

# HIV: a covert risk factor for coronary artery disease

Tyler Wells, MD; Melissa D. Murphy, MD

VA Portland Health Care System, Portland, OR

**Department of Medicine, Oregon Health & Science University, Portland, OR** 



U.S. Department of Veterans Affairs

Veterans Healt Administration

VA Portland Health Care System

Introduction

- In the era of Highly Active AntiRetroviral Therapy (HAART), cardiovascular disease has emerged as one of the leading causes of death in older patients with HIV.
- High HIV viral loads and low CD4 counts are associated with increased cardiovascular risk <sup>1,3</sup>

# **Diagnostic Workup**

### **Exercise Treadmill Stress Test**

T-wave flattening in leads II, III, aVF, V5 and V6 at low workload.

### **Coronary Angiography**

Severe 3-vessel CAD with total occlusion of the proximal left anterior descending artery.





## Discussion

This case highlights the importance of recognizing HIV infection as an independent risk factor for the development of CAD. Some traditional cardiovascular risk factors such as smoking, hypertension, and dyslipidemia are more prevalent in patients with HIV; however, even after adjusting for these risk factors, HIV infection alone is associated with an increased risk for myocardial infarction.

# **Case Description**

- A 58-year-old man with HIV presents to clinic with six months of intermittent substernal chest pain.
- Pain is worse when eating certain foods and while supine. He attributes the pain to heart burn. More recently, he had episodes of pain provoked by exercise.
- Vitals were notable for a blood pressure of 165/84 mmHg and BMI of 28 kg/m<sup>2</sup>. The patient had no previous diagnosis of hypertension.
- HIV was diagnosed in 1986 and had been suppressed with normal CD4 counts on antiretroviral therapy since 2003. Antiretroviral medications included abacavir, dolutegravir,



Figure 1. Lateral view. Proximally occluded LAD (red arrow) with late filling of distal branches from right-to-left collaterals. Figure 2. LAO-caudal ("spider") view. Occluded LAD (red arrow).

The patient underwent a successful 3-vessel coronary artery bypass graft surgery. He was started on metoprolol, pravastatin, and aspirin. His antiretroviral regimen was changed to TAF/FTC/rilpivirine + dolutegravir.

# Abacavir and risk of MI

The patient's antiretroviral regimen included abacavir, a commonly used nucleoside reverse transcriptase inhibitor (NRTI), for 15.5 years.
Abacavir has been postulated to be a contributing factor to cardiovascular risk. Multiple observational and randomized controlled trials have produced mixed conclusions.

In this case, the patient's traditional cardiovascular risk factors include hyperlipidemia, male sex, and hypertension. However, the degree of obstructive CAD, including a totally occluded left anterior descending artery, is surprising given his younger age and generally healthy lifestyle.

Proposed mechanisms for the etiology of increased cardiovascular events include an immune-mediated or inflammatory process leading to accelerated atherosclerosis <sup>1</sup>. Further research is needed to determine the relationship between antiretroviral therapy, particularly abacavir, and risk of MI.

#### lamivudine, and tenofovir.

| Notable Labs                                                                           |                                                                                                      |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| CBC / BMP                                                                              | Unremarkable                                                                                         |  |  |  |  |  |  |  |
| Lipid panel                                                                            | Total Cholesterol 245 mg/dL<br>LDL 163 mg/dL                                                         |  |  |  |  |  |  |  |
| HIV PCR                                                                                | Undetectable                                                                                         |  |  |  |  |  |  |  |
| CD4 count                                                                              | 1009                                                                                                 |  |  |  |  |  |  |  |
| <b>Traditional Cardiovascular Risk Factors</b>                                         |                                                                                                      |  |  |  |  |  |  |  |
| <b>Traditional Ca</b>                                                                  | rdiovascular Risk Factors                                                                            |  |  |  |  |  |  |  |
| Traditional Ca<br>Tobacco use                                                          | rdiovascular Risk Factors<br>No                                                                      |  |  |  |  |  |  |  |
| Traditional Ca<br>Tobacco use<br>Diabetes                                              | Ardiovascular Risk Factors<br>No<br>No                                                               |  |  |  |  |  |  |  |
| Traditional Ca<br>Tobacco use<br>Diabetes<br>Hyperlipidemia                            | No<br>No<br>Yes (did not tolerate statin)                                                            |  |  |  |  |  |  |  |
| Traditional Ca<br>Tobacco use<br>Diabetes<br>Hyperlipidemia<br>Hypertension            | NoNoNoYes (did not tolerate statin)Yes (newly diagnosed)                                             |  |  |  |  |  |  |  |
| Traditional Ca<br>Tobacco use<br>Diabetes<br>Hyperlipidemia<br>Hypertension<br>Obesity | No<br>No<br>Yes (did not tolerate statin)<br>Yes (newly diagnosed)<br>No (BMI 28 kg/m <sup>2</sup> ) |  |  |  |  |  |  |  |

