Basic Advice for Mapping Your Career with NIH

- Learn about IC priorities and goals
 - Not all ICs support all grant programs but each IC has a research training and career development program
- Identify the grant programs offered by each IC
- Make early contact with program officers
- Find good mentors and collaborators
- Study successful grant applications
- Only propose your best and most creative ideas
- You won’t get a grant if you don’t apply
Purpose of NIH Career Development Programs:

To provide protected time for individuals to further develop their research expertise.
General Tips on Mentored K Awards

- Understand the intent of the mentored K award.

- To help promising new investigators achieve research independence (i.e., to compete successfully for R01 funding).

- Preparing for the R01 grant application you will submit at the end of the K award should be the organizing principle of the K grant application.
• Develop a career development training plan that is uniquely suited to you.

• Given your previous training and research experience, and your short- and long-term career goals, propose a mix of didactic training and “hands-on” research experience that make perfect sense for you (and only you).

• Degree-granting programs are appropriate for candidates with little or no previous formal training in research, but even these programs should be “customized” whenever possible.
Mentored K Awards: Review

- Overall Impact Score
- Scored Review Criteria
 - Candidate
 - Career Development Plan
 - Research Plan
 - Mentor(s), Consultant(s), and Collaborator(s)
 - Environment and Institutional Commitment to the Candidate
Mentored K Awards: Review (cont)

• Additional Review Criteria
 • Protection for Human Subjects
 • Inclusion of Women, Minorities, and Children
 • Vertebrate Animals
 • Biohazards
 • Resubmission, Renewal, Revision factors

• Additional Review Considerations
 • Training in the Responsible Conduct of Research
 • Select Agents Research
 • Resource Sharing Plans
 • Budget & Period of Support
The Candidate

- Candidate’s background
- Career goals and objectives
- Career development activities during award period
- Suggested length: 2-3 pages
The Candidate: Review Criteria

- Quality of the candidate’s academic and clinical record
- Potential to develop as an outstanding independent researcher
- Likelihood that the career development plan will contribute substantially to the scientific development of the candidate.
Candidate’s Background

- Suggested length: Less than 1 page.
- Using your NIH biosketch as your guide, provide a personal narrative of your professional career.
- Explain why you made key career choices (e.g., to pursue specific kinds of training opportunities or research projects).
- OK to use 1st person (“I”)

Note: The text in the blue box is not relevant to the content of the document.
Candidate’s Background

- Give examples of the opportunities you’ve had to engage in research (basic or clinical), as evidence of your long-standing commitment to research.
- Highlight early evidence of productivity (e.g., pursuing a specific question, analyzing data, presenting or publishing your results).
- Describe any formal research training
Candidate’s Background

• **Tip:** Begin this section with a summary statement regarding your long-term research career goals.

• **Example:** “My goal is to become an independent clinical investigator and leader in the study of To continue my progress towards this goal, I am proposing an observational prospective study addressing specific hypothesis surrounding the role of gastroesophageal reflux in
Career Goals and Objectives

• Suggested length: at least 2 paragraphs
• The research plan you propose should include some specific “challenges,” for which you need additional training and/or experience to accomplish successfully.
• These “deficits” in your training/experience then become the focus of your career development training plan.
• Describe the specific areas where you have deficiencies (e.g., primary data collection, biostatistics, qualitative research methods).
Career Development Plan

• Suggested length: 1 - 2 pages.

• List the specific training areas you will pursue to acquire the new set of skills you need.

• Explain why gaining additional training and mentored research experience in these areas will be critical to achieving your short-term and long-term career development goals.

