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Abstract
Event related potentials (ERP) corresponding to a stimulus in electroencephalography (EEG) can
be used to detect the intent of a person for brain computer interfaces (BCI). This paradigm is
widely utilized to build letter-by-letter text input systems using BCI. Nevertheless using a BCI-
typewriter depending only on EEG responses will not be sufficiently accurate for single-trial
operation in general, and existing systems utilize many-trial schemes to achieve accuracy at the
cost of speed. Hence incorporation of a language model based prior or additional evidence is vital
to improve accuracy and speed. In this paper, we study the effects of Bayesian fusion of an n-gram
language model with a regularized discriminant analysis ERP detector for EEG-based BCIs. The
letter classification accuracies are rigorously evaluated for varying language model orders as well
as number of ERP-inducing trials. The results demonstrate that the language models contribute
significantly to letter classification accuracy. Specifically, we find that a BCI-speller supported by
a 4-gram language model may achieve the same performance using 3-trial ERP classification for
the initial letters of the words and using single trial ERP classification for the subsequent ones.
Overall, fusion of evidence from EEG and language models yields a significant opportunity to
increase the word rate of a BCI based typing system.
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I. Introduction
There exist a considerable number of people with severe motor and speech disabilities.
Brain computer interfaces (BCI) are a potential technology to create a novel communication
environment for this population, especially persons with completely paralysed voluntary
muscles [1], [2]. One possible application of BCI is typing systems; specifically, those BCI
systems that use electroencephalography (EEG) have been increasingly studied in the recent
decades to enable the selection of letters for expressive language generation [1], [2], [3].
However the use of noninvasive techniques on a letter-by-letter system lacks efficiency due
to low signal to noise ratio and variability of background brain activity. Therefore current
BCI typing system suffer from low symbol rates and researchers have turned to various
hierarchical symbol trees to achieve system speedups [3], [4], [5]. Slow throughput greatly
diminishes the practical usability of such systems. Incorporation of a language model, which
predicts the next letter using the previous letters, into the decision-making process can
greatly affect the performance of these systems by improving the accuracy and speed. If the

©2011 IEEE

NIH Public Access
Author Manuscript
Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2013 September 17.

Published in final edited form as:
Conf Proc IEEE Eng Med Biol Soc. 2011 ; 2011: 5774–5777. doi:10.1109/IEMBS.2011.6091429.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



symbol decisions done using only the EEG evidence are not accurate enough, the usage of a
text prediction without improving the decision-making is not feasible. Therefore we propose
the usage of the language model to improve symbol selection accuracy and this paper
investigates the effect of its use in letter classification (target vs. non-target).

As opposed to the matrix layout of the popular P300-Speller [1] or the hexagonal two-level
hierarchy of the Berlin BCI [3], our approach, which we refer to as RSVP Keyboard, utilizes
another well-established paradigm: rapid serial visual presentation (RSVP) [6], [7]. This
paradigm relies on presenting one stimulus at a time, each subsequent stimulus replacing the
previous one on the screen, while the subject tries to perform mental target matching
between the intended symbol and the sequence, which is presented at relatively high speeds.
EEG responses corresponding to the visual stimuli are classified using regularized
discriminant analysis (RDA) applied to stimulus-locked temporal features from multiple
channels.

In this paper, we investigate the fusion of language model scores in an offline/simulated
manner with the EEG classification scores, by randomly sampling contexts of each letter in
a large text corpus. For each sampled context, we derive the language model probabilities of
all 26 letters given the context, and these language model probabilities and the EEG
classification scores are fused using a Bayesian approach, assuming that these two pieces of
evidence are conditionally independent given class labels – a reasonable assumption. We
present a performance analysis that compares different scenarios with varying language
model orders and numbers of visual presentation sequences used in EEG classification. The
results are very promising.