#### Summary of Key Analyses Addressing Risk of MI with Abacavir<sup>2</sup>

| Study                      | Study<br>Design | Age, Yrs<br>(Range) | Event (n)           | Pts, N | ABC<br>CV Effect | Time on<br>ABC, Mos | Risk of MI<br>(95% CI)        |
|----------------------------|-----------------|---------------------|---------------------|--------|------------------|---------------------|-------------------------------|
| D:A:D <sup>[1]</sup>       | Cohort          | 40 (35-47)          | MI, validated (387) | 22,625 | Yes              | ≥ 6                 | 2.04 (1.66-2.51)              |
| D:A:D 2015 <sup>[2]</sup>  | Cohort          | 39 (33-46)          | MI (493)            | 32,663 | Yes              | Current             | 1.47 (1.26-1.71)              |
| SMART <sup>[3]</sup>       | RCT             | 45 (39-51)          | MI, validated (19)  | 2752   | Yes              | Current             | 4.3 (1.4-13.0)                |
| STEAL <sup>[4]</sup>       | RCT             | $45.7 \pm 8.8$      | MI (4)              | 357    | Yes              | 96                  | 2.79* (1.76-4.43)             |
| QPHID <sup>[5]</sup>       | CC              | 47 (22-67)          | MI (125)            | 7053   | Yes              | Any                 | 1.79 (1.16-2.76)              |
| Danish <sup>[6]</sup>      | Cohort          | 39 (33-47)          | MI (67)             | 2952   | Yes              | > 6                 | 2.00 (1.07-3.76)              |
| VA (Choi) <sup>[7]</sup>   | Cohort          | 46                  | CVD event (501)     | 10,931 | Yes              | Recent              | 1.64 (0.88-3.08)              |
| Swiss <sup>[8]</sup>       | Cohort          | NR                  | CVD event (365)     | 11,856 | Yes              | Recent              | 4.06† (2.24-7.34)             |
| MAGNIFICENT <sup>[9]</sup> | CC              | 50 (22-85.5)        | CVD event (571)     | 1875   | Yes              | Current             | 1.56 (1.17-2.07)              |
| NA-ACCORD <sup>[10]</sup>  | Cohort          | NR                  | MI, validated (301) | 16,733 | Yes              | Recent              | 1.33                          |
| FHDH <sup>[11]</sup>       | CC              | 47 (41-54)          | MI (289)            | 74,958 | No               | < 12/recent         | 1.27 <sup>‡</sup> (0.64-2.49) |
| ALLRT/ACTG <sup>[12]</sup> | Cohort          | 37 (26-51)          | MI (36)             | 5056   | No               | 72                  | 0.6 (0.3-1.4)                 |
| VA <sup>[13]</sup>         | Cohort          | 46                  | MI (278)            | 19,424 | No               | Per 12              | 1.18 (0.92-1.50)              |
| FDA <sup>[14]</sup>        | MA of RCTs      | 36-42               | MI (46)             | 9868   | No               | 19                  | 1.02 (0.56-1.84)              |
| NA-ACCORD <sup>[10]</sup>  | Cohort          | NR                  | MI, validated (301) | 16,733 | No               | Recent              | 1.33                          |
|                            |                 |                     |                     |        |                  |                     |                               |

# **Teaching Points**

- Clinicians should have an increased index of suspicion for coronary artery disease in patients with HIV.
- In addition to HIV infection, certain antiretroviral therapy regimens
   (abacavir) have been associated with increased risk of MI.

#### References

- 1. Triant, V. A. (2012). HIV Infection and Coronary Heart Disease: An Intersection of Epidemics. *The Journal of Infectious Diseases*
- 2. Clinical Care Options HIV Slideset: *How common comorbidities* affect ART management (2017)
- 3. Initiation of Antiretroviral Therapy in Early Asymptomatic HIV Infection. (2015). *The New England Journal of Medicine*.