Skyler Jackman, Ph.D.

Skyler Jackman, Ph.D.

Assistant Scientist, Vollum Institute

Email: jackmans@ohsu.edu
Phone: 503-494-3295
Office: Vollum 2435A

View research papers on PubMed

Background

After earning a B.A. in Physics from the University of California at Berkeley, Skyler Jackman performed research in nuclear physics at the 88" Cyclotron at Lawrence Berkeley Labs. He returned to the University of California at Berkeley and received a Ph.D. in Physics in 2009, and did his postdoctoral training at Harvard Medical School. Jackman joined the Vollum Institute as assistant scientist in 2017.

 

Summary of Current Research

Synaptic transmission is continuously modulated by various forms of short-term plasticity (STP). These activity-dependent changes in synaptic strength are thought to be crucial to brain function, and hypothesized to play roles in sensory processing, spatial navigation, and working memory. Deficits in STP are associated with neuropsychiatric disorders such as autism and schizophrenia. However, until recently there was no way to manipulate STP, so our understanding of how STP affects circuit function is largely theoretical. Most forms of STP are driven by unknown presynaptic calcium sensors. We need to identify these calcium sensors and manipulate their expression in vivo in order to test how STP affects neural processing and animal behavior.

We recently discovered that synaptotagmin 7 (Syt7) serves as the calcium sensor for facilitation, a ubiquitous form of plasticity that dramatically strengthens synapses for milliseconds to seconds. Syt7 knockout mice offer an unparalleled opportunity to evaluate the role of facilitation in the mammalian brain. To finally test how facilitation affects sensory processing and cognition, we are performing in vivo recordings and behavioral experiments after removing Syt7 from specific circuits.

There are many other forms of STP for which calcium sensors have yet to be identified. The Jackman lab will continue to search for other important calcium sensors using in vitro slice electrophysiology, calcium imaging, and optogenetics.

 

Selected Publications

Turecek J*, Jackman SL*, Regehr WG. (2017) Synaptotagmin 7 confers frequency invariance onto specialized depressing synapses. Nature doi: 10.1038/nature24474. [Epub ahead of print]. *Co-first authors

Jackman SL and Regehr WG, (2017) The mechanisms and functions of synaptic facilitation. Neuron 94(3):447-464.

Jackman SL, Turecek J, Belinsky JE, Regehr WG. (2016) The calcium sensor synaptotagmin 7 is required for synaptic facilitation. Nature 529(7584):88-91.

Jackman SL, Beneduce BM, Drew IR, Regehr WG. (2014) Achieving high-frequency optical control of synaptic transmission. The Journal of Neuroscience 34(22):7704-7714.