Oldest old enter new era of brain research

Jeffrey Kaye, Oregon’s Brain Aging Study (OBAS), a longitudinal study of factors related to healthy brain aging, has received a Merit Review Continuation Award from the Department of Veterans’ Affairs. The study, now entering its 22nd year, will use the four-year award to focus on understanding the mechanisms related to a major cause of cognitive decline, vascular disease in the brain.

"The oldest old, defined as persons 85 years or better, are the fastest growing segment of the population. Persons in this age group are also at highest risk of brain pathology (diseased brain tissue) visualized in a 3D model to gain a better understanding of their interconnection.

Comparing new imaging information with the rich history of data from 180 OBAS participants will enable researchers to identify markers that best predict rates of age-related cognitive decline.

• Dr. Lisa Silbert and her research assistant examine bright patches on MRI scans, and are indicative of white matter injury from unknown sources.

"Brain scan (MRI, fMRI and PET) images show structural changes and activity the brain cannot. Self-reported problems with thinking or memory provide clues about brain health. Regular scheduled memory tests and physical scans at the doctor’s office provide snapshots and benchmarks. Yet, these limitations to all these methods. Is it practical to give everyone a suite of brain scans so that we can observe structural changes over time? Are patient perceptions accurate? Are people really Jimmy K. at their usual ability. On a particularly stressful day, when he was not performing at his usual ability.

"OBAS will focus on improved understanding of the connection between brain aging and the accumulation of pathologies such as the amyloid plaques that are associated with Alzheimer’s disease. But scans alone cannot give us a clear picture of an individual’s daily health and function. Just one scan does not allow for comparison to what the brain looked like earlier.

Can scans show brain atrophy even though the person does not show any signs or symptoms of cognitive impairment in his/her behavior? Up to 47% of cognitively intact people are found to have moderate to frequent amygdaloid plaque in their brains.

How do we know if our brains are fit? Measuring brain wellness as we age

When it comes to loss of memory and the decline of other mental functions associated with aging, health care providers and their patients need good information to guide proper care and treatment. That is why researchers who investigate brain wellness and aging work reliably to measure brain health. They want to understand the difference between normal, incremental decline and more serious conditions.

Cognitive health is measured in a number of ways. Brain scans (MRI, fMRI and PET) images show structural changes and activity the brain cannot. Self-reported problems with thinking or memory provide clues about brain health. Regular scheduled memory tests and physical scans at the doctor’s office provide snapshots and benchmarks. Yet, these limitations to all these methods. Is it practical to give everyone a suite of brain scans so that we can observe structural changes over time? Are patient perceptions accurate? Are people really Jimmy K. at their usual ability. On a particularly stressful day, when he was not performing at his usual ability.

Can we just look at it? Brain imaging reveals important information about brain health and the accumulation of pathologies such as the amyloid plaques that are associated with Alzheimer’s disease. But scans alone cannot give us a clear picture of an individual’s daily health and function. Just one scan does not allow for comparison to what the brain looked like earlier.

Scans may show brain atrophy even though the person does not show any signs or symptoms of cognitive impairment in his/her behavior. Up to 47% of cognitively intact people are found to have moderate to frequent amygdaloid plaque in their brains.

Can we just look at it? Brain imaging reveals important information about brain health and the accumulation of pathologies such as the amyloid plaques that are associated with Alzheimer’s disease. But scans alone cannot give us a clear picture of an individual’s daily health and function. Just one scan does not allow for comparison to what the brain looked like earlier.

Scans may show brain atrophy even though the person does not show any signs or symptoms of cognitive impairment in his/her behavior. Up to 47% of cognitively intact people are found to have moderate to frequent amygdaloid plaque in their brains.

Learn more about"
In pursuing sleep, knowing this...

An ingredient in many sleep aids is known to cause memory problems and confusion in older adults

by Cecily Burkhard

“A good laugh and a long sleep are the best cures in the doctor’s armamentarium.”

