Mitosis

CELL DIVISION FOR GROWTH OF EUKARYOTIC ORGANISMS AND REPLACEMENT OF SOME EUKARYOTIC CELLS

THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION-NONCOMMERCIAL-SHAREALIKE 4.0 INTERNATIONAL LICENSE.
History of Understanding Cancer

- Rudolf Virchow (1821-1902) – First to recognize leukemia in mid-1800s, believing that diseased tissue was caused by a breakdown within the cell and not from an invasion of foreign organisms.
- Louis Pasteur (1822-1895) – Proved Virchow to be correct in late 1800s.
- Virchow’s understanding that cancer cells start out normal and then become abnormal is still used today.
- If cancer is the study of abnormal cell division, let’s look at normal cell division.
Types of Normal Cell Division

- There are two types of normal cell division – mitosis and meiosis.
- **Mitosis** is cell division which begins in the fertilized egg (or zygote) stage and continues during the life of the organism in one way or another. Each diploid (2n) daughter cell is genetically identical to the diploid (2n) parent cell.
- **Meiosis** is cell division in the ovaries of the female and testes of the male and involves the formation of egg and sperm cells, respectively. Each diploid (2n) parent cell produces haploid (n) daughter cells.
- Meiosis will be discussed more fully in Chapter 5 of the Oncofertility Curriculum.
Walther Flemming (1843 – 1905)

• Described the process of cell division in 1882 and coined the word ‘mitosis’

• Also responsible for the word “chromosome’ which he first referred to as stained strands

• Co-worker Eduard Strasburger named the mitotic stages ‘prophase, metaphase, anaphase, telophase’ in 1884
What is Mitosis?

Walther Flemming’s book:
Zellsubstans, Kern und Zelltheilung
(Cell-Substance, Nucleus, and Cell-Division)

Illustration showing chromosomes and the process of mitosis, 1882

http://upload.wikimedia.org/wikipedia/commons/6/6d/Zellsubstanz-Kern-Kerntheilung.jpg Public Domain
DNA Replication and Cell Division

Diploid Parent Cell

DNA Replication

Mitosis

Result – Two Diploid Cells Identical to the Parent Cell

http://commons.wikimedia.org/wiki/File:Major_events_in_mitosis.svg
Why Do Cells Undergo Mitosis?

- Mitosis is exact nuclear division. The DNA in the parent cell is copied exactly and then the cell nucleus divides exactly so each of the two daughter cells has the same kind and number of genetic base pairs arranged in chromosomes as the parent cell.
- Mitosis is necessary because when cells reach a surface area to volume ratio that is too small relative to the rate of diffusion of nutrients and water into the cell, and thus the nutritional demands of the cell cannot be met.
- In order to address this, the cell undergoes mitosis to form two identical, but smaller cells, which increases the surface area to volume ratio, and thus the rate of diffusion can meet the nutritional demands of the entire cell.
The Stages of Interphase and Cell Division

http://creativecommons.org/licenses/by-sa/4.0/ No changes were made.
Mitotic Cell Division

- **G₀**: cell specialization, no more divisions (2c, 2n)

- **Interphase G¹ (2c, 2n)**

- **Interphase S**: (2c × 2 = 4c, 2n)

- **Cytokinesis**: (2c, 2n), (2c, 2n)

- **Mitosis** is a cycle

- **Prophase** (4c, 2n)

- **Metaphase** (4c, 2n)

- **Anaphase**: (2c × 2, 2n × 2)

- **Telophase**: (2c × 2, 2n × 2)

- **Interphase G²**: (4c, 2n)
Prophase of Mitosis

Centrosomes containing a centriole pair. The centrosome that divided in G2 now has two copies and each migrates to opposite poles of the cell and forms spindle fibers.

Chromatid pairs (replicated DNA of the paternal (green) and maternal (red) homologous chromosomes)

Centromeres with kinetochore on either side where the spindle fiber will attach.

Cell Membrane

Aster Microtubules

Spindle Fiber Microtubule

Drawing: Lynda Jones, MS, ONPRC
Kinetochore and Mitotic Spindle

- Centromeric region
- Mitotic spindle microtubules
- Kinetochore
- Sister chromatids

https://creativecommons.org/licenses/by-sa/4.0/ No changes were made.
Mitosis in an Onion Root Tip

Interphase

Telophase

Anaphase

Metaphase

Prophase

http://commons.wikimedia.org/wiki/File:Wilson1900Fig2.jpg {PD-US}
Cytokinesis

Animal cell

- Cleavage furrow
- Contractile ring

Plant cell

- Cell plate
- Golgi vesicles

Source: https://www.boundless.com/biology/textbooks/boundless-biology-textbook/cell-reproduction-10/the-cell-cycle-88/the-mitotic-phase-and-the-go-phase-396-11622/images/fig-ch10_02_04 http://creativecommons.org/licenses/by-sa/4.0/ No changes were made.