption	175										

Comment: Fractional absorption was better with alternate-day dosing, but total absorption would still have been better with daily dosing if that group had received 28 days of iron. Alternate-day dosing likely enhanced gastrointestinal tolerability.

NEJM lournal Watch

But 28 days of daily iron = 262 mg absorbed

15 vs 50 vs 150mg Oral Iron

Am J Med. 2005 Oct;118(10):1142-7.

Oral Iron Pills

 Years of studies have shown that the best iron preparation is....

Oral Iron Pills

-the one that the patient can tolerate
- No consistent difference in any brand
- Many patients can't tolerate any pill on an empty stomach
 - -Ok with meals

What I Do

- Cheapest iron pill
 - -Ferrous sulfate
- Once a day with meals
 - -Vitamin C 500
 - No tea or coffee
- If intolerant can try lower dose

Response to Oral Iron

 Best predictor of response is rise in hemoglobin by 1 g/dl in two weeks

At What Ferritin are Iron Stores Replete?

- GI iron absorption goes back to backline only at ferritin of 60 ng/mL
- Falling from 70 to 35 ng/mL muscle loss iron
- Alopecia and restless legs seen at < 100 ng/mL
- Maybe 50-100 ng/mL a reasonable goal for repletion

All iron deficiency has a cause!

Contributors to Iron Deficiency

GI

- **NSAIA 10-15%**
- Colon Ca 5-10%
- Gastric Ca 5%
- Ulcers 5%
- Angiodysplasia 5%
- Esophagitis 2-4%
- Esophageal Ca 1-2%

Non-Gl

- Menstruation 20-30%
- Celiac disease 4-6%
- Bariatric surgery 1%

Iron Deficiency: GI Evaluation

- Most patients with identifiable source of Gl blood loss
- Very high number with tumors
- Most common cause of missed cancer diagnosis
- Who to evaluate?
 - -All men
 - Women > 40 or with GI symptoms

Don't be afraid to use IV iron

Parental Iron Therapy

- When to use
 - Refractory to oral iron
 - Unable to take oral iron
 - Cannot keep up with blood loss
 - Bariatric surgery
 - Inflammatory bowel disease
 - Chronic GI bleeding

IV Iron: Preparations

- Iron MW Iron Dextran: INFeD
- Iron Sucrose: Venofer
- Iron Gluconate: Ferrlecit
- Ferumoxytol: FeraHeme
- Ferric carboxymaltose: Injectafer
- Ferric derisomaltose: Monoferric

Dosing

- Iron dextran: 1-3 grams at once
- Venofer: 2-300 mg/day
- Ferrlecit: 250mg/day
- FeraHeme: 510 -1020mg mg/day
- Injectafer: 750mg/day
- Monoferric: 1000mg/day

Dosing IV Iron

- Replacement formulas inaccurate
- Give 1000mg
 - -Recheck in 4 weeks
 - If severe anemia recheck in two weeks

Safety

- Minor infusion reactions common (~1-2%) but true anaphylaxis very rare
- Death rates (per 100,000)
 - -INFeD 0.8 (0-1.9)
 - -Ferrlecit 6.3 (1.311.4)
 - -Venofer 6.6 (3.1-9)
 - -FeraHeme 3.5 (0-7.8)

Reactions

- Complement mediated pseudoallergy
- Drug non-specific activated complement
 - -Similar to rituximab etc.
- True anaphylaxis very rare
 - Negative tryptase > 200 reactions

Implication

- No value test dose
- Premedication often doesn't help
- Diphenhydramine makes things worse
- Treat as infusion reaction not allergy
- Studies show risk same with all iron preparations

Refractory Iron Deficiency

- Patient is "refractory" to IV iron
- Not getting enough iron
- Frequent ferritin checks infusions
- Goal ferritin > 100

Trends in Iron Deficiency

- Incidence of iron deficiency is increasing
 - —Reduction in meat intake
 - -Increase PPI/H2 blockers
 - Increase in bariatric procedures

Trends in Iron Deficiency

- Understanding variability in iron absorption
 - -TMPRSS6
 - Key enzyme in iron metabolism
 - Multiple polymorphism in population
 - Homozygous mutations with refractory iron deficiency
 - Heterozygous with decrease absorption

Remember!

- Iron is good!
- Ferritins > 50 ng/mL are good
- Oral iron
 - One pill/day
 - -With vitamin C
 - -With meat if feasible