An older adult's ability to cope with sleep issues may not only be affected by age-related changes in sleep but also by other factors. Among these factors is the tendency to create a sleep tailor may not realize that these usually include diphtheria/eosinuric (Rlldadol; a drug known to have significant contributions in the elderly, including memory problems and confusion.

Understanding the need for sleep, and the sleep cycle changes with age can lessen the risk of falls and accident that may contribute to AD-related pathology. As many as 30% of individuals identified as dementia-free even in the presence of AD-related pathology.

Brain autopsy key to understanding the role of a gene...

The Layton Aging and Alzheimer’s Disease Center (ADGC), a collaborative body established and funded by the NIA, began the study. Patricia Kramer, Ph.D., director of the Layton Aging & Alzheimer’s Disease Center is a member of the ADGC, executive committee.

Layton Aging & Alzheimer’s Disease Center

Layton Aging and Alzheimer’s Disease Center is a member of NIH’s Alzheimer’s Disease Education and Referral Center (AEDR) and provides information about AD. The Center provides DNA samples from over 800 of our study subjects to the effort. "New technologies are allowing us to look at genetic differences in sleep in a new way, and we are beginning to identify genetic differences between control and AD cases. We are also learning to use sleep disorders.”

Layton Aging & Alzheimer’s Disease Center...
How do we know . . .

Can we “just live it”?

Can we just “live it”?

Among self-reported cognitive problems, memory decline is often the first aging concern a patient will report to their doctor. Other common and significant problems that change with age include difficulty finding words, difficulty understanding or speaking, and difficulty with the daily tasks of living. As people age, their recovery from sleep, thinking, and memory problems typically will not return to normal.

Can we just “live it”?

The inability of cognitive testing is very dependent on when, how and how often it is administered. Frequency, time and type of testing can vary in results that do not reflect real differences. Individual variability in cognitive performance testing may also be a marker of accruing problems, yet variability is difficult to capture with infrequent assessment.

Can we just “live it”?

Unsuitable in-home monitoring can provide a more complete measure of changes in brain and overall health. In home sensor networks operating in the background measure sleep, activity and regularity. For example, variability in walking speed over time has been shown to be worse in persons with MCI than as healthy older adults.

Technology is now available to bring assessment to the home so that we can measure an individual’s brain fitness in the context of everyday life. Monitoring of activities such as remembering to take medications or playing games on the computer provides continuous and relevant information. Sleep patterns, mood induction, medication use and physical activity can also be measured for detection of significant change over time. Data from such a range of daily activities can be combined for improved continuous assessment of cognitive health and to predict outcomes. The future of brain fitness testing has arrived, and it’s right at home.

In pursuing sleep, know this . . .

An ingredient in many sleep aids is known to cause memory problems and confusion in older adults

By Cecil S. Farhood, M.D.

"A good night’s sleep and a long sleep are the best cure in the doctors’ office. It is very important to tell the old lady, the older people, adjusting age-related sleep is not to sleep too much. And the older people, the counter sleep aid may not realize that there usually include diphenhydramine (Benadryl) — a drug known to have significant side effects in the elderly, including memory problems and confusion. Understanding that one needs for sleep, and the sleep changes with age can lower the awareness of accident related falls in the elderly. Variability in sleep fitness testing may also be a marker of accruing problems, yet variability is difficult to capture with infrequent assessment."

For more on improving sleep at www.nia.nih.gov/HealthInformation/Publications/Sleep/sleep

Confidentiality effort identifies new genes associated with AD

Recently reported in the national press, and by the Alzheimer’s Disease Education and Referral Center (www.alz.org), researchers have confirmed one gene variant and have identified several others that may be risk factors for late-onset Alzheimer’s disease, the more common form of dementia and Alzheimer’s disease. In the largest genome-wide association study (GWAS) ever conducted in Alzheimer’s disease research, investigators studied DNA samples from more than 56,000 study participants in the United States and Europe at universities and research centers throughout the country analyzed shared data files to detect gene variations that may have subtle effects on the risk for developing Alzheimer’s disease. The National Institute of Health funded the part of the study involving U.S. data. The Alzheimer’s Disease Consortium (ADGC), a collaborative body established by the NIH, is the part of the NHLBI, and involved in the study. Dr. Krueger, Ph.D., Director of the Layton Alzheimer’s & Alzheimer’s Disease Center is a member of the ADGC, a research associate.