• Describe in detail how you will gain this training, such as through specific courses, individualized tutorials, or practical experience gained from conducting the research.
Review of training plan

• Appropriateness of the content, the phasing, and the proposed duration of the career development plan for achieving scientific independence

• Consistency of the career development plan with the candidate's career goals

• Likelihood that the plan will contribute substantially to the achievement of scientific independence.
Formal Coursework

• If you will need to perform new tasks or require skills that can be taught in a course

• If have limited or no formal postgraduate education in research methods used in the conduct of the award

• List the courses, method of teaching, when you will enroll. Describe the course
Immersion Training Examples

- Laboratory techniques/methods – Working in a collaborator’s lab
 - If you do this, be specific about when you will pursue this, how long

- Specific courses, workshops
 - Again, be specific
Review of Research Plan

- Scientific and technical merit of the research question, design and methodology
- Relevance of the proposed research to the candidate's career objectives
- Appropriateness of the research plan to the stage of research development and as a vehicle for developing the research skills described in the career development plan
- Innovation! Does this create a niche for applicant?
Statements by Mentors, Co-Mentors, and Collaborators

- Assemble a complementary team
- Choose a primary mentor who is a senior investigator with a track-record of NIH funding; your primary mentor should be at OHSU.

- Include co-mentors who will complement the primary mentor’s strengths.

- Can you have mentors outside of Portland? Yes, just be cautious.
Mentors, Co-Mentors, and Collaborators

- Each member of your “team” must play a role in your training or research plan. Introduce each with a short paragraph.
- Create a table of what each will provide.

- Establish a mentoring committee of 3-4.
- If you need to add additional members, call them scientific or technical advisors/collaborators, who have a relatively narrow area of responsibility and focus.

- Include an evaluation component that describes how your mentors will assess your progress (e.g., quarterly meetings); include specific milestones during the K award.

- Include timeline, frequency of mentoring
Statements by Mentors, Co-Mentors, and Collaborators (Cont’d)

- Evaluation criteria for primary mentor:
 - Appropriateness of mentor’s research qualifications in the area of this application.
 - Quality and extent of mentor’s role in providing guidance and advice to candidate.
 - Previous experience in fostering the development of more junior researchers.
 - History of productivity and support.
 - (Adequacy of support for the research project.)
Letters of Collaboration

- The letter from the primary mentor is key. It should cover the following areas:
 - His or her qualifications in the research area proposed by the candidate.
 - Previous experience as a research supervisor.
 - The nature and extent of supervision that will occur during the award period.
 - What resources, if any, they will make available to you in support of your training and/or research.
The primary mentor’s letter can also “re-frame” any potential weaknesses in the application.

Examples:

- Productivity of candidate (e.g., few publications).
- Feasibility of conducting research plan with resources of K award.
- Limited mentoring experience of primary mentor.
- Limited resources of primary mentor (e.g., no current R01 funding).
- Co-mentor(s) not at OHSU.
- Scientific overlap with primary mentor.
Letters of Collaboration

- Letters from co-mentors, scientific advisors, and others can be much shorter.
- Be sure to include description of the role of the co-mentor/scientific advisor.
- Make sure that letters are consistent with text in grant application (re: frequency of meetings, etc.).
Description of Institutional Environment

• Evaluation criteria:

• Adequacy of research facilities and the availability of appropriate educational opportunities.

• Quality and relevance of the environment for scientific and professional development of the candidate.

• Describe the research facilities and educational opportunities of the sponsoring institution (OHSU) that are related to the candidate’s career development training and research plans.

• Include relevance of each component to your career development plan.
Institutional Commitment to Candidate’s Research Career Development

- Evaluation criteria
- Applicant institution’s commitment to the scientific development of the candidate and assurances that the institution intends the candidate to be “an integral part of its research program.”
- Applicant institution’s commitment to protect at least 75% of the candidate’s effort for proposed career development activities.
Institutional Commitment to Candidate’s Research Career Development (Cont’d)

- These assurances are stated in a letter from your department chair or division chief.
- Note: For fellows, this letter must state that you will be promoted from your current position to a “higher” position (ideally, to a full-time faculty position) during the K award period.
Letters of Recommendation

- 3 - 5 letters are required.
- They should be from senior investigators who have competed successfully for NIH funding and have been involved in the training of junior investigators.
- Can be from any period in your career (e.g., medical school, residency).
- Cannot be from your primary mentor or co-mentors.
Training in the Responsible Conduct of Research

- This is important but is more like a checkbox for the reviewer
- See boilerplate