A Multidisciplinary Central Nervous System Clinic Model for Radiation Oncology and NeuroSurgery (RADIANS)

Three-Year Experience for Brain and Skull Base Lesions in a Community Hospital Setting

Wencesley Paez, MD
Department of Radiation Medicine
Department of Neurological Surgery
Oregon Health and Science University
Tuality-OHSU Cancer Center
Wencesley Paez, MD

Nothing To Disclose
Outline

• Background
• Patient Characteristics
• Malignant vs. Benign Lesions
• Treatment Allocation
• Treatment Outcomes
• Summary
RADIANS Background

• Formed in Fall 2016
RADIANS Background

• Formed in Fall 2016
• Community Hospital Setting (Portland, OR)
RADIANS Background

- Formed in Fall 2016
- Community Hospital Setting
 - patient-centric approach
RADIANS Background

• Formed in Fall 2016
• Community Hospital Setting
 • patient-centric approach
 • optimize patient/physician time
RADIANS Background

- Formed in Fall 2016
- Community Hospital Setting
 - patient-centric approach
 - optimize patient/physician time
 - simultaneous evaluation with radiation oncologist and neurosurgeon

Voong et al., *Clinical Lung Cancer* 2019
Friedman et al., *J Multidiscip Health* 2016
Pawlik et al., *Ann Surg Oncol* 2008
Gardener et al., *J Onc Prac* 2010
RADIANS Background

- Formed in Fall 2016
- Community Hospital Setting
 - patient-centric approach
 - optimize patient/physician time
 - simultaneous evaluation with radiation oncologist and neurosurgeon
- Medical Oncology (most common)
RADIANS Background

• Formed in Fall 2016
• Community Hospital Setting
 • patient-centric approach
 • optimize patient/physician time
 • simultaneous evaluation with radiation oncologist and neurosurgeon
• Medical Oncology (most common)
• Patient Satisfaction Score = 4.77/5 (McClelland 3rd, 2019)
Who did we treat?
Patient Characteristics (n=67)

• Mean Age = 61.0yrs; Range = 24 – 92yrs
Patient Characteristics (n=67)

- Mean Age = 61.0 yrs; Range = 24 – 92 yrs
- Females (n=39, 58.2%); Males (n=28, 41.8%)
Patient Characteristics (n=67)

- Mean Age = 61.0yrs; Range = 24 – 92yrs
- Females (n=39, 58.2%); Males (n=28, 41.8%)
- Mean Distance Traveled = 66.5mi; Med=16.9; Range = 0.6 – 340mi
Patient Characteristics (n=67)

- Mean Age = 61.0yrs; Range = 24 – 92yrs
- Females (n=39, 58.2%); Males (n=28, 41.8%)
- Mean Distance Traveled = 66.5mi; Med=16.9; Range = 0.6 – 340mi
- KPS ≥ 80 = 52, 77.6% (KPS ≤ 70 = 15, 22.4%)
Patient Characteristics (n=67)

- Mean Age = 61.0yrs; Range = 24 – 92yrs
- Females (n=39, 58.2%); Males (n=28, 41.8%)
- Mean Distance Traveled = 66.5mi; Med=16.9; Range = 0.6 – 340mi
- KPS \geq 80 = 52, 77.6% (KPS \leq 70 = 15, 22.4%)
- Co-Morbidities (one-two), n=32 (47.8%); (three-four), n=11 (16.4%)
Patient Characteristics \((n=67) \)

- Mean Age = 61.0yrs; Range = 24 – 92yrs
- Females \((n=39, 58.2\%) \); Males \((n=28, 41.8\%) \)
- Mean Distance Traveled = 66.5mi; Med=16.9; Range = 0.6 – 340mi
- KPS ≥ 80 = 52, 77.6% (KPS ≤ 70 = 15, 22.4%)
- Co-Morbidities (one-two), \(n=32 (47.8\%) \); (three-four), \(n=11 (16.4\%) \)
- Two Most Common Co-Morbidities
 - COPD \((n=23, 34.3\%) \)
 - HTN \((n=19, 28.4\%) \)
Patient Characteristics (n=67)