II. RSVP Based BCI and ERP Classification
RSVP is an experimental psychophysics technique in which visual stimulus sequences are
displayed on a screen over time on a fixed focal area and in rapid succession. The Matrix-
P300-Speller [1] used by Wadsworth and Graz groups (especially G.tec) opts for a spatially
distributed presentation of possible symbols, highlighting them in different orders and
combinations to elicit P300 responses. Berlin BCI's recent variation utilizes a 2-layer tree
structure [3] where the subject chooses among six units (symbols or sets of these) where the
options are laid out on the screen while the subject focuses on a central focal area that uses
an RSVP-like paradigm to elicit P300 responses. In contrast, our approach is to distribute
the stimuli temporally and present one symbol at a time using RSVP and seek a binary
answer to find the desired letter in a right-branching tree. The latter method has the
advantage of not requiring the user to look at different areas of the screen.

In the current study, which is an offline analysis, our RSVP paradigm utilizes stimulus
sequences consisting of letters in the English alphabet presented sequentially with random
ordering where the user is expected to show positive intent for only one predesignated letter
for each epoch (see details below). When the user sees the predesignated infrequent (1 in 26)
target, the brain generates an event related potential (ERP) in the EEG; the most prominent
component of this ERP is the P300 wave, which is a positive deflection in the scalp voltage
primarily in frontal areas

(1)
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(2)

(3)

(4)

(5)

(6)

and that generally occurs with a latency over 300 ms. This natural response of the brain to
the event of visual stimulus matching the rare sought target allows us to make binary
decisions about user's intent.

The intent detection problem becomes a signal classification problem when the EEG signals
are windowed in a stimulus-time-locked manner over a duration with sufficient length – in
this case 500ms. As a consequence, the signals acquired from each EEG channel will be
incorporated and classified to determine the class label: ERP or non-ERP. The preprocessing
steps used before classification are as follows. For each channel, the time windowed EEG
signals are filtered by a bandpass filter; temporal feature vectors containing filtered-
windowed signals from each channel are subjected to a linear dimension reduction using the
vector covariances estimated over training samples and eliminating zero-variance directions
(in practice using Principal Component Analysis). Afterwards the data vectors obtained for
each channel are be concatenated to create a data vector corresponding to the stimuli. This
process amounts to a channel-specific energy-preserving orthogonal projection of raw
temporal features. Regularized Discriminant Analysis (RDA) [8] is used to determine a
classification discriminant score for each stimulus indicating whether it is a response to a
target letter or not; this score is used in conjunction with a language model to make the final
Bayesian decision on the class label of each letter.

RDA is a modified quadratic discriminant analysis (QDA) model. If each class is assumed to
have multivariate normal distribution and classification is made according to the comparison
of posterior distributions of the classes, the optimal Bayes classifier resides within the QDA
model family. Under this assumption, QDA depends on the inverse of the class covariance
matrices, which are to be estimated from training data, hence for small sample sizes in high
dimensional problems, singularities of these matrices are problematic. RDA applies
regularization and shrinkage procedures to the class covariance matrix estimates to eliminate
the singularity problem. The shrinkage procedure makes the class covariances closer to the
overall data covariance, and therefore to each other, thus making the quadratic boundary
closer to a linear one. Shrinkage is applied as
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(7)

where λ is the shrinkage parameter; Σ̂c is the class covariance matrix estimated for class c ∈
{0,1} with c = 0 for non-target class and c = 1 for target class; Σ̂ is the weighted average of
class covariance matrices. Regularization is administered as

(8)

where γ is the regularization parameter, tr[·] is the trace function and d is the dimension of
the data vector.

After carrying out the regularization and shrinkage on the estimation covariance matrices,
the Bayesian classification rule [9] is defined as the comparison of the log-of-the-posterior-
ratio using the posterior probability distributions with a threshold, which can incorporate the
relative risks or costs of making an error for each class. The corresponding log-of-the-
posterior-ratio is given by

(9)

Where μc, π̂c are estimates of class means and priors respectively; X is the data vector to be
classified and f (X; μ, Σ)is the pdf of a multivariate normal distribution.

