

KNIGHT CANCER Institute

Prostate Cancer Clinical Genomics

6th annual Knight Cancer Network Symposium

Alexandra Sokolova, MD Assistant Professor Medical Oncology Oregon Health Science University, Portland, OR March 18, 2022

Disclosures

• Lantheus (Consulting)

Learning Objectives

- Background
- Who To Test
- Why Test
 - Informs treatment
 - PARP inhibitor
 - Platinum chemotherapy
 - Immune checkpoint inhibitor
 - Clinical trials
 - Informs prognosis
 - May inform family cancer risks
- Take Home Points

Mutations in Metastatic Prostate Cancer

Actionable mutations: 133/150 pts (89%)

Robinson D., et al. Cell, 2015

Mutations in Metastatic Prostate Cancer

Actionable mutations: 133/150 pts (89%)

Institute

Robinson D., et al. Cell, 2015

Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer

12% with metastatic prostate cancer vs 5% with localized prostate cancer vs 3% without a known cancer diagnosis

Pritchard C., et al. N Engl J Med, 2016 Cancer Genome Atlas prostate cancer study Exome Aggregation Consortium

Types of Genetic Testing

Somatic/Tumor

tests tumor DNA

- Tumor tissue
- ctDNA

Germline

tests DNA patient is born with

- Saliva
- Blood

Learning Objectives

- Background
- Who To Test
- Why Test
 - Informs treatment
 - PARPI
 - Platinum
 - Immunotherapy
 - Clinical trials
 - Informs prognosis
 - May inform family cancer risks
- Take Home Points

Germline Testing– Who to Refer

- Everyone who meets family history criteria
- Consider if intraductal/cribriform histology
- Genes to include: BRCA1, BRCA2, ATM, PALB2, CHEK2, MLH1, MSH2, MSH6, PMS2

NCCN Prostate Cancer Guidelines 3.2022 01/10/2022

Germline Testing – Who to Refer

- Personal history of prostate cancer with
 - 1 or more close relatives with
 - Pancreatic cancer
 - Ovarian cancer
 - Breast cancer at 50 or younger
 - Colorectal at 50 or younger
 - Prostate cancer metastatic, high risk or very high risk
 - 1 or more close relatives with
 - Prostate cancer at 60 or younger
 - 2 or more close relatives with
 - Breast cancer at any age
 - Prostate cancer at any age
 - 3 or more close relatives with
 - Lynch syndrome realter cancer: colorectal, endometrial, gastric, ovarian, pancreatic, urothelial, glioblastoma, bile duct or small intestinal cancer
 - Ashkenazi Jewish ancestry
 - A known family history of germline mutation
 - Personal history of breast cancer

HBOC Lynch

NCCN Prostate Cancer Guidelines 3.2022 01/10/2022

Germline Testing – How to Test

- Referral to genetic counselor
- Sending patient for patient-initiated testing (*e.g* COLOR, Invitae, around \$250)
- Patient facing research:
 - The Gentlemen: <u>https://redcap.iths.org/surveys/?s=XELDJEX3K3</u>
 - PROMISE:

The Gentlemen Study

https://www.prostatecancerpromise.org/

Prostate Cancer Genetics at OHSU

- Opened November 2021
- Men w/ Pca eligible to germline testing and with known mutations
- To refer patients:

Email: oncaccess@ohsu.edu Call: 503-494-7999 Fax: 503-346-6854

Somatic Testing Who to Test

- BRCA1, BRCA2, ATM, PALB2, FANCA, RAD51D, CHEK2, CDK12:
 - recommended for all with metastatic PCa,
 - can be considered in men with regional disease
- Microsatellite High (MSI-H) and mismatch repair deficiency (dMMR) testing
 - recommended for men with mCRPC
 - may be considered for men with regional and mCSPC
- Tumor mutational burden (TMB) testing
 - may be considered in mCRPC

NCCN Prostate Cancer Guidelines 3.2022 01/10/2022

Somatic Testing – How to Test Blood vs Tumor

- Multilineage prostate cancer evolution
 - HRD is early truncal event
- ctDNA considered more sensitive if PSA >10 ng/ml

