Association of hypothalamic inflammation and cerebrospinal fluid orexin levels with brain radiation-induced fatigue

Aaron J. Grossberg MD, PhD1, Die Zhang PhD2, Wei Zhou PhD2, Eric D. Brooks MD1, Connie C. Weng PhD2, Phillip S. Gross BS4, Elisabeth G. Vichaya PhD1, Robert Dantzer DVM, PhD*, David R. Grosshans MD, PhD2,3

1Department of Radiation Medicine, Brenden-Colson Center for Pancreatic Care, CEDAR, Oregon Health & Science University, Portland, OR Departments of 2Experimental Radiation Oncology, 3Radiation Oncology, and 4Symptom Research, MD Anderson Cancer Center, Houston, TX

Objective
Fatigue, the most common acute and subacute toxicity of partial or whole brain radiation therapy (WBRT), significantly decreases quality of life (QoL) for patients, abrogating the benefit afforded by improved tumor control. Little is known about the mechanisms underlying brain-radiation induced fatigue, and there are currently no effective treatments. The objective of this study is to evaluate the role of diminished orexin neuron activity in the pathogenesis of fatigue induced by clinically significant WBRT fractionation.

Methods
- Adult male Sprague-Dawley rats received whole brain RT (WBRT) 4 Gy x 5 fractions
- Fatigue Behavior
 - Home Cage Locomotor Activity
- Anthropometrics
 - Body weight
 - Food intake
- Gene expression
 - Hypothalamic & Hippocampal mRNA (qRT-PCR)
 - Inflammation (IL-1β, TNFα, IL-6, CCL2, IL-1α, Hmgb1)
 - Oxidative Stress (Novex, Cyto, Nrf1, SOCS1, SOCS2)
- CSF collected from 11 pediatric primary brain cancer patients treated with proton radiation at 4 time points: pre-RT, then q 30 days post-RT (post-RT 2, 3, 4),
- CSF cytokine concentrations measured using multiplex magnetic bead immunoassay
- Physician-assessed CTCAE 4.0 fatigue prospectively collected during brain RT CSF Orexin-A concentration
 - Collected by cisterna magna puncture (rats) or lumbar puncture (patients)
 - 125I Radioimmunoassay
- Statistical Analyses
 - 2-way ANOVA with Bonferroni corrected t-tests
 - Student’s t-test
 - Logistic Regression for association between fatigue and CSF cytokine levels
 - Significance set at p<.05.

Results
- LMA was decreased in WBRT-treated rats following the first fraction and continued to decrease until reaching a nadir following the final fraction. LMA slowly recovered over the next 7 days.
- Food intake and weight gain were significantly reduced in WBRT-treated rats, recovering to match sham rats within 2 weeks of the first fraction.
- Hypothalamic mRNA demonstrated a significant increase in inflammatory gene expression (IL-1β, IL-6, TNFα, CCL2, GFAP, Iggam) following 1- and 5-fractions, which largely resolved by fatigue recovery.
- Immunohistochemistry showed increased Iba-1 positive cells with morphology consistent with activated microglia.
- WBRT-treated animals showed decreased CSF (orexin-A) at activity nadir, which recovered with restoration of LMA.
- Orexin levels were decreased and inflammatory cytokine levels increased in CSF samples from pediatric patients for whom fatigue was recorded as a toxicity during treatment.

Conclusions
1. WBRT-induced fatigue can be modeled in preclinical research using home cage LMA.
2. The acute fatigue phenotype is observed following the first fraction, with an activity nadir following the final fraction and recovery approximately one week later.
3. WBRT-induced inflammation follows the behavioral and anthropometric changes, suggesting a possible causative role.
4. Fatigue is associated with decreased CSF orexin levels and increased brain inflammation in rats and patients.
5. Further studies are needed to test the utility of orexin-replacement as a therapeutic strategy for radiation-induced fatigue.

Supported by RSNA R & E Resident Research Grant RR1650