"Cancer Care: The Rapidly Emerging World of Clinical Cellular Immunooncology and how it can integrate with community practices"

Richard Maziarz MD

Director, Adult BMT & Immune Effector Cell Therapy Programs

March 18, 2022

Disclosures

- Patents & Royalties: Athersys; Springer Publishers
- Research Funding: Novartis, BMS/ Juno,
- Consultancy: Novartis, Artiva Biotherapeutics, Intellia,
- ASTCT: Chair, Value & Health Econ interest group

Provider Principles

- Primary goal is the direct delivery of care to patients
- The patient is the center of our attention.

Cell Therapy 2022

- HCT remains the paradigm for clinical cell therapy
 - Continues to provide important treatment options for patients with hematologic malignancies, as well as other disorders
- Ongoing improvements in supportive care → expansion of application of a safer procedure
- Expansion of cell therapy options → further outcome improvement (adult stem cells, T regs, viral specific T cells, etc)
- Evidence based medicine → dictate expansion of procedures (MDS or NHL in the elderly; scleroderma; sickle cell; multiple sclerosis)

Annual Number of HCT Recipients in the US by Transplant Type

Trends in Survival after Allogeneic HCT for AML, ≥18, 2001-2017

Trends in Survival after Autologous HCT for DLBCL, 2001-2017

The Future is Now Novel Therapeutic Interventions: Vascularized Composite Allotransplantation

CELLS ARE DRUGS*

- <u>Autologous HCT-</u> PBSC are used to enhance Hematopoietic Recovery after high-dose chemoradiotherapy
- <u>Allogeneic HCT</u> Allogeneic stem cells are used to enhance hematopoietic recovery after high-dose chemoradiotherapy and critical to the intervention, donor derived, adoptively transferred mature lymphocytes are used to establish a graft versus malignancy effect
- <u>Immune effector cells/ CAR-T</u> Graft engineered autologous (? allogeneic) T cells targeting surface B-cell antigens that activate the cytotoxic capacity of the ex vivo manufactured, reintroduced T-cell products
- *Regulated by FDA- exempt or non-exempt (e.g. more than minimally manipulated; heterologous use)

Cancer Therapy Evolves

History:

Do T cells really make an impact in a clinical scenario

Grade IV Acute GVHD of the G I Tract is a T cell Disease

Toxic Shock Syndrome: a T cell disorder of Superantigens

Fraser, PLOS Bio, 2011

TcR

MHC

OHSU

Current Day: Immuno-oncology

- T cell therapies
 - Gene expression
 - Autologous vs allogeneic
 - Neoantigens
 - TILs
 - Tregs
- Natural Killer cells
- Vaccines- peptide, dendritic cell,
- Checkpoint blockade (inhibitors)
- Checkpoint agonists
- Humoral immune therapy
 - Monoclonal antibodies
 - lvlg
 - BITEs
- Cytokines

Pipeline of Cancer Immunotherapies-Commercialization

Axel Hoos, Nature Reviews Drug Discovery (2016) doi:10.1038/nrd.2015.35

Cell Therapy Landscape: 2018-2021 View

Prediction: cell and gene landscape rapid growth

- Fewer than 10 cell and gene therapies currently approved and in use, but with another <u>10+ expected annually in</u> <u>2021 and beyond</u>
- 1,000+ clinical trials for cell and gene therapies underway in the U.S. (asgct.careboxhealth.com)
- 24+ conditions on the near-term pipeline and constantly changing
- Number of manufacturers in cell and gene therapy market growing exponentially including big players
- Constantly shifting market; Not all cancer

Forecast (2021-2022 Pipeline)

Blood Disorders

- Hemophilia B (gene)
- Hemophilia A (gene)
- Transfusion dependent β-thalassemia (gene)

