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Abstract
The Gleason score is the single most important prognostic indicator for prostate cancer candidates
and plays a significant role in treatment planning. Histopathological imaging of prostate tissue
samples provides the gold standard for obtaining the Gleason score, but the manual assignment of
Gleason grades is a labor-intensive and error-prone process. We have developed a texture
classification system for automatic and reproducible Gleason grading. Our system characterizes
the texture in images belonging to a tumor grade by clustering extracted filter responses at each
pixel into textons (basic texture elements). We have used random forests to cluster the filter
responses into textons followed by the spatial pyramid match kernel in conjunction with an SVM
classifier. We have demonstrated the efficacy of our system in distinguishing between Gleason
grades 3 and 4.
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1. INTRODUCTION
Prostate cancer is the second leading cause of death in American men, after lung cancer.
Candidates suspected to have prostate cancer commonly undergo tissue biopsy in order to
assess the presence and aggressiveness of cancer. The biopsied tissue samples are imaged
with a microscope after hematoxylin and eosin (H&E) staining and assigned tumor grades
according to the Gleason grading system (grades 1–5)[12]. In Fig. 1, we have shown H&E
images of prostate cancer tissue samples corresponding to Gleason grades 3 and 4. The
Gleason grade characterizes tumor differentiation, i.e., the degree to which the tumor
resembles healthy tissue. The sum of the primary and the secondary Gleason grades yields
the Gleason score, the single most important prognostic indicator for prostate cancer
patients. The Gleason score plays an important role in deciding the future course of
treatment. However, the assignment of Gleason scores is a time-consuming, error-prone
process that depends upon the samples obtained during core biopsy as well as on the
expertise of the pathologist. One way to validate the Gleason score obtained during core
biopsy is to re-calculate this score in patients who undergo radical prostatectomy, thereby
eliminating the sampling error. This form of validation is also required in order to study the
correlation of prostate cancer biomarkers observed in other macroscopic imaging modalities
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with the Gleason score [1]. Calculation of Gleason scores on the entire prostate specimen
can also help in the design of a procedure for selecting optimal biopsy locations [2].
Computer-aided Gleason grading becomes essential when we need to assign tumor grades to
the entire prostate specimen. Therefore, we have developed a computer-aided system to
assign Gleason grades in an automatic and reproducible manner.

Our system relies on accurate texture characterization and classification in order to
automatically compute the Gleason grade of an imaged prostate specimen. We use filtering
followed by clustering in order to characterize textures via basic texture elements or textons.
The distribution of these textons provides a discriminative signature for each tumor grade
and is used as the input to a support vector machine (SVM) classifier. For improved
accuracy and speed, we have used random forests for clustering and the spatial pyramid
match kernel in the SVM classifier. In Sec. 2, we describe our texture classifier in detail and
use it to distinguish between Gleason grades 3 and 4 in Sec. 3, where we also provide
comparisons with alternative clustering and classification methods. We conclude with some
final remarks in Sec. 4.

2. METHODS
2.1. Texture Classification Framework

We follow the texton-based texture classification framework introduced in [3] as the basis
for our work and briefly review this approach below: For every image belonging to a
specific texture, an appropriate rotationally invariant filter bank was first used to extract
responses at each pixel. The high-dimensional feature space of filter responses provides an
accurate description of the texture characteristics of each image, but for accurate
classification, we need a sparser compact representation that preserves the information
content. Therefore, clustering using the K-means algorithm was performed in this filter
response space in order to identify basic texture elements or textons for each texture class.
The cluster centers from the different texture classes were then concatenated and texton
maps, i.e., cluster (texton) assignments at each pixel, for each textural image were obtained.
It was shown in [3] that the spatial histogram of the texton map provides a rich
discriminative signature for each textural image. An example of a few filter response
images, a texton map and a texton histogram corresponding to the input H&E image in Fig.
1(a) is shown in Fig. 2. Several model histograms for each texture class were stored during
training and the texture class for an image during the test phase was assigned using a K-NN
classifier by comparing the texton histogram of the test image with the model histograms
using the χ2 distance.

Building upon the approach in [3], we replace the clustering and classification algorithms
with potentially more powerful alternatives described below. We continue to use the MR-8
filter bank introduced in [3].

2.2. Texton Identification using Random Forests
Since clustering using the K-means framework is slow during the training phase, tree-
structured alternatives are used for speed-up. During the training phase, a binary clustering
tree uses suitably determined binary splits in order to recursively divide the entire training
set and each training sample ends up being assigned to a tree leaf. The same leaves can then
be used for cluster assignment during the testing phase by using the recursive binary splits
determined during training. Instead of relying upon a single space-partitioning tree to
characterize the data, random forests (RF) [5,6] train an ensemble of trees to capture a richer
description of the input feature space. We shall use two types of random trees, namely,
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random projection trees (RPT) [4] and extremely randomized decision trees (ERT) [5,6], as
components within our random forests.