Schweizer et al. Prostate 2019 Woodcock et al. Nature Com 2020

CHIP Interference with ctDNA testing

Sokolova, et al, JNCCN 2020

Somatic Testing – How to Test Blood vs Tumor

- OHSU: GENETRAILS
- Commercial Vendors
- Is generally <u>NOT</u> a substitute for germline testing
- If *BRCA1/2* mutations identified on somatic NGS dedicated germline testing is recommended

Learning Objectives

- Background
- Who To Test
- Why Test
 - Informs treatment
 - PARPI
 - Platinum
 - Immunotherapy
 - Clinical trials
 - Informs prognosis
 - May inform family cancer risks
- Take Home Points

DNA Damage Repair: PARPi

Toss A., et al. J. of Cancer Science and Therapy, 2013

PARPi Targets

Konstantinopoulos et al, Cancer Discovery, 2015

TRITON 2: Rucaparib in mCPRC with *BRCA1/2*

• 55% PSA50 response to Rucaparib

Abida W., et al. JCO, 2020

Phase III Trial of PARPi in PCa: PROfound Study Design

*BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, PPP2R2A, RAD51B, RAD51C, RAD51D and/ or RAD54L

Hussain M., et al. ESMO, 2019

PROfound: Olaparib Improves rPFS*

rPFS BY BICR IN PATIENTS WITH ALTERATIONS IN BRCA1, BRCA2, OR ATM (COHORT A)

*rPFS - radiographic progression free survival

PROfound: Olaparib Improves rPFS*

rPFS BY BICR IN THE OVERALL POPULATION (COHORTS A+B)

*rPFS - radiographic progression free survival

De Bono., et al. NEJM, 2020

PROfound Gene-by-Gene rPFS

Hussain M., et al. NEJM, 2020

PROpel: A Global Radomized Double-Blind Phase III Trial

First patient randomized: Nov 2018; Last patient randomized: Mar 2020; DCO1: July 30, 2021, for interim analysis of rPFS and OS.

Multiple testing procedure is used in this study: 1-sided alpha of 0.025 fully allocated to rPFS. If the rPFS result is statistically significant, OS to be tested in a hierarchical fashion with alpha passed on to OS. Please access the **Supplement** via the QR code at the end of this presentation for more details.

*In combination with prednisone or prednisolone 5 mg bid. †HRRm, homologous recombination repair mutation, including 14 genes panel.

ADT, androgen deprivation therapy; bid, twice daily; ECOG, Eastern Cooperative Oncology Group; mHSPC, metastatic hormone sensitive prostate cancer; qd, daily

PROpel: Primary Endpoint: rPFS By Investigator-Assessment

34% Risk Reduction of Progression or Death with Olaparib + Abiraterone

PROpel: Overall Survival

28.6% Maturity; Trend Towards Improved OS with Olaparib + Abiraterone

Events: 228 NR, not reached.

PROpel: Most Common Adverse Events

AE Profile was Consistent with the Known Toxicity Profiles for the Individual Drugs

		Olapar	ib + abirate	rone (n=	399)	Placebo	+ abira	terone (I	n=399)			
Any	97.2		47.2				38.4				94.9	
Anemia*		46.0		15.1		3.3	16.4					
Fatigue or asthenia			37.2		2.3	1.5	28.	3				
Nausea			28.	1	0.3	0.3 12	.6					
Diarrhea				17.3	0.8	0.3 9.3						
Constipation				17.3		0.3 1;	3.9					
Back pain				17.1	0.8	1.0	18.4					
Decreased appetite				14.6	1.0	5.8						
Vomiting				13.1	1.0	0.3 9.1						
Arthralgia				12.8		0.5	17.7					
Hypertension				12.6	3.5	3.3	16.4					Grade ≥3
Dizziness				10.8		6.3						Grade ≥3
Peripheral edema				10.3		0.3 11.4	4					All grade
Urinary tract infection				10.3	2.0	1.0 7.8		•			_	
	100	80 6	0 40	20	0	0 2	0	40 6	50	80	100	

Safety was assessed through the reporting of AEs according to the National Cancer Institute Common Terminology Criteria for Adverse Events (NCI CTCAE v4.03) and laboratory assessments. *Anemia category includes anemia, decreased hemoglobin level, decreased red-cell count, decreased hematocrit level, erythropenia, macrocytic anemia, normochromic anemia, normochromic normocytic anemia, and normocytic anemia.

