Throwers Elbow – Management and Treatment

Adam J. Mirarchi MD
Oregon Health & Science University
Associate Professor, Department of Orthopaedics and Rehabilitation

Special thanks to Aaron Venouziou MD

Anatomy

- Complex hinge
- 3 Articulations
 1. Ulnohumeral joint
 2. Radiocapitellar
 3. Proximal radio-ulnar

Anatomy - Medial

- Medial collateral ligament
- Anterior bundle -16
- Transverse bundle – 17
- Posterior bundle -18
- Annular ligament -19

Anatomy - Lateral

- Lateral Collateral Ligament
- Annular -12
- Radial collateral – 13
- Lateral collateral -14
- Accessory lateral col-15

Biomechanics

- Elbow Stability
 - Unhohumeral Joint
 - $< 20^\circ$ / $> 120^\circ$
 - Valgus
 - Varus
 - MCL
 - $20^\circ - 120^\circ$
 - LCL
 - $20^\circ - 120^\circ$

Pathomechanics

- Overhead throwing
 - 90 mph
Pathomechanics

64 Nm of valgus torque

Medial side pathology

Tensile load

Tensile strength of the

UCL is only 34 Nm

Posterior side pathology

- Valgus extension overload syndrome
- Posteromedial impingement
- Inflammation
- Chondropathy
- Osteophyte / spur formation
- Loose bodies
- Olecranon stress fractures
Ulnar collateral ligament injury

- Attenuation to complete rupture
- Medial elbow pain
- Pain during acceleration phase
- Loss of velocity, accuracy
- POP sensation in acute cases
- Ulnar nerve symptoms
- Pain w/ palpation over MCL (50°-70° flexion)

UCL examination

- Valgus stress test
- 30° of elbow flexion
- Opening of the medial joint space +/- pain

UCL examination

- Milking maneuver
- 90° elbow flexion
- Grabbing the affected thumb with the opposite hand passed under the affected arm
- Pulling to stress the medial elbow

UCL imaging

- UCL injury / tear
 - Usually do not respond to conservative treatment

Surgical treatment indications:
- Acute ruptures
- Instability
- Chronic pain
Ulnar collateral ligament injury

UCL reconstruction

- Jobe et al. JBJS Am 1986
 - Tommy John procedure
 - Free tendon graft
 - 63% return to sports (10 out of 16 athletes)
 - 31% postop ulnar nerve complication

Ulnar collateral ligament reconstruction

- Modified Jobe Technique
 - No neuropathies

- Docking technique
 - Alchek et al. AJSM 1996
 - Rohrbaugh et al. AJSM 2002
 - 95% (31 pts) return to sports
 - Azar et al. AJSM 2010
 - 79% (78 pts) return to sports

Ulnar collateral ligament reconstruction

- Bone tunnels
 - anterior and posterior aspects of the sublime tubercle
 - central or lateral to the midpoint of the epicondyle

- Byram, Ahmad et al. AJSM 2013
 - bone bridge of 6 to 8 mm
 - 15° in the coronal plane
 - 30° in the sagittal plane

A Systematic Review of Ulnar Collateral Ligament Reconstruction Techniques

Jonathan N. Watson, MD, Peter McQueen, MD, and Mark R. Hutchinson, MD

Investigation performed at the University of Illinois at Chicago, Chicago, Illinois

Results: A total of 21 studies, 7 biomechanical and 14 clinical, met the inclusion criteria. There were 1384 patients. The overall complication rate was 18.6% (203/1086), further subdivided into 27% for the Jobe technique (29/109), 10% for the modified Jobe technique (13/131), 0% for the interference screw technique (10/10), 2% for the modified docking technique, and 16% for the docking technique (16/103). The most common complication across all studies was ulnar nerve neuropathy in 176 (12.9%). The overall rate of return to play was 78.4%.

Conclusions: Ulnar collateral ligament reconstructions utilizing the docking technique results in a significantly higher rate of return to play and a lower complication rate when compared with the Jobe and modified Jobe techniques.
UCL Reconstruction- Rehab

- Splint immobilization for 1 week in 75 deg of flexion
- Transition to hinged elbow brace with initial ROM of 30 to 90 deg
- Advance to 15 – 105 deg between 3 and 5 weeks with active and passive ROM as tolerated
- DC hinged brace at 6 weeks
- 6 to 16 weeks start active ROM and strengthening of whole arm, adv as tolerated

UCL Reconstruction- Rehab

- 16 weeks start throwing at 45 foot distance on flat ground
- No pain and able to throw 180 feet on flat ground
- At 7 months and start mound throwing
- Advance speed and endurance over the next 3 months
- Return to play at 1 year

Valgus Extension Overload Syndrome

- Posteromedial impingement
- Chondropathy
- Osteophyte formation
- Loose bodies

Valgus Extension Overload Syndrome

- Posterior elbow pain
- Loss of full extension
- Crepitus / locking
- Arm bar test
VEO - Treatment

- Rest, NSAIDs
- Therapy regimens
 - Flexor pronator mass strengthening
 - Pitching instruction, focus on proper mechanics and improve poor technique
 - Inverted ‘W’

