Assessing the Relationship between Symptom Severity and Gait Performance in Chronic mTBI Before and After Rehabilitation

Douglas N Martini, PhD
Lucy Parrington, PhD; Samuel Stuart, PhD; Laurie King, PhD, PT
Oregon Health & Science University
VA Portland Health Care System
Disclosure

• This works was supported by the Assistant Secretary of Defense for Health Affairs under award number W81XWH-15-1-0620; Assessment and Rehabilitation of Central Sensory Impairments for Balance in mTBI; PI: Laurie King.

• Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the Department of Defense.

• No conflict of interest to declare.
Introduction

• Up to 53% report symptoms >1 year (Nelson et al., 2019; Fino et al., 2016)

• Subtle gait deficits observed up to 1 month post-mTBI

• Reports on gait characteristics in mTBI are variable (Fino et al., 2018)
Gait is more than just Speed

- Variability 24.1%
 - Double Support Time SD
 - Stride Length SD
 - Foot Strike Angle SD
 - Single Support Time SD
 - Stride Time SD

- Gait Model 80.8%

- Rhythm 19.9%
 - Double Support Time
 - Stride Time
 - Single Support Time

- Pace 19.4%
 - Stride Length
 - Gait Speed
 - Foot Strike Angle

- Turning 17.4%
 - Turn Duration
 - Turn Velocity

(Stuart et al., 2020)
Why Does Dual-Tasking Matter?

• Simulates “real-world” demands for gait

• Overburden compensatory mechanisms

• Different ways to test dual-task in the lab
Aims

• 1) Determine the differences in gait domains between symptomatic, chronic mTBI and healthy control groups

• 2) Examine the relationship between symptoms and gait domains in the mTBI group

Preliminary Results

• Explore the possible effects of rehabilitation on symptoms and gait domains, and their relationship
Methods – Gait Characterization

• Opal inertial sensors (APDM Inc.)
• Self-selected, “normal” pace
• 13 meter walk, 2 minutes
• Under Single- & Dual-Task conditions

Gait
- Cadence
- Stride Velocity
- Stride length
- Arm Swing
- Double Support
- Ranges of Motion
- Asymmetry
- 53 parameters

Turning
- Duration
- Speeds
- Number of steps
- Step time
- 7 parameters

Transitions
- Duration
- Speeds
- Accelerations
- Ranges of Motion
- First step time
- 7 parameters
Methods – Symptom Reporting

• The Sport Concussion Assessment Tool (SCAT) 3
 • 22 symptoms
 • Likert scale 0-6 (higher = worse)
 • Self-rated

Queensland Brain Institute, University of Queensland
Participants

- Inclusion Criteria: self reported balance & complaints of dizziness for >3 months post mTBI

- Exclusion Criteria: a history of injury, surgery or medical condition that would impair cognition or motor ability, beyond a mTBI

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>mTBI</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>58</td>
<td>67</td>
</tr>
<tr>
<td>Gender (F)</td>
<td>36</td>
<td>45</td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>37.3 (12.4)</td>
<td>39.7 (11.6)</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>171.2 (9.7)</td>
<td>167.8 (19.7)</td>
</tr>
<tr>
<td>Weight (Kg)</td>
<td>75.0 (18.9)</td>
<td>83.6 (30.3)</td>
</tr>
<tr>
<td>Time from mTBI (yrs)</td>
<td>NA</td>
<td>1.0 (12.8)</td>
</tr>
<tr>
<td>Total Previous mTBIs</td>
<td>NA</td>
<td>1.0 (10.0)</td>
</tr>
<tr>
<td>SCAT 3 Total*</td>
<td>1.8 (3.9)</td>
<td>38.4 (23.0)</td>
</tr>
</tbody>
</table>

* Indicates p < 0.05
mTBI Affects Multiple Domains, Especially DT

<table>
<thead>
<tr>
<th></th>
<th>ST</th>
<th>DT</th>
<th>Control</th>
<th>mTBI</th>
<th>Cohen’s d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive Acc (%)</td>
<td>98.8 (4.2)</td>
<td>98.5 (1.7)</td>
<td>97.4 (6.3)</td>
<td>95.3 (8.1)</td>
<td>0.27</td>
</tr>
<tr>
<td>Pace</td>
<td>0.16 (0.49)</td>
<td>0.37 (0.80)</td>
<td>-0.15 (0.94)</td>
<td>-0.35 (0.86)</td>
<td>0.42</td>
</tr>
<tr>
<td>Variability</td>
<td>-0.11 (0.48)</td>
<td>-0.14 (0.71)</td>
<td>0.11 (0.56)</td>
<td>0.17 (0.99)</td>
<td>0.42</td>
</tr>
<tr>
<td>Rhythm</td>
<td>0.07 (0.14)</td>
<td>0.10 (0.27)</td>
<td>-0.08 (1.23)</td>
<td>-0.11 (0.37)</td>
<td>0.17</td>
</tr>
<tr>
<td>Turning*</td>
<td>0.37 (0.85)</td>
<td>0.36 (0.61)</td>
<td>-0.36 (0.88)</td>
<td>-0.34 (1.04)</td>
<td>0.85</td>
</tr>
</tbody>
</table>

ST = Single-Task
DT = Dual-Task
SCAT 3 Total Symptoms Are Related To Gait Domains, Particularly with Dual-task Gait

ST = Single-Task
DT = Dual-Task

* p < 0.01
Can Rehabilitation designed to reduce symptoms improve gait performance?

(Fino, et al., 2017)
Rehabilitation May Affect Domains Differently

Gray lines connect participants across time.

Gait Speed

* Indicates p < 0.05

Turn Velocity
Is Change In Gait Speed Related to Change in Symptoms?

Pearson’s $r = -0.51; p < 0.01$
• Persistent gait deficits exist in chronic mTBI across gait domains, especially under dual-task

• Symptoms related to every gait domain except ST Pace at baseline

• Preliminary results: observed changes in gait and symptoms are related

• A more comprehensive gait assessment may improve rehabilitation outcomes in people with chronic mTBI
Acknowledgements

Funding:
• Department of Defense W81XWH-15-1-0620 (PI: King)
• Medical Research Foundation of Oregon (PI: Martini)
• NIH/NINDS P50 NS062684-07 (PI: Montine)
• NIH/NINDS P50 NS062684-07, sub-award (PI: Horak)

Balance Disorders Laboratory

Collaborators:

Oregon Health & Science University
Laurie King Robert Paterka
Fay Horak Vrutankumar Shah
Martina Mancini Lucy Parrington
John Nutt Naoya Hasegawa
Joseph Quinn Ishu Arpan
Michelle Cameron Sam Stuart
Jim Chessnutt Rosie Morris
Timothy Huller

University of Michigan
Steven Broglio

University of Utah
Peter Fino

APDM, Inc.
Mahmoud El-Gohary
James McNames

University of Washington
Thomas Grabowski
Tara Madhyastha
Cyrus Zabetian
John Oakley
Valerie Kelly
Brenna Cholerton

Stanford University
Thomas Montine
Kathleen Poston

Colorado State University
Brett Fling

University of Nebraska
Carolin Curtze

University of Iowa
Li-Shan Chou
Pearson’s Correlations r values for NSI Total score (Left) and NSI Somatic score (Right) with the ST and DT gait domains (within chronic mTBI group only). * indicates $p<0.01$; ** indicates $p<0.003$.