
BciPy: A Python framework for brain-computer interface research
Tab Memmott1, Aziz Kocanaogullari2, Deniz Erdogmus2, Steven Bedrick1, Betts Peters1, Melanie Fried- Oken1, and Barry Oken1

1. Oregon Health and Science University 2. Northeastern University

Material, Methods and Results:

There are BCI frameworks currently available, most notably
the widely used BCI2000 and OpenViBE. These systems save
time to set up or modify BCI experiments. They are free for
research, generally written in lower level programming
languages (C++) and have been used by many laboratories.
However, many in the BCI field do not have training in lower
level programming languages, if any at all. Code should be
written in a language that is easily understood and widely
used for programming tasks across disciplines. Python
should be considered, as it’s becoming the dominant
language in many scientific fields and is increasing in usage
yearly [1].

In this abstract, we present a modular, Python-based BCI
framework, BciPy (See Figure 1 for a closed-loop view of
framework).

This software:

 utilizes a higher-level programming language without

comprising timing
 outputs session data into immediately usable formats

(.txt, .json, .csv, .pdf), with helper functions and full
documentation

 allows for closed-loop BCI control, with usage of modules
outside of the loop

 is free
 works on major Operating Systems
 is architecturally modular
 contains test and demo scripts
 has few outside dependencies, excepting those that are

widely used, such as SciPy [2] and Psychopy [3]
 easily uploadable into major EEG processing software

(ex. EEGLAB)
 prepares for the tools of the future (lack of parallel ports,

eye-tracking, …)

The initial version is pre-packaged with an RSVPKeyboardTM TM

paradigm [4] for BCI communication, data acquisition (for
use with Wearable Sensing and Lab Streaming Layer
supported devices), EEG signal and language modeling,
display, and GUI with parameter editing.

Introduction: Interest in BCI has increased in recent years with productive collaboration across fields such as engineering, neuroscience, allied health, and
computer science. Laboratories interested in exploring BCI must either construct a working system from scratch or use an off-the-shelf option. Technology
that is able to solve the architectural and ease of access barriers to the BCI field will be essential in maintaining momentum and opening the field to even
more diverse expertise. Here we mention popular software suites for BCI research and propose a new system, BciPy, to address existing gaps.

Discussion: There are still many features and enhancements to be added to the initial BciPy release to
facilitate future BCI research. The code will go through 6-month development cycles. Contributions from the
public will be encouraged and authorship granted to code integrated. Future developments are set to include
additional user inputs (eye gaze, switches), enhancements to data acquisition, new language models and
signal classifiers, and user interface enhancements.

Significance: A Python-based BCI framework will significantly reduce the barriers to contribute to the field
and encourage participation from across disciplines. The code is approved for open source. V1.0 will be
available to all in late Spring 2018. It is also freely available, with any published features, via request to the
authors.

Citations: [1] Robinson, David. (September 14, 2017). Why Is Python Growing So Quickly? https://stackoverflow.blog/2017/09/14/python-growing-quickly/ [2] Jones E, Oliphant E, Peterson P, et al. SciPy: Open Source
Scientific Tools for Python, 2001-, http://www.scipy.org/. [3] doi:10.1016/j.jneumeth.2006.11.017. [4] doi:10.1109/ICASSP.2012.6287966.

Acknowledgements: Dani Smektala for GUI work; Berkan Kadioglu, Andac Demir, Paula Gonzalez-Navarro for signal processing and
classification work; Shiran Dudy and Shaobin Xu for language model integration; Matthew Lawhead for DAQ work; Brandon Eddy and David
Smith for design contributions. Support provided by NIH (2R01DC009834) and NIDILRR (90RE5017).

Figure 1: Closed-Loop Module Flowchart

Figure 2: Modules and Implementation Figure 3: Data Save Structure

https://stackoverflow.blog/2017/09/14/python-growing-quickly/
https://stackoverflow.blog/2017/09/14/python-growing-quickly/
https://stackoverflow.blog/2017/09/14/python-growing-quickly/
https://stackoverflow.blog/2017/09/14/python-growing-quickly/
https://stackoverflow.blog/2017/09/14/python-growing-quickly/
http://www.scipy.org/