Cancer

- Follicular lymphoma (CAR-T expanded indications)
- Multiple myeloma (CAR-T)
- Bladder cancer (gene)
- Epstein-Barr virus-associated post-transplant lymphoproliferative disease (CTL)
- Cervical cancer (TIL)
- Metastatic melanoma (TIL)
- Marginal zone lymphoma (CAR-T expanded indications)
- Diffuse large B-cell lymphoma (CAR-T)
- Acute lymphoblastic leukemia (CAR-T)
- Synovial sarcoma (TCR T-Cell)

Ocular Disorders

- Choroideremia (gene)
- Leber hereditary optic neuropathy (gene)
- Wet & dry age-related macular degeneration (gene/cell)

Metabolic Disorders

- Cerebral adrenoleukodystrophy (gene)
- Mucopolysaccharidosis type III (gene)

Neurodegenerative

- Aromatic L-amino acid decarboxylase (AADC) deficiency (gene)
- Spinal muscular atrophy (expanded indications-gene)

Skin Disorders

- Recessive dystrophic epidermolysis bullosa (gene)
- Scleroderma (gene)

Inherited Immunodeficiencies

- Wiskott-Aldrich syndrome (gene)
- Leukocyte adhesion deficiency type I (gene)

Specifically, what we see coming includes

In 2022, US could see these annualized numbers of patients (or higher) in need of services:

Category	Patients / 50 Million Lives*
	4.050
Organ Transplant	4,850
Bone Marrow Transplant	3,400
Leukemia / Lymphoma (CAR-T)	23,000
Spinal Muscular Atrophy (SMA)	120
Multiple Myeloma	3,300
Hemophilia A	4,000
Bladder Cancer	13,700
Total	52,370

*US population currently estimated at 333 million

- CAR T therapy chimeric antigen receptor (CAR) genetically modified T cells - designed to recognize Tumor specific antigens (TSA) → in vivo activation and proliferation → significant and <u>durable</u> malignant cell immunity
- •CAR T cells : "living drug" –can persist for long periods of time
- CAR T cells generally autologous product from patient's own blood cells, although universal donor "off the shelf" CAR T cells emerging

CAR T-Cell Therapy: Underlying Principles

Majors. EHA 2018. Abstr PS1156. Lim. Cell. 2017;168:724. Sadelain. Nat Rev Cancer. 2003;3:35. Brentjens. Nat Med. 2003;9:279. Park. ASH 2015. Abstr 682. Axicabtagene ciloleucel PI. Tisagenlecleucel PI.

Rapid tumor elimination and recovery of normal bone marrow after 19-28z CAR T cell therapy

Sci Transl Med. 2013 Mar 20;5(177):177ra38

First 2 patients: Refractory CLL Still alive and in CR, >10 yrs after single application

Decade-long leukaemia remissions with persistence of CD4 ⁺ CAR T cells, Melenhorst et al, Nature. 2022 Feb;602(7897):503-509

Porter DL et al. N Engl J Med 2011;365:725-733.

CAR T vs Tx for NHL

Indications for Autologous and Allogeneic Hematopoietic Cell Transplantation: Guidelines from the ASTCT, Kanate BBMT 2020

	Diffuse large B cell		Diffuse large B cell lymphoma	Allo	Auto
therapy	lymphoma/primary mediastinal B cell lymphoma- adult		CR1 (PET negative)	Ν	Ν
			Primary refractory, sensitive	S	S
Primary refractory, resistant (after 2 lines of therapy)	S	Primary refractory, resistant	S	N	
	2 mes of therapy)		First relapse, sensitive	S	S
	First relapse, resistant	S	First relapse, resistant	S	N
	Beyond second relapse	S	Second or greater relapse	S	S
	Relapse after autologous transplant	S	Relapse after autoHCT	S	N
CAR-T therapy	High-grade B cell lymphoma, with MYC and BCL2 and/or BCL6 rearrangements		<u>High-grade B cell lymphoma,</u> with MYC and BCL2 and/or BCL6 rearrangements		
	Primary refractory resistant (after		CR1 (PET negative)	Ν	С
	2 lines of therapy)	S	Primary refractory, sensitive	R	С
	First relapse, resistant	S	Primary refractory, resistant	R	Ν
		-	First relapse, sensitive	R	С
	Beyond second relapse	S	First relapse, resistant	R	Ν
F tr	Relapse after autologous	ç	Second or greater relapse	R	С
	transplant	J	Relapse after autoHCT	R	Ν

