Assessing the Relationship between Symptom Severity and Gait Performance in Chronic mTBI Before and After Rehabilitation

Douglas N Martini, PhD
Lucy Parrington, PhD; Samuel Stuart, PhD; Laurie King, PhD, PT

Oregon Health & Science University

VA Portland Health Care System

Disclosure

• This works was supported by the Assistant Secretary of Defense for Health Affairs under award number **W81XWH-15-1-0620**; Assessment and Rehabilitation of Central Sensory Impairments for Balance in mTBI; PI: Laurie King.

 Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the Department of Defense.

No conflict of interest to declare.

Introduction

- Up to 53% report symptoms >1 year (Nelson et al., 2019; Fino et al., 2016)
- Subtle gait deficits observed up to 1 month post-mTBI
- Reports on gait characteristics in mTBI are variable (Fino et al., 2018)

Gait is more than just Speed

Why Does Dual-Tasking Matter?

• Simulates "real-world" demands for gait

Overburden compensatory mechanisms

Different ways to test dual-task in the lab

Aims

• 1) Determine the differences in gait domains between symptomatic, chronic mTBI and healthy control groups

• 2) Examine the relationship between symptoms and gait domains in the mTBI group

Preliminary Results

 Explore the possible effects of rehabilitation on symptoms and gait domains, and their relationship

Methods – Gait Characterization

- Opal inertial sensors (APDM Inc.)
- Self-selected, "normal" pace
- 13 meter walk, 2 minutes
- Under Single- & Dual-Task conditions

Gait

- Cadence
- Stride Velocity
- Stride length
- Arm Swing
- Double Support
- Ranges of Motion
- Asymmetry
- 53 parameters

Wearable inertial sensors (IMUs)

Turning

- Duration
- Speeds
- Number of steps
- Step time
- 7 parameters

Transitions

- Duration
- Speeds
- Accelerations
- Ranges of Motion
- First step time
- 7 parameters

Methods – Symptom Reporting

- The Sport Concussion Assessment Tool (SCAT) 3
 - 22 symptoms
 - Likert scale 0-6 (higher = worse)
 - Self-rated

Queensland Brain Institute, University of Queensland

Participants

 Inclusion Criteria: self reported balance & complaints of dizziness for >3 months post mTBI

 Exclusion Criteria: a history of injury, surgery or medical condition that would impair cognition or motor ability, beyond a mTBI

	Control	mTBI
n	58	67
Gender (F)	36	45
Age (yrs)	37.3 (12.4)	39.7 (11.6)
Height (cm)	171.2 (9.7)	167.8 (19.7)
Weight (Kg)	75.0 (18.9)	83.6 (30.3)
Time from mTBI (yrs)	NA	1.0 (12.8)
Total Previous mTBIs	NA	1.0 (10.0)
SCAT 3 Total*	1.8 (3.9)	38.4 (23.0)

mTBI Affects Multiple Domains, Especially DT

		Control	mTBI	Cohen's d
ST	Cognitive Acc (%)	98.8 (4.2)	97.4 (6.3)	0.27
	Pace	0.16 (0.49)	-0.15 (0.94)	0.42
	Variability	-0.11 (0.48)	0.11 (0.56)	0.42
	Rhythm	0.07 (0.14)	-0.08 (1.23)	0.17
	Turning*	0.37 (0.85)	-0.36 (0.88)	0.85
DT	Cognitive Acc (%)	98.5 (1.7)	95.3 (8.1)	0.55
	Pace*	0.37 (0.80)	-0.35 (0.86)	0.88
	Variability	-0.14 (0.71)	0.17 (0.99)	0.36
	Rhythm*	0.10 (0.27)	-0.11 (0.37)	0.66
	Turning*	0.36 (0.61)	-0.34 (1.04)	0.45

ST = Single-Task
DT = Dual-Task

SCAT 3 Total Symptoms Are Related To Gait Domains, Particularly with Dual-task Gait

Can Rehabilitation designed to reduce symptoms improve gait performance?

Rehabilitation May Affect Domains Differently

^{*} Indicates p < 0.05

Is Change In Gait Speed Related to Change in Symptoms?

Discussion

 Persistent gait deficits exist in chronic mTBI across gait domains, especially under dual-task

Symptoms related to every gait domain except ST Pace at baseline

 Preliminary results: observed changes in gait and symptoms are related

 A more comprehensive gait assessment may improve rehabilitation outcomes in people with chronic mTBI

Acknowledgements

Balance Disorders Laboratory

Funding:

- Department of Defense W81XWH-15-1-0620 (PI: King)
- Medical Research Foundation of Oregon (PI: Martini)
- NIH/NINDS P50 NS062684-07 (PI: Montine)
- NIH/NINDS P50 NS062684-07, sub-award (PI: Horak)

Collaborators:

Oregon Health & Science University

Laurie KingRobert PaterkaFay HorakVrutankumar ShahMartina ManciniLucy Parrington

John Nutt Naoya Hasegawa

Joseph Quinn Ishu Arpan Michelle Cameron Sam Stuart

Jim Chessnut Rosie Morris

Timothy Huller

University of Michigan

Steven Broglio

University of Utah

Peter Fino

APDM, Inc.

Mahmoud El-Gohary
James McNames

University of Washington

Thomas Grabowski
Tara Madhyastha
Cyrus Zabetian

John Oakley Valerie Kelly

Brenna Cholerton

Stanford University

Thomas Montine
Kathleen Poston

Colorado State University

Brett Fling

University of Nebraska

Carolin Curtze

University of Iowa

Li-Shan Chou

Pearson's Correlations r values for NSI Total score (Left) and NSI Somatic score (Right) with the ST and DT gait domains (within chronic mTBI group only) . * indicates p< 0.01; ** indicates p< 0.003.