The Layton Alzheimer’s Disease Center and the Alzheimer’s Disease Research Center at the University of Utah, the National Alzheimer’s Coordinating Center, and the University of Washington are also conducting a Genome-Wide Association Study (GWAS). The GWAS is being conducted to identify genetic differences between control and AD cases, and will help with understanding risk for AD and with control with neuroimaging tools. This is a large-scale study that does not have risk associated with it. We are also conducting a GWAS comparing controls with AD neuroimaging control with controls. These comparisons help us to identify genetic factors that allow some individuals to remain disease-free. These differences might be valuable for understanding the role of particular genetic factors associated with the risk of developing Alzheimer’s disease.

Oral presentations and poster displays, a joint statement for the aging conference “Living Your Life Well: Alzheimer’s Disease” showing the number of individuals attending the conference and seeking care for Alzheimer’s disease and other forms of dementia. For patients who need our help with normal cognitive functions (controls) or other forms of dementia, for example, can be particularly valuable. As a 42% of individuals identified as controls are both AD and related neuroimaging control (NIH) or controls can be particularly valuable. As a 42% of individuals identified as controls are both AD and related neuroimaging control (NIH) or controls can be particularly valuable.

Oral presentations and poster displays, a joint statement for the aging conference “Living Your Life Well: Alzheimer’s Disease” showing the number of individuals attending the conference and seeking care for Alzheimer’s disease and other forms of dementia. For patients who need our help with normal cognitive functions (controls) or other forms of dementia, for example, can be particularly valuable. As a 42% of individuals identified as controls are both AD and related neuroimaging control (NIH) or controls can be particularly valuable. As a 42% of individuals identified as controls are both AD and related neuroimaging control (NIH) or controls can be particularly valuable. As a 42% of individuals identified as controls are both AD and related neuroimaging control (NIH) or controls can be particularly valuable. As a 42% of individuals identified as controls are both AD and related neuroimaging control (NIH) or controls can be particularly valuable. As a 42% of individuals identified as controls are both AD and related neuroimaging control (NIH) or controls can be particularly valuable. As a 42% of individuals identified as controls are both AD and related neuroimaging control (NIH) or controls can be particularly valuable. As a 42% of individuals identified as controls are both AD and related neuroimaging control (NIH) or controls can be particularly valuable. As a 42% of individuals identified as controls are both AD and related neuroimaging control (NIH) or controls can be particularly valuable.
How do we know . . .

Carla Janet Dittman, Ph.D.

Carla has worked with many of the Layton Research Center’s clinical study participants.

Carla uses the term “brain fitness” to mean the capability a person has to adapt to their aging brain. It’s like being fit and healthy but for the brain.

Brain fitness requires a lot of intentional effort on a person’s part. That’s why Carla often tells people to think of their brain in terms of just like any other muscle in the body. You need to work your brain to keep it healthy.

We’ve seen that even a person of advanced age can improve their brain fitness with brain games, brain exercises, and brain training

In pursuit of sleep, know this . . .

by Cecil O’Donnell

“Assisted Living”

by ((([(Lisa Loree)])))

Lisa Loree is a nurse practitioner and is the director of dementia care and research, and is recognized as a national leader in her field. She is affiliated with OHSU in Portland, Oregon. Our Center is collaborating with her and her colleagues on a project called “Assisted Living.”

This is an Alzheimer disease center page 2

Among self-reported cognitive problems, memory decline is often the first aging concern a person will report to their doctor. Other common and significant functions that change include time and effort in learning new things, variability in walking speed over time has been shown to be greater in older people, advancing age-related changes in sleep is now well known, and the ability to counter sleep aide may not reveal that these usually include diphenhydramine (Benadryl) — a drug known to have significant side effects in the elderly, including memory problems and confusion. Understanding that one’s need for sleep, and the sleep itself changes with age can lessen the related anxiety that can result in variations that do not relate to the disease.