Standard of care (S); Standard of care, clinical evidence available (C); Standard of care, rare indication (R); Developmental (D); Not generally recommended (N).

OHSU Pt: Relapsed, refractory DLBCL

JULIET: Median Overall Survival

Median OS not reached (95% CI, 21 months-NE) in patients in CR

Figure 3. Overall Survival for Patients in CR and All Patients in the Full Cohort.

No patients proceeded to allogeneic SCT or auto-SCT while in remission

Auto-SCT, autologous stem cell transplant; CI, confidence interval; CR, complete response; NE, not evaluable; OS, overall survival; SCT, stem cell transplant. Median OS in CR patients: not reached (95% CI, 21 months-NE).

11

ZUMA-1: Axicabtagene Ciloleucel in r/r DLBCL

Response Duration by Best Objective Response (ZUMA-1)

Total 256 221 188 147 109

Potential Baseline Predictors of Efficacy Clinical Trials and Real-World Evidence

LDH

- Tumor burden
- CRP, ferritin, and serum cytokines
- ECOG PS and disease state
- Bridging vs no bridging chemotherapy
- Baseline platelet levels
- BaselineALC

Adverse Events of Special Interest CRS and Neurological Events after CAR-T Cells

Brudno JN, Kochenderfer JN. Blood. 2016;127(26):3321-3330.

Risk Factors for Severity of CRS and Neurological Events

Risk Factors	Comments
Tumor burden	Higher activation and proliferation of CAR T cells is observed with high tumor burden leading to an exaggerated inflammatory response and higher toxicity (4, 5, 9, 13, 16).
Cell dosing	A higher dose of cells can lead to increased cytokine release and therefore greater toxicities once these cells are activated (18, 24).
Comorbidities	Higher number of comorbidities has been associated with increased risk and severity of CRS (17).
Age	Although there are no definitive studies, older patients may have a lower tolerance to CRS and neurotoxicity (4, 17).
Chemotherapy regimen	The chemotherapy regimen prior to cell infusion is important to ensure replication and survival of CAR T cells. A regimen that leads to severe immunosuppression and therefore an exaggerated prolifera- tion of CAR T cells can result in increased toxicity (9, 18, 24).
Timing of onset of symptoms	Early onset of symptoms is associated with worse toxicity and should lead to more aggressive moni- toring and treatment (5, 24).
Cell product	Variabilities of the cell construct between protocols can potentially have an effect on cell proliferation and activity. Some factors include the costimulatory domain used, vector used, time in culture, and type of culture (9).

CAR = chimeric antigen receptor, CRS = cytokine release syndrome.

ASTCT CRS Consensus Grading, Lee et al, BBMT 2019

CRS Parameter	Grade 1	Grade 2	Grade 3	Grade 4
Fever [±]	Temperature ≥38°C	Temperature ≥38°C	Temperature ≥38°C	Temperature ≥38°C
With either:				
Hypotension And/or [±]	None	Not requiring vasopressors	Requiring one vasopressor with or without vasopressin	Requiring multiple vasopressors (excluding vasopressin)
Нурохіа	None	Requiring low-flow nasal cannula [_] or blow-by	Requiring high-flow nasal cannula [_] , facemask, non- rebreather mask, or Venturi mask	Requiring positive pressure (eg: CPAP, BiPAP, intubation and mechanical ventilation)

Low-flow nasal cannula is defined as oxygen delivered at \leq 6 liters/minute. Low flow also includes blow-by oxygen delivery, sometimes used in pediatrics. High-flow nasal cannula is defined as oxygen delivered at > 6 liters/minute.