The letter candidates, which contain all possible selectors, can be shown multiple times to
achieve a higher classification accuracy in EEG-scores by making use of independent visual
stimulus trial responses, as is commonly the case in EEG-based spellers1. We define a
sequence to be a randomly ordered set of all letters shown as stimuli. Since the randomness
of the target stimulus position in any given sequence is key to eliciting an ERP, a random
permutation of the letters is used for each sequence in our experiments. Thereafter all or
some of the sequences can be used to classify if a letter is target or non-target, depending on
the operational mode of the ERP classifier, that is whether it is using a single-trial, 2-trial, or
3-trial approach.

Although the stimuli were presented in random order, we can simulate conditions when a
language model would be operative by randomly sampling instances of each target letter in a
large text corpus, and combining the language model prediction from the sampled context
with the classifier. In the next section, we present our language modeling methods, along
with details of our corpus sampling procedure.

III. Language Modeling
Language modeling is very important for many text processing applications, such as speech
recognition, machine translation, as well as for the kind of typing application being
investigated here [10]. Typically, the prefix string (what has already been typed) is used to
predict the next symbol(s) to be typed. The next letters to be typed become highly
predictable in certain contexts, particularly word-internally. In applications where text

1The typical number of repetitions of visual stimuli is usually 8 or 16, although G.tec claims one subject is able to achieve reliable
operation with 2-trials (verbal communication)
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generation/typing speed is very slow, the impact of language modeling can become much
more significant. BCI-spellers, including the RSVP Keyboard paradigm presented here, can
be extremely low-speed letter-by-letter writing systems, and thus can greatly benefit from
the incorporation of probabilistic letter predictions from an accurate language model during
the writing process.

The language model used in this paper is based on the n-gram sequence modeling paradigm,
very widely used in all of the application areas mentioned above. It estimates the conditional
probability of any letter in a sequence given n – 1 previous letters using a Markov model of
order n – 1. Let W be a sequence of letters where Wi is the ith letter in the sequence. For an
n-gram model the estimate of the conditional probability of the letter Wi is obtained from
(1), where the joint probabilities are estimated by regularized relative frequency estimation
from a large text corpus. If the language model order is 1, then P(Wi) is equal to the context-
free letter occurrence probabilities in the English language, which is not dependent on the
previous letters. If the language model order is 0, then language modeling has no effect on
the decision process, wince in this case Wi is assumed to be drawn from a uniform
distribution over the alphabet.

For the current study, all n-gram language models were estimated from a one million
sentence (210M character) sample of the NY Times portion of the English Gigaword corpus.
Corpus normalization and smoothing methods were as described in [10]. Most importantly
for this work, the corpus was case normalized, and we used Witten-Bell smoothing for
regularization. For each letter, 1000 contexts were randomly sampled (without replacement)
from a separate 1M sentence subset of the same corpus.

IV. Fusion of Language Model Probabilities and ERP Classifier Scores
The prediction of the current letter obtained by the language model using the previously
typed letters can be used to improve the performance of the ERP classifier explained in
Section II. For each letter to be written, an epoch of selections is going to be shown in BCI.
Let NS be the number of sequences per epoch (i.e. number of trials ERP classifier scores
generated) used to classify stimulus responses corresponding to each letter in a particular

epoch and  be the corresponding posterior ratio scores obtained from RDA for
letter Wi, where i – 1 letters are already written, and sequence ns, where ns ∈ {1,2, …, NS}
Then the posterior probability of letter Wi to be in class c given the classification scores for
letter Wi trials in each sequence and the previous letters is given in (2), where cWi is the

candidate class label of letter Wi,  is the jth letter previously written and nLM is the order
of the language model. Using Bayes' Theorem on (2), we obtain (3). If we assume that the
scores obtained from RDA2 for the stimuli corresponding to the current letter and previously
written letters are conditionally independent given class label, i.e

, we obtain (4). Using
Bayes' Theorem on (4) and assuming the conditional independence of the scores
corresponding to EEG responses for different trials of the same letter in different sequences,
we obtain (5). Hence the ratio of the posterior probabilities becomes (6), which can be
compared to a risk-based threshold, τ, to decide if the letter is a target or not. In our current

implementation,  is estimated using kernel density estimation on
training data, using a Gaussian kernel whose bandwidth is selected using Silverman's rule of
thumb that assumes the underlying density has the same curvature as a matching normal
distribution [11]. The classification rule, which makes decisions using the ratio of posteriors