Magnitude: Radomized, Double-Blind, Placebo-Controlled Study

Prospectively Selected Biomarker Cohorts Designed to Test HRR BM+ and HRR BM-

Patients were prospectively tested by plasma, tissue and/or saliva/whole blood. Patients negative by plasma only were required to test by tissue to confirm HRR BM- status.

AAP, abiraterone acetate + prednisolone; AR, androgen receptor; ARi, androgen receptor inhibitor; BM, biomarker; BPI-SF, Brief Pain Inventory–Short. Form; ctDNA, circulating tumor deoxyribonucleic acid; ECOG PS, Eastern Cooperative Oncology Group performance status; HRR, homologous recombination repair; L1, first line; mCRPC, metastatic castration-resistant prostate cancer; mCSPC, metastatic castration-sensitive prostate cancer, nmCRPC, nonmetastatic castration-resistant prostate cancer; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; PFS2, progression-free survival on first subsequent therapy; PSA, prostate-specific antigen; rPFS, radiographic progression-free survival.

*Tissue and Plasma assays; FoundationOne tissue test (FoundationOne®CDx), Resolution Bioscience liquid test (ctDNA), AmoyDx blood and tissue assays, Invitae germline testing (blood/saliva), local lab biomarker test results demonstrating a pathogenic germline or somatic alteration listed in the study biomarker gene panel.

investigator's choice.

Magnitude <u>HRR BM</u>: Prespecified Early Futility Analysis

No Benefit of NIRA + AAP in HRR BM⁻ Patients

- Composite endpoint^a (N = 233) HR = 1.09^b (95% CI 0.75-1.59) [futility was defined as ≥1]
- Additional grade 3/4 toxicity was observed using NIRA + AAP vs PBO + AAP
- With added toxicity and no added efficacy in patients with HRR BM⁻ mCRPC, the IDMC recommend stopping enrollment in this cohort

^bBreakdown of composite endpoint events 83 PSA events (HR = 1.03, 95% CI 0.67-1.59) 65 rPFS events (HR = 1.03, 95% CI 0.63-1.67)

arPFS or PSA progression, whichever occurred first

AAP, abiraterone acetate + prednisone/prednisolone; AE, adverse event; BM, biomarker; CI, confidence interval; HR, hazard ratio; HRR, homologous recombination repair; IDMC, independent data monitoring committee; mCRPC, metastatic castration-resistant prostate cancer; NIRA, niraparib; PBO, placebo; PSA, prostate specific antigen, rPFS, radiographic progression free survival

Magnitude <u>BRCA 1/2-Mutated</u>: Primary Endpoint

NIRA + AAP Significantly Reduced the Risk of Progression or Death by 47%

Median Follow-up 16.7 months

AAP, abiraterone acetate + prednisone/prednisolone; CI, confidence interval; HR, hazard ratio; NIRA, niraparib; PBO, placebo; rPFS, radiographic progression-free survival.

Magnitude <u>All HRR BM+</u>: Primary Endpoint

NIRA + AAP Significantly Reduced the Risk of Progression or Death by 27%

Median Follow-up 18.6 months

AAP, abiraterone acetate + prednisone/prednisolone; BM, Biomarker, CI, confidence interval; HR, hazard ratio; HRR, homologous recombination repair, NIRA, niraparib; PBO, placebo; rPFS, radiographic progression-free survival.