3\$13/2022

How to improve on outcomes? Potential trial candidates

There is an internal message: CAR T does not cure all!!!!!

SWOG 2114: A Randomized Phase II trial of Consolidation Therapy following CD19 CAR T-cell Treatment for Relapsed/Refractory Large B-cell Lymphoma or Grade IIIB Follicular Lymphoma

•

۲

registration. Will be followed for survival.

Progress continues on CAR-T cell therapy

Approved CAR- T Products & Indications

- R/R DLBCL- 3rd line- Tisagenlecleucel, Axicabtagene, Lisocabtagene
- R/R Follicular Lymphoma- 3rd line Axicabtagene
- Mantle cell lymphoma- Brexucabtagene
- Pediatric/young adult- $\geq 2^{nd}$ line- Tisagenlecleucel
- Adult ALL- Brexucabtagene
- Myeloma- Beyond 4th line- Idecabtagene, Ciltacabtagene

Anticipated 2022:

<u>R/R – 2nd line- Axicabtagene, Lisocabtagene</u>

R/R Follicular Lymphoma-Tisagenlecleucel

Anticipated 2023- TIL for Advanced Melanoma- Lifileucil

Open/ Pending Clinical Trials with Cell Therapy

- Universal donor CD19 CAR T for DLBCL & ALL- CRSPR
- Universal donor CD19 NK-CAR T for NHL, CLL, ALL- Fate
- Autologous Dual Targeted CD19/CD20 for DLBCL- Miltenyi
- Autologous CAR T for BCMA+ Myeloma
- Autologous ROR1 CAR-T for advanced solid tumor malignancies expressing ROR-1
- Autologous GD2 CAR-T for osteosarcoma
- Allogeneic CART for advanced ovarian cancer
- Universal donor NK cells for R/R lymphoma (including CAR T failure)
- Autologous HLA A2.01 restricted, WT1 peptide specific T cells for AML
- HLA restricted, EBV specific donor T cells for EBV+ PTLD
- HLA restricted, NY ESO specific autologous T cells for Synovial Cell Sarcoma
- HLA restricted, NY ESO specific autologous T cells for overexpressed NY ESO in advanced Ca
- Autologous TIL for R/R NSCLC
- Autologous TIL for advanced malignancies
- HLA restricted, Virus Specific T cells for BK Cystitis and RSV/Parainfluenza/Influenza Resp virus infections
- Her2/Neu-Macrophage CAR for overexpressed HER2/Neu malignancies
- HPV peptide loaded RBC + poly IC as systemic tumor vaccine for HPV+ malignancies
- Genetically engineered, immune activating RBC (sIL15+ 41BB+) for recurrent RCC, NSCLC

Number of CAR T cell infusions: 2016-2021 (5,364 patients and 5,625 infusions)

39

Cumulative

Can we deliver cell therapy everywhere?

Where do we begin? At the beginning, of course Cell Therapy Program Management

43

Patient Readiness / Logistics

- Referral
- Eligibility evaluation
 Path review critical
- Clinical Trial Considerations
- Payer authorization support
- Leukapheresis
- Manufacturing time
- Bridging chemotherapy
- Infusion
- Short and long term management

Program Implementation

- Certification
- Preparation
 - Stakeholders
 - Training
 - Documentation
 - Management guidelines

FACT/JACIE

- Primary objective of standards promote quality medical and laboratory practice
- FACT -standards specific to the use of Hematopoietic Cell Therapy & Immune Effector Cells (IEC).
 - Specify clinical and quality infrastructure
 - Purpose: facilitate safe administration of IECs
 - Formalize monitoring and reporting of outcomes
- Option for IEC therapy only IEC standards manual
- For both HSCT and IEC therapies
 - Product Collection, Processing, and Administration standards

