BRCA1 and BRCA2 Genes

THEIR RELATIONSHIP TO BREAST AND OVARIAN CANCER

THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION-NONCOMMERCIAL-SHAREALIKE 4.0 INTERNATIONAL LICENSE.
BRCA1 and **BRCA2** Genes

- In humans, the **BRCA1** and **BRCA2** genes code for proteins that work to suppress tumors.

- The gene names come from BReast CAncer genes 1 & 2. The official names of these genes is breast cancer1, early onset and breast cancer2, early onset.

- Everyone, male and female, has these genes which normally work to repair DNA and are involved in cell growth and cell division.
BRCA1 Gene Location at 17q21

BRCA2 Gene Location at 13q12.3

[Image of a genetic map highlighting 13q12.3]
BRCA1 and BRCA2 Genes

Different Locus, Different Allele, Same Phenotype

http://www.cancer.gov/cancertopics/understandingcancer/cancergenomics/AllPages
BRCA1-BARD1 Heterodimeric RING-RING Complex

http://www.rcsb.org/pdb/explore/explore.do?structureId=1JM7
BRCA2 and RAD51 Protein Complex

http://www.rcsb.org/pdb/explore/explore.do?structureId=1N0W
BRCA1 and BRCA2 Work Together to Repair DNA

http://www.dandrealab.org/research.html
Mutations in Cancer Susceptibility Genes: BRCA1

- On chromosome 17
- Autosomal dominant transmission
- Protein has role in genomic stability
- ~500 different mutations reported

- Nonsense/Frameshift
- Missense
- Splice-site
Results of BRCA1 Mutations

BRCA1 mutations

→ Cell cycle checkpoints
→ Centrosome duplication
→ DNA damage repair

Genetic Instability

DNA damage response

p21 → Growth arrest
Bax Fas → Apoptosis

Genetic instability

Tumor suppressor mutation
Oncogene activation

Survival → Malignant transformation

Cancers

Embryonic lethal
Developmental defects
Mutations in Cancer Susceptibility Genes: BRCA2

- On chromosome 13
- Autosomal dominant transmission
- Protein has role in genomic stability
- ~300 different mutations reported

- Nonsense/Frameshift
- Missense

http://www.cancer.gov/cancertopics/understandingcancer/cancergenomics/AllPages
Autosomal Dominant Inheritance

- Equally transmitted by men and women
- No skipped generations
- Each child has a 50% chance of inheriting the mutation

[Diagram showing a family tree with individuals labeled as Normal or Affected]
<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Associated Gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Familial retinoblastoma</td>
<td>RB1</td>
</tr>
<tr>
<td>Li-Fraumeni</td>
<td>TP53 (p53 protein)</td>
</tr>
<tr>
<td>Familial adenomatous polyposis</td>
<td>APC</td>
</tr>
<tr>
<td>Hereditary nonpolyposis colorectal cancer</td>
<td>MLH1, MSH2, MSH6, PMS1, PMS2</td>
</tr>
<tr>
<td>Wilms’ tumor</td>
<td>WT1</td>
</tr>
<tr>
<td>Breast and ovarian cancer</td>
<td>BRCA1, BRCA2</td>
</tr>
<tr>
<td>von Hippel-Lindau</td>
<td>VHL</td>
</tr>
<tr>
<td>Cowden</td>
<td>PTEN</td>
</tr>
</tbody>
</table>
Inheritance of a \textit{BRCA1} Mutation

- black = affected person; \(dx\) = diagnosed at a given age; diagonal line = deceased individual; arrow = patient in question

http://www.cancer.gov/cancertopics/pdq/genetics/breast-and-ovarian/Health_Professional/page1#Section 15
Inheritance of a BRCA2 Mutation

black=affected person; dx = diagnosed at a given age; diagonal line=deceased individual; arrow = patient in question

http://www.cancer.gov/cancertopics/pdq/genetics/breast-and-ovarian/HealthProfessional/page1#Section_15
BRCA1 and BRCA2 Inheritance and Cancer

Parents: Bb x Bb
Possible Offspring: BB Bb bb
B = mutated gene b = normal gene

- It is unclear in the literature whether or not it takes only one mutated (Bb) copy of BRCA1 and BRCA2 genes to cause cancer or if it takes two mutated (BB) copies.
- Even though a normal gene is inherited along with a mutated one in one who inherited Bb, the amount of DNA that goes unrepaired mounts up and some scientists think this can lead to breast and/or ovarian cancer by the time one reaches menopause (by age 50).
- Other scientists think the normal gene in a person who inherited Bb must also become mutated before cancer will develop.
Chances of Developing Breast Cancer by Age 70

6 in 10

4 in 10

1 in 10

People now have the option of knowing if they are more likely to develop breast cancers.

Source:
See the references section of http://www.cancer.gov/cancertopics/factsheet/Risk/BRCA
Testing for \textit{BRCA1} and \textit{BRCA2} Mutations

The \textit{BRCA1} gene was discovered and isolated in 1994.

The \textit{BRCA2} gene was discovered and isolated in 1995.

At that point, the way was paved for testing individuals for mutation of these genes to determine further actions in regards to their health.
Who Should Be Tested?

- Family history would include incidence of breast cancer in:
 a) in two 1st degree relatives (mother, daughter, sister)
 b) in three or more 1st or 2nd degree relatives (grandmother or aunt)
 c) in a 1st degree relative diagnosed at age 50 or younger
 d) in a 1st degree relative diagnosed with cancer in both breasts
 e) in a male relative
 f) in a 1st or 2nd degree relative diagnosed with both breast and ovarian cancer.

- Women who are of Ashkenazi Jewish descent might choose to be tested if:
 1) any 1st degree relative has been diagnosed with breast or ovarian cancer
 2) if two 2nd degree relatives on the same side of the family are diagnosed with breast or ovarian cancer.
BRCA1 and BRCA2 Mutations Test Results

- If the test is negative for mutation, the individual may still have a predisposition for breast cancer and may or may not get cancer.

- If the test is positive for mutation, the individual may or may not get cancer but the faulty gene could be passed on to the offspring. Frequent screenings with mammograms and clinical breast exams will help detect the cancer early if it does occur.
Test Kits for *BRCA1* and *BRCA2* Mutations

- In the United States, Myriad Genetics, Inc. owned exclusive right to test for the genes and charged $350 for a single mutation analysis and $2975 for a full sequence analysis of both genes. The screen for several mutations found in the Ashkenazi Jewish population was $415.

- Most of the time, insurance plans will cover the genetic testing, but some women fear their employer or insurance company will discriminate against them if the results are positive so choose to pay for the tests themselves or not to have them done at all.
BRCA1 and BRCA2 Patents Controversy

- In 2009, the expense of the tests for *BRCA1* and *BRCA2* mutations and the monopoly that Myriad Genetics, Inc. had on the patents on BRCA1 and BRCA2 led The Association for Molecular Pathology, the American Civil Liberties Union (ACLU), and the Public Patent Foundation to file a lawsuit against the US Patent and Trademark Office and Myriad Genetics, Inc.

- In 2010, a US district court invalidated 7 of 23 of Myriad’s patents on these genes and opened the door to possibly curtailing the rights of an individual or organization to patent a gene.
Supreme Court Results

- In June, 2013, the United States Supreme Court ruled that *genes which were naturally produced* could not be patented.
- This means that Myriad Genetics, Inc. no longer holds the exclusive patent rights to *BRCA1* and *BRCA2* genes.