Cecil O’Donnell has been a public health nurse for over 20 years and is currently serving as Project Manager for the Layton Center’s Alzheimer’s Disease Genetics Consortium.

Continued from front page 1

How do we know . . .

Carla Janet Dittman, Ph.D.

Carla has worked with many of the Layton Research Center’s clinical study participants.

Carla uses the term “brain fitness” to mean the capability a person has to adapt to their aging brain. It’s like being fit and healthy but for the brain.

Brain fitness requires a lot of intentional effort on a person’s part. That’s why Carla often tells people to think of their brain in terms of just like any other muscle in the body. You need to work your brain to keep it healthy.

We’ve seen that even a person of advanced age can improve their brain fitness with brain games, brain exercises, and brain training

In pursuit of sleep, know this . . .

by Cecil O’Donnell

“Assisted Living”

by ((([(Lisa Loree)])))

Lisa Loree is a nurse practitioner and is the director of dementia care and research, and is recognized as a national leader in her field. She is affiliated with OHSU in Portland, Oregon. Our Center is collaborating with her and her colleagues on a project called “Assisted Living.”

This is an Alzheimer disease center page 2

Among self-reported cognitive problems, memory decline is often the first aging concern a person will report to their doctor. Other common and significant functions that change include time and effort in learning new things, variability in walking speed over time has been shown to be greater in older people, advancing age-related changes in sleep is now well known, and the ability to counter sleep aide may not reveal that these usually include diphenhydramine (Benadryl) — a drug known to have significant side effects in the elderly, including memory problems and confusion. Understanding that one’s need for sleep, and the sleep itself changes with age can lessen the related anxiety that can result in variations that do not relate to the disease.

Cecil O’Donnell has been a public health nurse for over 20 years and is currently serving as Project Manager for the Layton Center’s Alzheimer’s Disease Genetics Consortium.

Continued from front page 1

How do we know . . .

Carla Janet Dittman, Ph.D.

Carla has worked with many of the Layton Research Center’s clinical study participants.

Carla uses the term “brain fitness” to mean the capability a person has to adapt to their aging brain. It’s like being fit and healthy but for the brain.

Brain fitness requires a lot of intentional effort on a person’s part. That’s why Carla often tells people to think of their brain in terms of just like any other muscle in the body. You need to work your brain to keep it healthy.

We’ve seen that even a person of advanced age can improve their brain fitness with brain games, brain exercises, and brain training

In pursuit of sleep, know this . . .

by Cecil O’Donnell

“Assisted Living”

by ((([(Lisa Loree)])))

Lisa Loree is a nurse practitioner and is the director of dementia care and research, and is recognized as a national leader in her field. She is affiliated with OHSU in Portland, Oregon. Our Center is collaborating with her and her colleagues on a project called “Assisted Living.”

This is an Alzheimer disease center page 2

Among self-reported cognitive problems, memory decline is often the first aging concern a person will report to their doctor. Other common and significant functions that change include time and effort in learning new things, variability in walking speed over time has been shown to be greater in older people, advancing age-related changes in sleep is now well known, and the ability to counter sleep aide may not reveal that these usually include diphenhydramine (Benadryl) — a drug known to have significant side effects in the elderly, including memory problems and confusion. Understanding that one’s need for sleep, and the sleep itself changes with age can lessen the related anxiety that can result in variations that do not relate to the disease.

Cecil O’Donnell has been a public health nurse for over 20 years and is currently serving as Project Manager for the Layton Center’s Alzheimer’s Disease Genetics Consortium.

Continued from front page 1

How do we know . . .

Carla Janet Dittman, Ph.D.

Carla has worked with many of the Layton Research Center’s clinical study participants.

Carla uses the term “brain fitness” to mean the capability a person has to adapt to their aging brain. It’s like being fit and healthy but for the brain.