Valgus Extension Overload Syndrome

VEO Syndrome Treatment

- Open vs. arthroscopic debridement
- Reddy et al. Arthroscopy 2000
 - 85% return to sports (55 athletes)
- Blonna et al. AJSM 2010
 - 91% return to sports (24 athletes)

VEO - Rehab

- Splint immobilization for 1 week in 75 deg of flexion
- DC splint and start active and passive ROM as tolerated at follow up
- 6 weeks start active ROM and strengthening of whole arm, adv as tolerated
- Return to throwing as pain and strength allow

Etiology of OCD in the elbow

- Adolescent athletes ages 11-21
- Differentiate from Panner disease
 - Boys age less than 10, osteonecrosis of entire capitellum
- Male >> female
- Sports including baseball, gymnastics, weightlifting, rock-climbing
- Usually dominant arm, occasionally bilateral

- Typically overhead throwing athlete
- Repetitive trauma
- Poor throwing mechanics
- Compression of the lateral condylar blood supply in late cocking phase of throw
- Axial twisting load across the elbow in gymnasts

Etiology of OCD in the elbow

- Vascular anatomy of the distal humerus supports ischemia as a possible cause of OCD
- Capitellum
 - supplied by posterior end arteries that traverse the epiphyseal articular cartilage
 - no metaphyseal collateral contribution
- Repetitive compression of may result in subchondral ischemia and the characteristic osteonecrosis
- Loss of subchondral - articular cartilage fragmentation and loose body formation
Insidious onset of lateral elbow pain
• Worse with and after use
• Improves with rest
• May have small effusion
• Lack of 10-20 deg of terminal extension
• Pain with palpation over radial head, lateral epicondyle
• Occasional locking, catching of elbow
• Passive pronation/supination with axial load exacerbates lateral pain

Plain radiography
CT
MRI +/- gadolinium

Minami Xray:
• Grade I: translucent cystic shadow
• Grade II: clear zone or split line between lesion and underlying bone
• Grade III: loose bodies

MRI grading of lesions of talus/knee developed by Nelson can be used for the elbow

Arthroscopic (Gestalt) classification
• Stable
• Unstable but attached
• Detached

Nonoperative
Takahara et al. (Am J Sports Med 1999)
– 24 patients who were treated nonsurgically
– mean follow-up of 5.2 years.
– Found poor subjective outcome to be independent of lesion grade
– Radiographic healing and improvement not associated with the status of growth plate
– Poor prognosis - large, advanced lesions, degenerative changes

Mihara et al. (Am J Sports Med 2009)
– 39 baseball players, mean age of 12.8 years, mean follow-up of 14.4 months
– 25 of 30 early lesions were healed, only 1 of 9 advanced lesions
– Healing in 16 of 17 with open physes, only 11 of 22 closed

Operative
– Open Debridement and Fragment Excision
– Arthroscopic Debridement and Marrow Stimulation
– Fragment Fixation
– Osteotomy
– Osteochondral Transplantation
• Autograft or allograft
Autograft for OCD in the elbow

- Indications include large Baumgarten grade 4 and 5 lesions, ICRS grade IV lesions
- Lesions involving >50% of the articular surface area
- Disruption of the lateral buttress
- Radial head engagement
 - Technically demanding
 - Donor site morbidity, donor site pain
 - Curvature best fit
 - Multiple plugs for large lesions
 - Limited donor area

- Takahara, JBJS, 2007

Fresh Allograft for OCD in the elbow

- Reports in the knee show:
 - 90% survival at 10 years - pediatric
 - 82% survival at 10 years - adults
- Indicated in knee for large >2cm² lesions - similar in elbow
- Match radius of curvature
- One stage operation

- Levy YD, Clin Orthop Relat Res 2013

Case example

- 12 yo female, right elbow dx with OCD at 10.5 years
- Gymnast but not high level
- Treated with fragment debridement
- Continued pain / stiffness
- ROM 30 to 110
- Bilateral involvement

- Mirzayan, JSES, 2016

Case example

- Left elbow asyptomatic

- Mirzayan R, JSES, 2016

Case example

- R elbow OCD, 11 diameter
- Joint effusion, no obvious loose bodies
- ICRS Grade III
- Large lesion, failed previous operation
- Did not want to use knee, donor site morbidity
- Match radius of curvature

- Mirzayan R, JSES, 2016
- Kocher interval
- Posterior to it
- Elevate anconeous off ulna
- Hyperflex elbow

Case example

- Sizer - 15 mm
- 1.76 cm² graft

Case example

- Sizer - 15 mm, reamer

Case example

- Graft harvest

Case example

- Graft harvest

Case example

- Graft preparation
Case example

- Insetting
- Press fit

Rehab:
- Soft dressing
- Immediate gentle ROM
- PT/OT stretching at first post op visit
- NWB for 6 weeks
- Strengthening at 6 weeks
- Repetitive WB at 3 months
- CT scan

Case example

- CT scan at 3 months
- Pain free
- Nearly Full ROM
- Lacking extension 10 deg
- Begin light gymnastics
- Full arm weight bearing at 6 mo

Case example

[Images of a person performing physical therapy exercises]

Case example

[Images of a person's arm with a cast and a CT scan]

Discussion

- Thank you