- Mean Age = 61.0yrs; Range = 24 – 92yrs
- Females (n=39, 58.2%); Males (n=28, 41.8%)
- Mean Distance Traveled = 66.5mi; Med=16.9; Range = 0.6 – 340mi
- KPS \geq 80 = 52, 77.6% \hspace{1cm} (KPS \leq 70 = 15, 22.4%)
- Co-Morbidities (one-two), n=32 (47.8%); (three-four), n=11 (16.4%)
- Two Most Common Co-Morbidities
 - COPD (n=23, 34.3%)
 - HTN (n=19, 28.4%)
- Obesity Class I (BMI = 30-34.9) = 11, 22.9%
- Obesity Class II (BMI \geq 35.0) = 5, 10.4%
CNS Histologic Types
Malignant n=43

- Lung n=22, 51.19%
- Glioblastoma n=7, 16.2%
- Breast n=7, 16.2%
- Kidney n=3, 6.9%
- Other n=2, 4.7%

Benign n=24

- Meningioma n=15, 62.5%
- Metastatic Brain and Spine = 6
- Metastatic Brain = 28
- Primary Brain = 9
- Other n=2, 4.7%
- Pituitary Microadenoma n=1, 4.1%
- Glioma n=2, 8.3%
- Hematoma n=2, 8.3%
- Pineal Cyst n=1, 4.1%
- Cavernoma n=1, 4.1%
- Multiple Sclerosis n=1, 4.1%
- Cranial Bone Lesion n=1, 4.1%
- Astrocytoma n=2, 4.2%
- Glioblastoma n=7, 16.2%
How did we treat?
Radiation Therapy Delivered \(n(\%) \)
- Fractionated Stereotactic Radiosurgery = 21, (67.7)
- Conventional Fractionated RT = 10, (32.3)
- Tumor Treating Fields (GBM)= 2/7, (28.6)
 - Conventional Fractionated RT and TTF
- 1 Patient Received WBRT and SBRT to the Spine

Neurosurgery Performed \(n(\%) \)
- Craniotomy w/
Tumor Resection = 27, (40.3)
Treatment Outcomes $n=43$

<table>
<thead>
<tr>
<th>RT Only $n=16$</th>
<th>NS Only $n=12$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Patients Followed-Up with Med Onc for Systemic Disease Treatment or Deceased Prior to Follow-Up with RADIANS</td>
<td>Neurologic Deficits $= 0% \ (0/12)$</td>
</tr>
<tr>
<td>11 Patients with 3 Month Repeat Imaging:</td>
<td>At 3 Month Repeat Imaging:</td>
</tr>
<tr>
<td>• Radiation Necrosis $= 0% \ (0/11)$</td>
<td>• Local Control $= 100% \ (12/12)$</td>
</tr>
<tr>
<td>• Local Control* $= 54.4% \ (6/11)$</td>
<td>• CNS Disease Progression $= 8.3% \ (1/12)$</td>
</tr>
<tr>
<td>• CNS Disease Progression* $= 45.5% \ (5/11)$</td>
<td></td>
</tr>
<tr>
<td>*treated w/ palliative intent; Stage IV</td>
<td></td>
</tr>
</tbody>
</table>

[Treated with palliative intent; Stage IV]
Treatment Outcomes n=43

Both RT/NS n=15

Surgical Resection Followed by Post-Op Radiation Therapy to Tumor Cavity + Unresected Lesions

Neurologic Deficits = 0% (0/15)

At 3 Month Repeat Imaging:
- Radiation Necrosis = 6.6% (1/15)
- Local Control = 93.3% (14/15)
- CNS Disease Progression = 26.6% (4/15)
Treatment Outcomes

• Active Follow-Up = 37
• Transfer of Care = 7 (RT treatment closer to residence; NS at university hospital)
• Hospice Care = 6
• Declined Treatment = 2
• Deceased = 15 (12/15 Stage IV)
What did we learn?
Summary

