

Where Did the Blood Go? Anchoring Bias on the Assurance of Haptoglobin.

Sophia Li, MD; Gopal Allada, MD

Department of Medicine, Oregon Health & Science University, Portland, OR

INTRODUCTION	PRESENTATION	OVERVIEW: G6PD DEFICIENCY
 G6PD deficiency is an X-linked inherited condition in which exposure to oxidative stress can cause both intravascular and extravascular hemolysis 	 Hospital course complicated by acute-on-chronic anemia, which worsened from Hgb of 8.6 g/dL on admission to 5.4 g/dL on hospital day 3. Anemia persisted, despite multiple transfusions and no clinically apparent source of bleeding. 	 Glucose-6-phosphate dehydrogenase (G6PD) is the only source of NADPH (a reducing agent) in red blood cells. Low G6PD activity predisposes RBCs to
 Diagnosis relies on clinical context: 	 Hematology was consulted; initially concluded acute bleed was still the most likely cause despite lack of an obvious source. Reasoning against hemolysis was her normal haptoglobin. 	 oxidative damage from free radicals. Metabolic stress states (toxins,
 Patient demographics Predisposing exposures 		infection, medications [e.g. dapsone, nitrofurantoin], hypoxemia, shock)

- Supportive laboratory tests

Accurate diagnosis can be confounded by multiple acute illnesses and conflicting data.

BACKGROUND

A 31-year-old African
 American woman with
 history of IVDU presented
 to the Ob/Gyn service
 with PPROM and
 delivered a 22-week-old
 stillborn.

COURSE OF WORKUP

can lead to hemolysis in individuals with low G6PD activity.

- Hemolysis is both intravascular (RBC fragility) and extravascular (destruction by spleen) and tends to occur 1-4 days after medication exposure.
 - Low serum haptoglobin is 83% sensitive and 96% specific for hemolysis¹
- Heinz bodies and bite cells are classic features of oxidative RBC damage.
- G6PD enzyme level can be deceptively normal during acute hemolysis.
- G6PD deficiency is the most common inborn error of metabolism.
 - X-linked recessive transmission

Admitted to Ob/Gyn

Last dose ofTransferrednitrofurantointo MICU

Hematology consulted

Transferred out of ICU - Most common in patients of **African & Mediterranean** descent

Affects ~10% of African-American men² - Rare in women; unclear prevalence

LEARNING POINTS

 \bigcirc

- Suspect hemolysis in patients with risk factors and otherwise unexplained anemia.
- Medication exposures are more easily overlooked after multiple transitions of care.
- No single lab test can definitively rule out hemolysis.¹
 Haptoglobin is an acute phase reactant; and the level was deceptively

- One day prior to admission, pt had been seen at OSH ED for back pain and began a course of nitrofurantoin for incidental finding of MRSA UTI.
- Quickly after admission, developed fever and hypoxemia requiring transfer to MICU.
- Found to have MRSA
 bacteremia and tricuspid

 Thorough skin exam, rectal exam, vaginal exam, and abdominal ultrasound
 -> all negative for bleeding

- Hemolysis labs on hospital day 3 showed:
 - LDH 347 (ref <250 U/L) - Haptoglobin 126
 - Bilirubin 4.5 total (3.1 direct); was 1.2 total on admission
 - Negative coombs tests

 Peripheral smear was reviewed by hematology attending – found bite cells:

Figure 1. Bite cells on peripheral blood smear

ID

valve **endocarditis** with pulmonary emboli.

 Started on broadspectrum antibiotics, later narrowed to vancomycin. - No schistocytes on smear

Hematology felt that labs were not

consistent with hemolysis; recommended CT abd/pelvis for further bleeding workup.

• CT abdomen/pelvis with contrast showed no peritoneal or retroperitoneal bleed.

Repeat hemolysis labs on hospital day 4:

- Haptoglobin <1 - LDH rose from 347 \rightarrow 625 \rightarrow 712

- Total bili rose to max of 9.3 (5.6 direct)
- Subsequent G6PD assay showed reduced activity of 9.4 (ref: 9.9-16.6)

• A special stain showed Heinz bodies

normal in this septic patient.

REFERENCES

 Marchand A, Galen RS, Van lente F. The predictive value of serum haptoglobin in hemolytic disease. JAMA. 1980;243(19):1909-11.

2. Heller P, Best WR, Nelson RB, Becktel J. Clinical implications of sickle-cell trait and glucose-6phosphate dehydrogenase deficiency in hospitalized black male patients. N Engl J Med. 1979;300:1001–5.