Brain fitness requires a lot of intentional effort on a person’s part. That’s why Carla often tells people to think of their brain in terms of just like any other muscle in the body. You need to work your brain to keep it healthy.

We’ve seen that even a person of advanced age can improve their brain fitness with brain games, brain exercises, and brain training

In pursuit of sleep, know this . . .

by Cecil O’Donnell

“Assisted Living”

by ((([(Lisa Loree)])))

Lisa Loree is a nurse practitioner and is the director of dementia care and research, and is recognized as a national leader in her field. She is affiliated with OHSU in Portland, Oregon. Our Center is collaborating with her and her colleagues on a project called “Assisted Living.”

This is an Alzheimer disease center page 2

Among self-reported cognitive problems, memory decline is often the first aging concern a person will report to their doctor. Other common and significant functions that change include time and effort in learning new things, variability in walking speed over time has been shown to be greater in older people, advancing age-related changes in sleep is now well known, and the ability to counter sleep aide may not reveal that these usually include diphenhydramine (Benadryl) — a drug known to have significant side effects in the elderly, including memory problems and confusion. Understanding that one’s need for sleep, and the sleep itself changes with age can lessen the related anxiety that can result in variations that do not relate to the disease.

Cecil O’Donnell has been a public health nurse for over 20 years and is currently serving as Project Manager for the Layton Center’s Alzheimer’s Disease Genetics Consortium.

Continued from front page 1

How do we know . . .

Carla Janet Dittman, Ph.D.

Carla has worked with many of the Layton Research Center’s clinical study participants.

Carla uses the term “brain fitness” to mean the capability a person has to adapt to their aging brain. It’s like being fit and healthy but for the brain.

Brain fitness requires a lot of intentional effort on a person’s part. That’s why Carla often tells people to think of their brain in terms of just like any other muscle in the body. You need to work your brain to keep it healthy.

We’ve seen that even a person of advanced age can improve their brain fitness with brain games, brain exercises, and brain training

In pursuit of sleep, know this . . .

by Cecil O’Donnell

“Assisted Living”

by ((([(Lisa Loree)])))

Lisa Loree is a nurse practitioner and is the director of dementia care and research, and is recognized as a national leader in her field. She is affiliated with OHSU in Portland, Oregon. Our Center is collaborating with her and her colleagues on a project called “Assisted Living.”

This is an Alzheimer disease center page 2

Among self-reported cognitive problems, memory decline is often the first aging concern a person will report to their doctor. Other common and significant functions that change include time and effort in learning new things, variability in walking speed over time has been shown to be greater in older people, advancing age-related changes in sleep is now well known, and the ability to counter sleep aide may not reveal that these usually include diphenhydramine (Benadryl) — a drug known to have significant side effects in the elderly, including memory problems and confusion. Understanding that one’s need for sleep, and the sleep itself changes with age can lessen the related anxiety that can result in variations that do not relate to the disease.

Cecil O’Donnell has been a public health nurse for over 20 years and is currently serving as Project Manager for the Layton Center’s Alzheimer’s Disease Genetics Consortium.

Continued from front page 1

How do we know . . .

Carla Janet Dittman, Ph.D.

Carla has worked with many of the Layton Research Center’s clinical study participants.

Carla uses the term “brain fitness” to mean the capability a person has to adapt to their aging brain. It’s like being fit and healthy but for the brain.

Brain fitness requires a lot of intentional effort on a person’s part. That’s why Carla often tells people to think of their brain in terms of just like any other muscle in the body. You need to work your brain to keep it healthy.

We’ve seen that even a person of advanced age can improve their brain fitness with brain games, brain exercises, and brain training

In pursuit of sleep, know this . . .

by Cecil O’Donnell

“Assisted Living”

by ((([(Lisa Loree)])))

Lisa Loree is a nurse practitioner and is the director of dementia care and research, and is recognized as a national leader in her field. She is affiliated with OHSU in Portland, Oregon. Our Center is collaborating with her and her colleagues on a project called “Assisted Living.”