• Unique **Community-Hospital Based** CNS Clinic Model
Summary

• Unique **Community-Hospital Based** CNS Clinic Model
• **High Patient Approval** at Extended Follow-up
Summary

• Unique **Community-Hospital Based** CNS Clinic Model
• **High Patient Approval** at Extended Follow-up
• **Regional Referral Center** for Complex CNS Disease
Summary

• Unique **Community-Hospital Based** CNS Clinic Model
• **High Patient Approval** at Extended Follow-up
• **Regional Referral Center** for Complex CNS Disease
• Delivers State-of-the-Art, **Evidence-Based Treatment Modalities** in a Community Hospital Setting
Summary

• Unique **Community-Hospital Based** CNS Clinic Model
• **High Patient Approval** at Extended Follow-up
• **Regional Referral Center** for Complex CNS Disease
• Delivers State-of-the-Art, **Evidence-Based Treatment Modalities** in a Community Hospital Setting
• Good **Local Control** and Low Rates of (G3/4) **Radiation-Induced Toxicity**
Summary

• Unique **Community-Hospital Based** CNS Clinic Model
• **High Patient Approval** at Extended Follow-up
• **Regional Referral Center** for Complex CNS Disease
• Delivers State-of-the-Art, **Evidence-Based Treatment Modalities** in a Community Hospital Setting
• Good **Local Control** and Low Rates of (G3/4) **Radiation-Induced Toxicity**
• Access to **On-Going Clinical Trials**
Summary

• Unique Community-Hospital Based CNS Clinic Model
• High Patient Approval at Extended Follow-up
• Regional Referral Center for Complex CNS Disease
• Delivers State-of-the-Art, Evidence-Based Treatment Modalities in a Community Hospital Setting
• Good Local Control and Low Rates of (G3/4) Radiation-Induced Toxicity
• Access to On-Going Clinical Trials
• Analyzing Cost-Benefit, CNS Morbidity/Mortality Rates, Early Detection Rate, Elderly Adult Patient Outcomes, and Caregiver Impact
Acknowledgements

Department of Radiation Medicine - OHSU
Timur Mitin, MD, PhD
Jerry J. Jaboin, MD, PhD
Charles R. Thomas Jr., MD

Department of Neurosurgery - OHSU
Jeremy Ciporen, MD
Erik Larson, MD
Rohi Gheewala, BS
Stephen Giles, PA-C
Jessica Dumitru, PA-C

Tuality-OHSU Cancer Center
Junan Zhang, PhD
Christine Hall, RN
Kristine Mulqueen, RN
Anton Hougardy-Sato, Chief RT, Manager
Guadalupe Medina, RT(T)
Lisa Reny, RT(T)
Paul Cooper, CMD
Diane Ingram
Cynthia Minkler

Department of Radiation Oncology - Indiana School of Medicine
Shearwood McClelland, 3rd., MD
References

Friedman EL, Kruklitis RJ, Patson BJ, Sopka DM, Weiss MJ. Effectiveness of a thoracic multidisciplinary clinic in the
DOI https://doi.org/10.2147/JMDH.S98345

Gardner TB, Barth RJ, Saki BI, Boulay BR, et al. Effect of initiating a multidisciplinary care clinic on access and time to
doi: 10.1200/JOP.2010.000041

McClelland 3rd S, Mitin T, Jaboin JJ, Ciporen JN. RADIANS: a multidisciplinary central nervous system clinic model for
https://doi.org/10.1016/j.wneu.2018.10.083

Evaluating the impact of a single-day multidisciplinary clinic on the management of pancreatic cancer. Ann Surg Oncol

Voonh KR, Liang OS, Dugan P, Torto D, Padula WV, Senter JP, Lang, M, Hooker CM, Feliciano J, Broderick S, Yarmus L,
Khanna K, Narang A, Hales RK. Thoracic oncology multidisciplinary clinic reduces unnecessary health care expenditure
http://doi.org/10.1016/j.clcc.2019.02.010
Thank You!

Questions?