2The RDA scores are used as one dimensional EEG features for fusion purposes.
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that incorporated information from ERP classifiers and language model predictions, finally
comes forth as:

(10)

V. Experiments and Results
One male and one female healthy subjects were recruited for this study. Each subject
participated in the experiments for two sessions. In each session 200 letters are selected
(with replacement, out of 26) according to their frequencies in the English language and
randomly ordered to be used as target letters in each epoch. Each epoch, the designated
target letter and a fixation sign are shown for 1s each and are followed by 3 sequences of
randomly ordered 26 letters of the English alphabet with 150 ms inter-stimuli interval.
Subjects are asked to look for the target letter shown at the beginning of the epoch.

The signals are recorded using a g.USBamp biosignal amplifier using active g.Butterfly
electrodes from G.tec (Graz, Austria) at 256Hz. The EEG channels positioned according to
the International 10/20 System were O1, O2, F3, F4, FZ, FC1, FC2, CZ, P1, P2, C1 C2,
CP3, CP4. Signals were filtered by nonlinear-phase 0.5-60 Hz bandpass filter and 60 Hz
notch filter (G.tec's built-in design), afterwards signals filtered further by 1.5-42 Hz linear-
phase bandpass filter (our design). The filtered signals were downsampled to 128Hz. For
each channel, stimulus-onset-locked time windows of [0,500)ms following each image onset
was taken as the stimulus response.

Let us denote by ej the jth epoch in a given session and let E be the ordered set containing all
epochs in the session. E is partitioned into 10 equal-sized nonintersecting blocks, Ek; for
every ej there is exactly one kj such that ej ∈ Ekj. For every ej acting as a test sample, the
ERP classifier is trained on the set E\Ekj. During training, the classifier parameters λ and γ
are determined using 10-fold validation and grid search within the set E\Ekj. The kernel
density estimates of the conditional probabilities of classification scores for EEG classifiers
are obtained using scores obtained from E\Ekj. The trained classifiers are applied to their
respective test epochs to get the 10-fold cross-validation test results presented in the tables.

The language model was trained as described in Section 3. For each letter in the alphabet,
1000 random samples were drawn from the same corpus (separate from the language model
training data) for testing purposes. For each letter sample we simulate the fusion of EEG
responses and the language model in the following way: (i) each sample is assumed to be the
target letter of a typing process using BCI; (ii) the predecessor letters of the target letter for
each epoch are taken from the corpus to calculate the letter probabilities of the n-gram
language models for each letter in the alphabet3; (iii) under the assumption of independence
of EEG responses with the previous letters selected, for each epoch, the EEG responses for
every letter is converted to EEG classifier scores; (iv) the matching model probabilities for
each letter are obtained from the language model; (v) and the fusion of ERP classifier scores
and language models was achieved as described above, resulting in a joint discriminant
score that needs to be compared with a threshold depending on risk ratios for missing a
target letter and a false selection.

3Since subjects only focus to a single target letter without knowing the predecessor letters of the typing process in this experiment, it
is assumed that the EEG responses created during an epoch are independent from the predecessors.
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Fusion results were obtained for n-gram model orders n = 0, 1, 4, and 8. The EEG scores
were assumed to have been evaluated for NS = 1, 2, and 3 sequences (to evaluate the
contribution of multi-trial information) to decide if a letter under evaluation was a desired
target letter or not. In the results, only EEG data from the first NS sequences of the epoch
was used for classification for each selected sequence count. Receiver operating
characteristics (ROC) curves are obtained using the decision rule given in 10 for different
orders of the language model, for different number of sequences used and for different
positions of the sample target letter in the corresponding word from the corpus. In Table I
the area under the ROC curves are compared where each entry contains the pair of minimum
and maximum areas over the sessions. In Table II, Table III, and Table IV the correct
detection rates are given for the false positive rates of 1%, 5%, and 10%, respectively.