Unanticipated Challenges

- Need for expanded access protocols
 - Access to manufactured commercial products that do not meet release criteria
 - Requires IRB/regulatory approval for use
- Patient scheduling with short notice:
 - Apheresis unit
 - Outpatient infusion room
- On-going training for nurses and physicians due to turnover
- Different processes for commercial products and clinical trial products
- Payment for services
- Medicare reimbursement

Outcomes Dashboard Metrics

- Infusion date
- Status (A/D)
- 30 day survival
- 100 day survival
- Diagnosis and Histology
- Discharge date (if inpatient for infusion)
- LOS (if inpatient for infusion)
- CRS max grade
- Time to CRS max grade

- Number of doses of Tocilizumab
- ICANS max grade
- Time to ICANS max grade
- Days to readmission post discharge (if inpatient for infusion)
- Number inpatient days within 30 days
- Number of inpatient days within 100 days
- Number of ICU days
- Clinical status at day 90 🍃

Growth of Cell Therapy being Addressed at National/ International Level

- Access to care
- Cost of care
- Logistics of care

Launch of a Commercial Cell Therapy Product at a Clinical Site is a Complex Process

Commercial Partner/Manufacturer

• Standard Operating Procedures

ASTCT

- Clinical standards for toxicity management
- Initiation and auditing of a REMS program
- Adverse event and data reporting under REMS
- Implementation of Product Application (IT)

- Buy in from Center Leadership
- Submission to Pharmacy & Therapeutics

Internal

- Financial Due Diligence
- EMR record order sets/ treatment plans
- Informed Consents
- Cell Therapy Coordinator Training and Resources
- Patient education and wallet card workflow
- Payor Strategies
- Education of consulting services and ancillary staff

This process can take 3-9 months with countless hours of effort

Specific Start-up Qualification and Tasks

Apheresis

Machine Operation COC/COI OC Syste m FACT NMDP AABB

2 vs 3 BVs +/- Plasma addition

Company-specific Portal

ASTCT

Cell Processing 15-20 SOPs PMs on Equipment LN storage monitors COC/COI **Packing and** FACT NMDP Sterile Technique Vials/Syringes vs Bags +/- Dosing Company-specific Portal

Pharmacy

Drug Logs Toci Stock Toci Delivery Time

Contracting

Nursing LD Ch FACT usion Ce JC on Infusion Reaction Management Syringes vs Bags

Defining resource utilization:

Table 1. Patient Characteristics

Characteristic	n (%)
Total, n	236
Age, median (range), y	62.5 (19–82)
Female sex	91 (38.6)
Vhite race ^a	218 (92.4)
elationship status	
Married/Life partner	163 (69.1)
Single	40 (17.0)
Divorced/Legally separated	13 (5.5)
Widowed	13 (5.5)
Unknown	7 (3.0)
AR T-cell product	
Axicabtagene ciloleucel	183 (77.5)
Tisagenlecleucel	36 (15.3)
Axicabtagene ciloleucel combined with immunotherapy	9 (3.8)
KTE-X19	7 (3.0)
Lisocabtagene maraleucel	1 (0.4)
ymphoma subtype	
DLBCL/Grade 3B follicular lymphoma	107 (45.3)
Indolent lymphoma transformed to DLBCL ^b	40 (17.0)
HGBCL with MYC and BCL2 and/or BCL6 rearrangements	40 (17.0)
Follicular lymphoma	22 (9.3)
Primary mediastinal large B-cell lymphoma	12 (5.1)
Other	15 (6.4)

Table 1. Patient Characteristics (cont.)