RPTs use two forms of binary-splits, viz., projection splits and distance splits. A projection
split picks a random direction for projecting the input features and splits them about the
median projection, the underlying intuition being that a randomly chosen direction can yield
almost as effective a projection direction as the optimal one determined via principal
component analysis. A distance split is only used when the distance between the farthest two
points is significantly larger than the average distance between any two points, suggesting
that no single direction can provide a good split. In the distance split, the median distance
from the mean of all input features is used to perform a spherical split of the feature space. It
is shown in [4] that RPTs can adapt to the local covariance dimension of the data and can
hence yield a more accurate description of the features in case they lie in a non-linear
subspace.

ERTs split the data at each node by picking the best feature component (filter response) and
threshold from a set of randomly chosen feature components and thresholds so that a
measure of information gain is maximized. We use the following definition [6] of the
information gain of a feature component f split at s:

where n denotes the total number of samples at a node, nleft denotes the number of samples
with f < s, nright denotes the number of samples with f ≥ s and EntropyA denotes the
Shannon entropy of the class labels in set A. As mentioned in [5,6], randomized decision
trees have an advantage over RPTs and K-means clustering because they use the class labels
to find discriminative space partitions during training. Although an ERT is only used for
space-partitioning and not for classification during the test phase, its corresponding texton
map should be more useful during the subsequent SVM classification stage described in Sec.
2.3. However, ERTs only use a single feature component for splitting the data, whereas
RPTs utilize the information from all feature components during the projection or distance
splits. Therefore, we shall use both RPTs and ERTs in our experiments in Sec. 3.

2.3. SVMs and the Spatial Pyramid Match Kernel
The 2-class SVM [14] is designed to find a max-margin linear classifier separating the
classes (e.g., grade 3 vs. grade 4) in a higher-dimensional feature space. An appropriately
selected kernel K, designed to measure the similarity between any two input features (texton
maps or texton histograms), controls the mapping from the input features into the higher-
dimensional space.

In order to accurately represent the differences between the multi-scale spatial content
present in two different visual word (texton) maps, the positive-definite spatial pyramid
match kernel (SPM) was introduced in [7]. The SPM kernel computed over L+1 levels for
any two texton maps P and Q is given by:
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where the histogram intersection , and Pl and Ql are portions of
histograms at level l with j indexing all nodes at level l. Since each tree in a random forest
yields its own texton map, as in [6], we use the mean SPM kernel value over all trees.

3. RESULTS AND DISCUSSION
Our prostate cancer dataset consisted of 25 H&E images of Gleason grade 3 and 50 images
of Gleason grade 4. Each image was acquired at 10× resolution with 0.625 micron pixel size
and was of size 1392×1040 pixels. (We note that a few of our grade 4 images contained
small regions belonging to other tumor grades, but we still assigned the grade 4 label to
these images.)

For training our clustering algorithms, we selected 30 images (15 of each grade). As in [3]2,
using the K-means algorithm, filter responses from 50000 randomly chosen pixels in each of
the 15 images belonging to one class were clustered to yield 8 centers, resulting in a total of
16 concatenated cluster centers from both classes. A texton map and a 16-bin texton
histogram were then computed for each of the 30 images. As in [3], we have found the final
classification performance of K-means clustering to be relatively insensitive to the number
of clusters selected. Using a similar scheme, we trained two forests, one for each texture
(grade) class and each with T trees, consisting of depth-3 RPTs. The resulting 8 leaves from
each tree yielded class-specific texton maps, whose histograms were then concatenated to
yield a single histogram for each training image. For T=1, we would thus get a 16-bin
histogram for each training image. Note that the tumor grade labels of the images
themselves get used during this clustering phase since the textons corresponding to each
texture class are separately identified. However, for our forest of ERTs, we train a single
forest of depth-4 ERTs by using the filter responses from both classes. This step would have
been detrimental to the classification performance of K-means or RPTs, but it is the key to
the success of ERTs. We have used the values T=1 and 4 for RF-RPTs and RF-ERTs to
check the benefit of using a forest with many trees. After the training phase for each
clustering algorithm was over, texton maps (and histograms) were then obtained for the
remaining 45 test images as well.

In the classification stage, we used the SVM with a standard radial basis function kernel
(γ=1/histogram-bins, C=1) operating on the base-level histogram (after Z-score
normalization) and with a 3-level SPM kernel operating on the texton map(s). To provide a
comparison with the baseline approach in [3], we have also provided a comparison with the
K-NN (K nearest neighbor) classifier (K=4) using the χ2 distance. To train and validate our
classifier, we used the same 30 training images used during clustering and then validated the
resulting classifier on the remaining 45 test images. Thus, both the clustering and the
classifier training were oblivious to the final test set used for validation.

Our classification results on the test dataset of 45 images are displayed in Table 1. For each
combination of clustering and classification algorithm, we have tabulated the classifier
accuracy in correctly identifying each tumor grade separately, the overall classifier accuracy
as well as the area under the ROC curve (AUC). Note that the AUC ∈[0,1] is immune to the
classifier trade-off between grade 3 and grade 4 accuracy. Since all our methods use some
form of randomization, we have reported the average performance on 10 runs along with
error bars. Among the three classification techniques, the RBF kernel and the K-NN
classifier yield similar performance. The relatively poor performance of the SPM kernel
could be because of over-fitting problems due to the small non-grade-4 regions present in

2We thank Roberto Tran and Rene Vidal for providing an implementation of [3].