VI. Discussion
Our analysis supports the hypothesis that using a language model to support ERP
classification can improve BCI-speller performance. As the number of stimulus repetitions
and as the model order for the language model increase, the performance of the letter
classification as target or nontarget improves as expected. A 0-gram language model (EEG-
only) performs worst and the language model makes significant contribution in single-trial
decision-making. The language model contributes more to letters that appear word-internally
than in word-initial position. Large model orders for the language model can help
significantly after the first letter of a word and must be investigated further. The language
model order is not as influential for the first letters in a word while number of stimulus
repetitions is; consequently, the results suggest that for first letters of words the BCI system
could switch to multi-trial mode, while for subsequent letters, single-trial EEG evaluation
with high-order language model could be beneficial. Reduction in the number of repetitions
is a direct multiplier factor for reduction in time to type a given length text.

Additionally, this fusion approach is also implemented in real time and the preliminary
results seem very promising. Online comparative analysis and further experiments will be
done as a future work.
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TABLE I

The minimum and the maximum values of the area under the ROC curves obtained using fusion classifier
under different scenarios. The comparison is made using different number of sequences for classification,
different letter positions in the word and different language model orders.

1 sequence 2 sequences 3 sequences

0-gram (0.812, 0.884) (0.907, 0.956) (0.957, 0.985)

1-gram (0.892, 0.922) (0.944, 0.973) (0.972, 0.986)

4-gram
Word-initial (0.892, 0.941) (0.954, 0.983) (0.977, 0.991)

Word-internal (0.975, 0.983) (0.985, 0.992) (0.991, 0.997)

8-gram
Word-initial (0.905, 0.945) (0.960, 0.984) (0.979, 0.992)

Word-internal (0.991, 0.993) (0.995, 0.997) (0.995, 0.998)
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TABLE II

The minimum and the maximum values of the detection rates for 1% false alarm rate using fusion classifier
under different scenarios.

1 sequence 2 sequences 3 sequences

0-gram (0.101, 0.348) (0.500, 0.532) (0.625, 0.698)

1-gram (0.255, 0.371) (0.468, 0.583) (0.591, 0.698)

4-gram
Word-initial (0.263, 0.416) (0.434, 0.774) (0.621, 0.810)

Word-internal (0.597, 0.684) (0.748, 0.849) (0.848, 0.927)

8-gram
Word-initial (0.294, 0.448) (0.465, 0.782) (0.647, 0.835)

Word-internal (0.810, 0.854) (0.886, 0.932) (0.936, 0.972)
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TABLE III

The minimum and the maximum values of the detection rates for 5% false alarm rate using fusion classifier
under different scenarios.

1 sequence 2 sequences 3 sequences

0-gram (0.453, 0.548) (0.700, 0.810) (0.828, 0.889)

1-gram (0.556, 0.660) (0.767, 0.841) (0.900, 0.953)

4-gram
Word-initial (0.606, 0.688) (0.740, 0.884) (0.886, 0.971)

Word-internal (0.842, 0.899) (0.912, 0.966) (0.960, 0.989)

8-gram
Word-initial (0.614, 0.716) (0.766, 0.905) (0.899, 0.971)

Word-internal (0.951, 0.971) (0.972, 0.990) (0.986, 0.996)
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TABLE IV

The minimum and the maximum values of the detection rates for 10% false alarm rate using fusion classifier
under different scenarios.

1 sequence 2 sequences 3 sequences

0-gram (0.550, 0.661) (0.800, 0.906) (0.900, 0.969)

1-gram (0.633, 0.797) (0.817, 0.905) (0.917, 0.984)

4-gram
Word-initial (0.692, 0.836) (0.857, 0.961) (0.948, 0.990)

Word-internal (0.933, 0.961) (0.966, 0.991) (0.983, 0.996)

8-gram
Word-initial (0.729, 0.840) (0.873, 0.964) (0.950, 0.990)

Word-internal (0.983, 0.990) (0.992, 0.997) (0.995, 0.998)
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