Characteristic	n (%)
ECOG performance status	
0–1	194 (82.2)
2-4	38 (16.1)
Unknown	4 (1.7)
Received bridging therapy	93 (39.4)
Prior lines of therapy, median (range)	3 (0–10)
Prior autologous stem cell transplant	65 (27.5)
Days from relapse to CAR T-cell therapy, median (range) ^c	58 (11–391)
Toxicity and response	
Cytokine release syndrome (any grade)	183 (77.5)
ICANS (any grade)	126 (53.4)
Received tocilizumab	120 (50.9)
Received corticosteroids	107 (45.3)
Overall response	201 (85.2)
Complete response	152 (64.4)
Survival	184
Alive 1 year after CAR T-cell therapy ^d	116 (63.0)

Table 2. Healthcare Utilization Among CAR T-CellTherapy Patients (n=236)

Outcome	n (%)
Length of stay for CAR T-cell hospitalization, median (range), d	15 (7–91)
ICU admission during admission for CAR T-cell therapy	30 (12.7)
Any ICU admission within 3 mo of CAR T-cell infusion ^a	36 (15.5)
Any hospital readmission within 3 mo of CAR T-cell infusion $^{\rm b}$	65 (28.1)
Number of hospital readmissions within 3 mo of CAR T-cell infusion among those rehospitalized, median (range)	1 (1–4)
Days from discharge to first readmission, median (range) (n=65 readmissions)	18 (1–91)
Reason for first hospital readmission ($n=64$ readmissions)	
Symptoms	22 (34.4)
Noncancer medical condition	10 (15.6)
Cancer progression	8 (12.5)
Infections	6 (9.4)
Febrile neutropenia	5 (7.8)
Neurotoxicity	5 (7.8)
Cytokine release syndrome	2 (3.1)
Other	6 (9.4)

ACCELLERATE FORUM

CAR T Cell Toxicities in the real world ULAR IMMUNOTHERAPY DATA RESOURCE

- Overall <u>rates of toxicities in the real world</u> are comparable to clinical trials.
- Toxicity rates vary by product (construct), by indication, age and other factors.
 - –Improvement in management \rightarrow reduction in higher grade CRS among patients with lymphoma.
- Toxicities are correlated with each other and impact overall patient outcomes.

Requirements for community treatment:

- Sufficient logistical coordination for delivery of complex care (or not).
- Sufficient resources to support patient care.
 - What happens when things go awry?
- Sufficient staffing for regulatory commitments.
- Sufficient patient volume to warrant investment and maintenance of the above components.

ACCELLERATE FORUM

A need for efficiencies and standardization across the cell therapy workflow – Order management platform technology

General Education

REMS-Lack of clarity Prescribe in who this means Dispense **Administer** Product B Product A •Reporting Requirements Patient Wallet Cards Product C Patient Education **Clinical Site Education** Do • Length of Stay differences in Institutional Product REMS Toxicity guidelines for Management management Algorithms Product D impact site practice?

Collaboration needs to maximize community care

- Identification of partners
- Shared care models
- Flow models
- How to get a patient to OHSU: intake center or CALL ME
- How to get a patient home: pt education, recommended mgmt. of long term issues, FDA requirements of 15yr follow-up, CALL ME
- HOW TO CALL ME: CELL is 503-805-1965

National CAR-T Landscape

- Clintrials.Gov- >1000 trials planned, ongoing, completed
- Disease targets:
 - Lymphoma- NHL and HD; MM; Neuroblastoma; ALL; CLL; Mesothelioma; Ovarian ca; Pancreatic ca; AML; Glioblastoma; Prostate ca; HCC: MUC 1+ Lung CA & triple (-) Breast Ca; Colorectal Ca; H/N Ca; SLE; other autoimmune disease
 - Targets include Her2/Neu, mesothelin, EGFRvIII, GD2 ganglioside
 - CD19/CD22 bispecific CAR-T (generated by bicistronic insertion)
 - CD19/CD20 bispecific CAR-T
 - Multi-CAR T trials
 - CAR-T with checkpoint inhibitors

CAR T & Transplant: the work evolves Thanks to all for joining; Here to help!!!

Dawn over Mt Hood near Portland, OR