PARPi in Prostate Cancer

- Rucaparib for mCRPC w/ BRCA1/2 muts
- Olaparib for mCRPC w/ HRD
- ?PARPi+abiraterone for mCSPC w/ BRCA1/2 muts

DNA Damage Repair (DDR): Platinum

Institute

Toss A., et al. J. of Cancer Science and Therapy, 2013

Biallelic Inactivation of BRCA2 in Platinum-sensitive MCRPC

- 3 pts with mCRPC, who achieved an exceptional response to platinum chemotherapy
 - All three patients had biallelic inactivation of *BRCA2*

EURURO-6543; No. of Pages 4;2015

Carboplatin in BRCA Carriers Pca

PSA Response

- mCRPC
- carboplatin/docetaxel
- n-=141

•

- 8/141 gBRCA2 mutation
- 6/8- PSA₅₀

Cancer. 2017 Sep 15;123(18):3532-3539

PD1/PDL1 inhibitors

Pan tumor

Pembrolizumab approval:

- 12 different tumor types
- mismatch repair deficiency
- Radiographic response 53%
- Complete response 21%
 5% of mCRPC MMRd

FDA.gov Le, et al. Science, 2017 Abida, et al, JAMA Oncol, 2018

Clinical Trial Eligibility

Actionable mutations: 133/150 pts (89%)

Robinson D., et al. Cell, 2015

Learning Objectives

- Background
- Who To Test
- Why Test
 - Informs treatment
 - PARPI
 - Platinum
 - Immunotherapy
 - Clinical trials
 - Informs prognosis
 - May inform family cancer risks
- Take Home Points

gBRCA Increases Risk of PCa

• gBRCA2 associated with 4.5- to 8.6-fold increased relative risk of PCa

- PCa with g*BRCA1/2* mutations associated :
 - more advanced stage at diagnosis
 - metastases at diagnosis
 - younger age at diagnosis
 - worse outcomes
 - OS in carriers vs noncarriers 8 vs 13 years

Active Surveillance: Increased Gleason Grade Upgrade with *BRCA1/2, ATM*

Carter., et al. Eur Urol, 2019

Learning Objectives

- Background
- Who To Test
- Why Test
 - Informs treatment
 - PARPI
 - Platinum
 - Immunotherapy
 - Clinical trials
 - Informs prognosis
 - May inform family cancer risks
- Take Home Points

BRCA Associated Cancers

BRCA 1

- breast cancer
- ovarian cancer
- uterine body and cervix (RR = 2.65)
- fallopian tube cancer
- peritoneal cancer
- prostate cancer (<65 yo RR = 1.82)
- pancreatic cancer(RR = 2.26)
- Fanconi anemia (subtype FA-D1)
- acute myeloid leukemia

BRCA2

- breast cancer
- ovarian cancer
- fallopian tube cancer
- peritoneal cancer
- prostate cancer (<65 yo RR 7.33)
- male breast cancer
- pancreatic cancer (RR, 3.51)
- malignant melanoma (RR 2.58)
- gallbladder and bile duct cancer (R 4.97)
- stomach cancer (RR 2.59)
- Fanconi anemia (subtype FA-D1)
- acute myeloid leukemia

For germline *BRCA2* mutation carriers, the relative risk of developing prostate cancer by age 65y is **2-8** fold compared with non-carriers.

J Natl Cancer Inst. 2002 Sep 18;94(18):1358-65 J Natl Cancer Inst 91:1310-6, 1999

Men vs Women BRCA testing

JAMA Oncol. 2018;4(6):876-879

2021 PNW Prostate SPORE EAB/IAB Meeting

Take Home Points

- ~12% pts w/ metastatic PCa have germline DDR muts
- ~20% w/ metastatic PCa have somatic DDR muts
- Patients w/ PCa and HRD are candidates for PARPi and Platinum
- Patients with PCa and MMRd are candidates for PD1/PDL1 inhibitors

THANK YOU!

