Peter Barr-Gillespie, Ph.D.

Peter Barr-Gillespie, Ph.D.

Professor, Oregon Hearing Research Center
Interim Senior Vice President for Research, OHSU
Joint Appointment, Vollum Institute

Email: gillespp@ohsu.edu
Phone: 503-494-2936
Office: MRB 920A

Barr-Gillespie Lab

Barr-Gillespie's research at the Oregon Hearing Research Center, OHSU

View research papers on PubMed

Background

After undergraduate studies at Reed College, Peter G. Barr-Gillespie attended graduate school at the University of Washington, working with Joe Beavo; he received his PhD in Pharmacology in 1988. From 1988 to 1993, he worked as a postdoc with Jim Hudspeth—first at the UCSF, then at the UT Southwestern Medical Center. He joined the Department of Physiology at Johns Hopkins University as an assistant professor in 1993, rising to associate professor in 1998. In 1999, he moved to the Oregon Hearing Research Center (OHRC) at OHSU as an associate professor of Otolaryngology, as well as the Vollum Institute; he was promoted to Professor of Otolaryngology in 2004 and granted tenure in 2007. In 2012, Barr-Gillespie was named director of the Hearing Health Foundation's Hearing Restoration Project (HRP), a consortium of scientists who are developing a strategy for regeneration of sensory hair cells of the inner ear. Barr-Gillespie was Associate Vice President for Basic Research at OHSU from 2014–2017, and has been Interim Senior Vice President for Research since 2017.

 

Summary of Current Research

We want to understand how the sensory cells of the inner ear, hair cells, detect mechanical signals like sound and head movements. These extraordinary cells mechanotransduce with their sensory organelle, the hair bundle, a beautiful and complex structure made of ~100 actin-filled stereocilia of regimented lengths and a single microtubule-based kinocilium. Our approach is molecular, and addresses two of the most important questions in our field. First, what is the molecular mechanism for mechanotransduction? And second, how does the hair cell assemble the hair bundle so that its multiple levels of organization are produced and maintained?

Being interested in what molecules make up the transduction apparatus, the collection of channels, linker molecules, and motors that mediate transduction, we take a reductionist approach. We start with physiology: when you mechanically stimulate a hair bundle, the mechanically sensitive organelle of the hair cell, what are the characteristics of the resulting receptor current? By studying these transduction currents, we learn how transduction channels open and close in response to mechanical forces, how the adaptation motor responds to sustained forces and allows channels to close, and how the cell responds to the high levels of calcium ion that enter. The transduction currents are key; they report the functional operation of the hair cell.

But we need to know the molecules that underlie the physiology, and for this we turn to proteomics. We apply mass-spectrometry techniques to every aspect of the lab's research program, determining with increasing accuracy the hair bundle's proteome and investigating how the proteome changes in response to genetic and pharmacological manipulations. When we combine the bundle proteome with the collection of proteins expressed by "deafness genes," genes which when mutated cause deafness, we can define a list of ~100 proteins that may be involved in building and operating bundle.

Nice idea, but now we have to show that these are indeed the key molecules. We therefore take a systems-level approach to studying hair cell function, with the ultimate goal of determining which of those 100 proteins are responsible for assembly and transduction. To carry out this analysis, we characterize multiple facets of hair-bundle development using modern technology for proteomics, genomics, and imaging. We are presently resolving the developmental time course of transcript and protein expression, as well as targeting to bundles. We intend to determine the matrix of protein-protein interactions for those 100 proteins—which interacts with which?—to define the bundle's interactome. Together these descriptive data will motivate formulation of models for bundle assembly and transduction. Critically, we will test these models using targeted experiments, for example gene knockout or expression of inhibitor-sensitive alleles of key proteins.

Finally, our knowledge of several proteins of the transduction complex, together with the sensitivity of mass spectrometry, allows us to take a biochemical approach to identification of the transduction channel, one of the central mysteries of the auditory system. We have developed a large-scale purification method that enriches stereocilia membranes from thousands of chick ears. Applying immunoaffinity purification methods using monoclonal antibodies for key transduction molecules, like the tip-link molecule PCDH15, molecular motor MYO7A, and transmembrane component TMC1, we will establish the composition of the complexes they reside in. We hope to use this approach to reveal the identity of the transduction channel, as well as identities of other components of the complete transduction apparatus.

Recent Publications

Zeng WZ, Grillet N, Dewey JB, Trouillet A, Krey JF, Barr-Gillespie PG, Oghalai JS, Müller U. (2016) Neuroplastin isoform Np55 is expressed in the stereocilia of outer hair cells and required for normal outer hair cell function. J. Neurosci. 36, 9201-9216 | doi: 10.1523/JNEUROSCI.0093-16.2016 | PMCID: PMC5005726

Morgan CP, Krey JF, Grati M, Zhao B, Fallen S, Kannan-Sundhari A, Liu XZ, Choi D, Müller U, Barr-Gillespie PG. (2016) PDZD7-MYO7A complex identified in enriched stereocilia membranes. eLife 5, e18312 | doi: 10.7554/eLife.18312 | PMCID: PMC5005036

Krey JF, Krystofiak ES, Dumont RA, Vijayakumar S, Choi D, Rivero F, Kachar B, Jones SM, Barr-Gillespie PG. (2016) Plastin 1 widens stereocilia by transforming actin filament packing from hexagonal to liquid. J. Cell Biol. 215, 467-482 | doi: 10.1083/jcb.201606036 | PMCID: PMC5119939