This is an Alzheimer disease center page 2

Among self-reported cognitive problems, memory decline is often the first aging concern a person will report to their doctor. Other common and significant functions that change include time and effort in learning new things, variability in walking speed over time has been shown to be greater in older people, advancing age-related changes in sleep is now well known, and the ability to counter sleep aide may not reveal that these usually include diphenhydramine (Benadryl) — a drug known to have significant side effects in the elderly, including memory problems and confusion. Understanding that one’s need for sleep, and the sleep itself changes with age can lessen the related anxiety that can result in variations that do not relate to the disease.

Cecil O’Donnell has been a public health nurse for over 20 years and is currently serving as Project Manager for the Layton Center’s Alzheimer’s Disease Genetics Consortium.
Oldest old enter new era of brain research

Jeffrey Kaye's Oregon Brain Aging Study (OBAS), a longitudinal study of factors related to healthy brain aging, has received a Multi-Year Continuation Award from the Department of Veterans' Affairs. The study, now entering its 22nd year, will use the four-year award to focus on understanding the mechanisms related to a major cause of cognitive decline, vascular disease in the brain.

The oldest old, defined as persons 85 years or better, are the fastest growing segment of the population. Persons in this age group are also at highest risk for developing dementia. Researchers in this age group are also at highest risk for developing dementia. Among factors that have been found to lead to cognitive decline, those related to vascular disease stand out. A prominent marker of vascular disease associated with aging—called white matter hyperintensities (WMHs), is often seen on magnetic resonance images (MRI) of the brain. These WMHs show up as bright patches on MRI scans, and are an indicator of white matter injury from unknown sources.

During this next research phase, OBAS will focus on improved understanding of their interconnection. WMHs visualized in a 3D model to gain a better understanding of their interconnection. Researchers to identify markers that predict rates of age-related cognitive decline. Regularly scheduled brain imaging reveals important information to guide proper care and treatment. That is why researchers who investigate brain wellness and aging seek reliable ways to measure brain health. They want to understand the differences between normal, incremental decline and more serious conditions.

Brain imaging is used in a number of ways. Brain scans (MRI, MIB, PET) image structural changes and activity the brain tissue. Self-reported problems with thinking or memory provide clues about brain health. Regularly scheduled memory tests and physical scans at the doctor's office provide snapshots and benchmarks. Yes, these limitations to all these methods. It is practical to give everyone a series of brain scans so that we can observe structural changes over time? Are there ways to measure brain health that are more practical? Yet, there are limitations to all these methods. It is practical to give everyone a series of brain scans so that we can observe structural changes over time? Are there ways to measure brain health that are more practical? Is it possible to give everyone a series of brain scans so that we can observe structural changes over time? Are there ways to measure brain health that are more practical? Is it possible to give everyone a series of brain scans so that we can observe structural changes over time? Is it possible to give everyone a series of brain scans so that we can observe structural changes over time? Is it possible to give everyone a series of brain scans so that we can observe structural changes over time? Is it possible to give everyone a series of brain scans so that we can observe structural changes over time? Is it possible to give everyone a series of brain scans so that we can observe structural changes over time? Is it possible to give everyone a series of brain scans so that we can observe structural changes over time? Is it possible to give everyone a series of brain scans so that we can observe structural changes over time? Is it possible to give everyone a series of brain scans so that we can observe structural changes over time? Can we just look at it?

Brain imaging reveals important information about brain health and the accumulation of pathologies such as the amyloid plaques that are associated with Alzheimer’s disease. But scans alone cannot give us a clear picture of an individual’s daily health and function. Just one scan does not allow for comparison to what the brain looked like earlier. Scan may show brain atrophy even though the person does not show any signs or symptoms of cognitive impairment in her/his behavior. Up to 47% of cognitively intact people are found to have moderate to frequent amyloid plaques in their brains.
OBAS is a study that tracks cognitive health among a group of “oldest old.” The oldest old, defined as persons 85 years or older, are the fastest growing age group in the United States. These individuals are also at highest risk for developing dementia. The C. Rex and Ruth H. Layton Aging and Alzheimer’s Disease Center is one of the nation’s leading centers for research on brain aging and Alzheimer’s disease. The Center is part of a larger network of 15 Aging and Alzheimer’s Disease Centers nationwide, funded by the National Institute on Aging of the National Institutes of Health. The overall goal of these centers is to accelerate the discovery of new treatments for Alzheimer’s disease and related dementias.