To refer patients to Prostate Cancer Genetics Clinic at OHSU: Email: oncaccess@ohsu.edu Call: 503-494-7999 Fax: 503-346-6854

Germline Testing– Who to Refer

PROSTATE Cancer states	LOCALIZED	BCR	mCSPC nmCRPC					
	Identify hereditary cancer syr	ndrome, inform family cancer ri	sks. determine clinical trial eligibility					
WHY TEST	In some cases, may be helpful in active surveillance discussion	Treatment implications are currently evaluated by several clinical trials	PARPi, platinum candidacy					
	Everyone who meets family history criteria (Table 1)							
WHO TO TEST	⊠≥T3a ⊠Grade Group ≥4 ⊠PSA >20 ⊠N1 ⊠Intraductal/ductal histology	NCCN does now specify reccomendations for BCR*	Metastatic disease*					
WHICH GENES TO TEST	MLH1, MSH2, MSH6, PMS2, BRCA1/2, ATM, PALB2, CHEK2**							

Prostate Cancer Genetics at OHSU

To refer patients for Prostate Cancer Genetics Clinic at OHSU: Email: oncaccess@ohsu.edu Call: 503-494-7999 Fax: 503-346-6854

NCCN Family History Criteria For Germline Testing

	OFNETION AND	HOLEOUI AD/DION	A DIZED ANIAL VOIO
	GENETICS AND		
FRINGIFLESOF	GENETICS AND	MOLECULAR/DIOM	ANNEN ANALI SIS

FRINCIPLES OF GENETICS AND MOLECULAR/BIOMARKER ANALTSIS
Germline testing is recommended in patients with a personal history of prostate cancer in the following scenarios:
By Prostate Cancer Stage or Risk Group (diagnosed at any age)
Metastatic, regional (node positive), very-high risk localized, high-risk localized prostate cancer
By Family History ^a and/or Ancestry
▶≥1 first-, second-, or third-degree relative with:
◊ breast cancer at age ≤50 y
◊ colorectal or endometrial cancer at age ≤50 y
◊ male breast cancer at any age
◊ ovarian cancer at any age
◊ exocrine pancreatic cancer at any age
© metastatic, regional, very-high-risk, high-risk prostate cancer at any age
► 21 first-degree relative (father or brother) with:
\diamond prostate cancer at age 200 y >2 first, second, or third-degree relatives with:
breast cancer at any age
o prostate cancer ^b at any age
►≥3 first- or second-degree relatives with:
◊ Lynch syndrome-related cancers, especially if diagnosed <50 y: colorectal, endometrial, gastric, ovarian, exocrine pancreas, upper
tract urothelial, glioblastoma, biliary tract, and small intestinal cancer
A known family history of familial cancer risk mutation (pathogenic/likely pathogenic variants), especially in: BRCA1, BRCA2, ATM,
PALB2, CHEK2, MLH1, MSH2, MSH6, PMS2, EPCAM
Ashkenazi Jewish ancestry
Personal history of breast cancer
Germline testing may be considered <i>in patients with a personal history of prostate cancer</i> in the following scenarios:
By Prostate Cancer Tumor Characteristics (diagnosed at any age)
◊ intermediate-risk prostate cancer with intraductal/cribriform histology ^c
• By prostate cancer ^D AND a prior personal history of any of the following cancers:
♦ exocrine pancreatic, colorectal, gastric, melanoma, pancreatic, upper tract urothelial, glioblastoma, biliary tract, and small intestinal

Prostate Cancer Background

- Prostate cancer (PCa) is the most common non-cutaneous tumor among men in US
- 192,9300 men estimated to be diagnosed with PCa in 2020

Platinum Mechanism of Action

- 1) Attachment of alkyl groups to DNA → DNA fragmented by repair enzymes in their attempts to replace the alkylated bases → preventing DNA synthesis and RNA transcription
- 2) DNA damage via the formation of cross-links in DNA → prevents DNA from being separated for synthesis or transcription
- 3) Induction of mispairing of the nucleotides → leading to mutations

PD1/PDL1 inhibitors

Patient survival and clinical response to Pembrolizumab across 12 different tumor types with mismatch repair deficiency Radographic response 53%m Complete response 21%

Le et al. Science, 2017