Khurd et al. Page 4

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2011 April 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



our grade 4 images. Between the five clustering methods compared, highlighted AUC values
for the RBF kernel show no significant difference in performance, barring the T=1 RF-ERT
result. A forest of 4 ERTs (rows 13–15) has better mean performance with lower error bars
than a single ERT (rows 7–9), but an RF of 8 RPTs (rows 10–12) does not outperform 2
class-specific RPTs (rows 4–6) as significantly.

We note that using our un-optimized implementations, for a test image, filtering requires
about 3 sec., classification time is negligible and textonization using K-means, RF-RPT-T=4
and RF-ERT-T=4 requires 0.3 sec., 2 sec. and 3 sec., respectively. Training/testing times for
the results in rows 1–3, rows 10–12 and rows 13–15 were about 200 min., 120 min. and 140
min., respectively.

Related Work
Our approach to histopathology texture analysis is most similar to the work in [8], although
they have used the standard K-means algorithm for clustering and have used a boosting
algorithm for classification. Moreover, this work is not concerned with Gleason grading.
Automated Gleason grading was the focus in [9–12]. However, the work in [9] only used
global texture features and the work in [10] used architectural features. Moreover, both these
papers used fewer grade 3 and grade 4 samples for cross-validation. The work in [11] used
global fractal dimensions for texture characterization and used a larger sample population of
all Gleason grades, but they do not provide results on the individual accuracies for
distinguishing between grades 3 and 4, whereas the work in [12] only attempted to
discriminate between low-grade and high-grade tumors.

4. CONCLUSION
We have demonstrated the efficacy of our texture classification system in distinguishing
between Gleason grades 3 and 4. In future work, we plan to train our system on additional
Gleason grades, stroma and benign epithelium and to then use our automatic Gleason
grading system on whole-mount histopathology slides. In addition, we also plan to use our
texture classifiers for distinguishing between PIN (Prostatic Intraepithelial Neoplasia) and
BPH (Benign Prostatic Hyperplasia). In order to increase the accuracy of our system, we
plan to investigate the use of projection or distance splits within our random decision trees
and the use of unified texton generation and classification [13].
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Fig. 1.
H&E images of cancerous prostate tissue
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Fig. 2.
Texton histogram for an input H&E image

Khurd et al. Page 8

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2011 April 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Khurd et al. Page 9

Table 1

Classification Results

Gr. 3 %Acc. Gr.4 %Acc. Net %Acc. AUC

1. K-means,×2K-NN 90.0 ± 0.00 92.9 ± 1.50 92.2 ± 1.17 NA

2. K-means,RBF-SVM 90.0 ± 0.00 95.1 ± 1.38 94.0 ± 1.07 0.976±0.005

3. K-means,SPM-SVM 100 ± 0.00 85.1 ± 2.63 88.4 ± 2.04 0.974±0.005

4. RF-RPT,T=1,χ2K-NN 96.0 ± 5.16 90.3 ± 2.76 91.6 ± 1.75 NA

5. RF-RPT,T=1,RBF-SVM 95.0 ± 5.27 92.3 ± 5.05 92.9 ± 3.60 0.981±0.010

6. RF-RPT,T=1,SPM-SVM 94.0 ± 8.43 87.4 ± 7.99 88.8 ± 5.44 0.968±0.016

7. RF-ERT,T=1,×2K-NN 89.0 ± 7.38 83.7 ± 5.56 84.9 ± 3.11 NA

8. RF-ERT,T=1,RBF-SVM 86.0 ± 8.43 85.7 ± 5.55 85.8 ± 4.22 0.956±0.033

9. RF-ERT,T=1,SPM-SVM 90.0 ± 4.71 64.6 ± 10.9 70.2 ± 7.71 0.895±0.037

10. RF-RPT,T=4 χ2K-NN 93.0 ± 4.83 94.0 ± 0.90 93.8 ± 1.41 NA

11. RF-RPT,T=4,RBF-SVM 94.0 ± 5.16 93.4 ± 1.92 93.6 ± 1.26 0.984±0.006

12. RF-RPT,T=4,SPM-SVM 99.0 ± 3.16 79.7 ± 8.24 84.0 ± 6.27 0.961±0.020

13. RF-ERT,T=4,χ2K-NN 98.0 ± 4.21 89.1 ± 3.51 91.1 ± 2.34 NA

14. RF-ERT,T=4,RBF-SVM 96.0 ± 6.99 86.8 ± 4.08 88.8 ± 3.47 0.978±0.011

15. RF-ERT,T=4,SPM-SVM 69.0 ± 1.97 92.3 ± 6.03 87.1 ± 3.44 0.950±0.029
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