Krey JF, Wilmarth PA, David LL, Barr-Gillespie PG. (2017) Analysis of the proteome of hair-cell stereocilia by mass spectrometry. Methods Enzymol. 585, 329-354 | doi: 10.1016/bs.mie.2016.09.023 | PMCID: PMC5482209

Erickson T, Morgan CP, Olt J, Hardy K, Busch-Nentwich E, Maeda R, Clemens R, Krey JF, Nechiporuk A, Barr-Gillespie PG, Marcotti W, Nicolson T. (2017) Integration of Tmc1/2 into the mechanotransduction complex in zebrafish hair cells is regulated by Transmembrane O-methyltransferase (Tomt). eLife 6, e28474 | doi: 10.7554/eLife.28474 | PMCID: PMC5462536

Avenarius MR, Krey JF, Dumont RA, Morgan CP, Benson CB, Vijayakumar S, Cunningham CL, Scheffer DI, Corey DP, Müller U, Jones SM, Barr-Gillespie PG. (2017) Heterodimeric capping protein is required for stereocilia length and width regulation. J. Cell Biol. 216, 3861-3881 | doi: 10.1083/jcb.201704171 | PMCID: PMC5674897 [Available 2018-05-06]

Tompkins N, Spinelli KJ, Choi D, Barr-Gillespie PG. (2017) A model for link pruning to establish correctly polarized and oriented tip links in hair bundles. Biophys. J. 113, 1868-1881 | doi: 10.1016/j.bpj.2017.08.029 | PMCID: PMC5647544 [Available 2018-10-17]

Krey JF, Dumont RA, Wilmarth PA, David LL, Johnson KR, Barr-Gillespie PG. (2018) ELMOD1 stimulates ARF6-GTP hydrolysis to stabilize apical structures in developing vestibular hair cells. J. Neurosci. 38, 843-857 | doi: 10.1523/JNEUROSCI.2658-17.2017 | PMCID: PMC5783965 [Available 2018-07-24]

Morgan CP, Zhao H, LeMasurier M, Xiong W, Pan B, Kazmierczak P, Avenarius MR, Bateschell M, Larisch R, Ricci AJ, Müller U, Barr-Gillespie PG. (2018) TRPV6, TRPM6 and TRPM7 do not contribute to hair-cell mechanotransduction. Front. Cell. Neurosci. 12: 41 | doi: 10.3389/fncel.2018.00041 | PMCID: PMC5826258

Ellwanger DC, Scheibinger M, Dumont RA, Barr-Gillespie PG, Heller S. (2018). Transcriptional dynamics of hair-bundle morphogenesis revealed with CellTrails. Cell Reports [in press]

 

Most Significant Publications

Gillespie PG, Hudspeth AJ. (1991) High-purity isolation of bullfrog hair bundles and subcellular and topological localization of constituent proteins. J. Cell Biol. 112, 625-640.

Zhao Y, Yamoah EN, Gillespie PG. (1996) Regeneration of broken tip links and restoration of mechanical transduction in hair cells. Proc. Natl. Acad. Sci. USA 93, 15469-15474.

Kachar B, Parakkal M, Kurc M, Zhao Y, Gillespie PG. (2000) High-resolution structure of hair-cell tip links. Proc. Natl. Acad. Sci. USA 97, 13336-13341.

Dumont RA, Lins U, Filoteo AG, Penniston JT, Kachar B, Gillespie PG. (2001) Plasma membrane Ca2+-ATPase isoform 2a is the PMCA of hair bundles. J. Neurosci. 21, 5066-5078.

Holt JR, Gillespie SK, Provance DW, Shah K, Shokat KM, Corey DP, Mercer JA, Gillespie PG. (2002) A chemical-genetic strategy demonstrates myosin-1c participates in adaptation by hair cells. Cell 108, 371-381.

Siemens J, Lillo C, Dumont RA, Reynolds A, Williams DS, Gillespie PG, Müller U. (2004) Cadherin 23 is a component of the tip link in hair cell stereocilia. Nature 428, 950-955.

Hirono M, Denis CS, Richardson GP, Gillespie PG. (2004) Hair cells require phosphatidylinositol 4,5-bisphosphate for mechanical transduction and adaptation. Neuron 44, 309-320.

Stauffer EA, Scarborough JD, Hirono M, Miller ED, Shah K, Mercer JA, Holt JR, Gillespie PG. (2005) Fast adaptation in vestibular hair cells requires myosin-1c activity. Neuron 47, 541-553.

Shin JB, Krey JF, Hassan A, Metlagel Z, Tauscher AN, Pagana JM, Sherman NE, Jeffery ED, Spinelli KJ, Zhao H, Wilmarth PA, Choi D, David LL, Auer M, Barr-Gillespie PG. (2013) Molecular architecture of the chick vestibular hair bundle. Nature Neurosci. 16, 365-374.

Morgan CP, Krey JF, Grati M, Zhao B, Fallen S, Kannan-Sundhari A, Liu XZ, Choi D, Müller U, Barr-Gillespie PG. (2016) PDZD7-MYO7A complex identified in enriched stereocilia membranes. eLife 5, e18312.