The OBAS team has been conducting this study since 2000. The study, which started with 180 participants, will end in 2020, having enrolled 214 participants. The study, now entering its 22nd year, will use the four-year follow-up data to analyze the long-term effects of various factors on brain aging, including cognitive decline, vascular disease, and cognitive impairment.

The OBAS team has also developed new MRI techniques not available in research-only scanner allows access to TIM Trio MRI in the Advanced Imaging Research Center at OHSU. A dedicated Research Center at OHSU. A dedicated Dr. Lisa Silbert and the Siemens 3T Research Center at OHSU. A dedicated TIM Trio MRI in the Advanced Imaging Center at OHSU. A dedicated TIM Trio MRI in the Advanced Imaging Center at OHSU. A dedicated TIM Trio MRI in the Advanced Imaging Center at OHSU.

The OLdest old enter new era of brain research

How do we know if our brains are fit?

Measuring brain wellness as we age

When it comes to loss of memory and the decline of other neural functions associated with aging, health care providers and their patients need good information to guide proper care and treatment. That is why researchers who investigate brain wellness and aging seek reliable ways to measure brain health. They want to understand the differences between normal, incremental decline and more serious conditions.

Cognitive health is measured in a number of ways. Brain scans (MRI, MBH, and PET) images show structural changes and activity in the brain. Self-reported problems with thinking or memory provide clues about brain health. Regularly scheduled memory tests and physical scans at the doctor’s office provide neurologists with brain health as we age.

How do we know if our brains are fit?

Measuring brain wellness as we age

When it comes to loss of memory and the decline of other neural functions associated with aging, health care providers and their patients need good information to guide proper care and treatment. That is why researchers who investigate brain wellness and aging seek reliable ways to measure brain health. They want to understand the differences between normal, incremental decline and more serious conditions.

Cognitive health is measured in a number of ways. Brain scans (MRI, MBH, and PET) images show structural changes and activity in the brain. Self-reported problems with thinking or memory provide clues about brain health. Regularly scheduled memory tests and physical scans at the doctor’s office provide neurologists with brain health as we age.

Can we just look at it?

Brain imaging reveals important information about brain health and the accumulation of pathologies such as the amyloid plaques that are associated with Alzheimer’s disease. But scans alone cannot give us a clear picture of an individual’s daily health and function. Just one scan does not allow for comparison to what the brain looked like earlier. Scans may show brain atrophy even though the person does not show any signs or symptoms of cognitive impairment in his/her behavior. Up to 47% of cognitively intact people are found to have moderate to frequent amyloid plaques in their brains.

The OLdest old enter new era of brain research

How do we know if our brains are fit?

Measuring brain wellness as we age

When it comes to loss of memory and the decline of other neural functions associated with aging, health care providers and their patients need good information to guide proper care and treatment. That is why researchers who investigate brain wellness and aging seek reliable ways to measure brain health. They want to understand the differences between normal, incremental decline and more serious conditions.

Cognitive health is measured in a number of ways. Brain scans (MRI, MBH, and PET) images show structural changes and activity in the brain. Self-reported problems with thinking or memory provide clues about brain health. Regularly scheduled memory tests and physical scans at the doctor’s office provide neurologists with brain health as we age.

Can we just look at it?

Brain imaging reveals important information about brain health and the accumulation of pathologies such as the amyloid plaques that are associated with Alzheimer’s disease. But scans alone cannot give us a clear picture of an individual’s daily health and function. Just one scan does not allow for comparison to what the brain looked like earlier. Scans may show brain atrophy even though the person does not show any signs or symptoms of cognitive impairment in his/her behavior. Up to 47% of cognitively intact people are found to have moderate to frequent amyloid plaques in their brains.