Brain Computer Interface for AAC Technology

Melanie Fried-Oken, D. Erdogmus, C. Gibbons, A. Mooney, B. Oken, B. Roark
Neurology, Biomedical Engineering and Institute on Development and Disabilities
Portland, OR

ASHA Convention, session #0913
Thursday November 18, 2011
Collaborators

- Deniz Erdogmus, Ph.D., Northeastern ECE
- Barry Oken, M.D., OHSU Neurology
- Brian Roark, Ph.D., OHSU BME
- Kenneth Hild III, Ph.D., OHSU BME
- Aimee Mooney, M.S., OHSU CDRC
Translational R01 from NIDCD

Signal Processing Engineering

Neurophysiology

Computer Science (language modeling)

Clinical team

Northeastern U group:
- Deniz Erdogmus, PhD
- Umut O
- Shalini P
- Kenneth Hild III, PhD

Barry Oken, MD
Meghan Miller, BA
Roger Ellingson, MS

Brian Roark, PhD
Andrew Fowler
Russ Beckley

Melanie Fried-Oken, PhD
Barry Oken, MD
Aimee Mooney, MS
GB, participant with LIS
HB, participant with ALS
Brain-Computer Interface (BCI)

• Technology whereby a computer detects a ‘selection’ made by a person who does not rely on neuromuscular activity.

• The technology uses the person’s changes in brain electricity as the intended execution.

• Technology substitutes for the loss of typical neuromuscular outputs so that people can interact with their environments through brain signals rather than through muscle.
Locked In Syndrome:
American Congress of Rehab Med (1995)

- A syndrome characterized by preserved awareness, relatively intact cognitive functions, and ability to communicate while being paralysed and voiceless. This syndrome is defined by five criteria:

1. Sustained eyes opening and preserved vertical eye movement
2. Preserved higher cortical functions
3. Aphonia or severe hypophonia
4. Quadriplegia or quadriparesis
5. Primary mode of communication that uses vertical eye movements or blinking
Common Diagnoses Leading to LIS

- End stage ALS
- Brainstem CVA
- High level spinal cord injury
- Traumatic Brain injury
Functional LIS diagnoses

- End stage ALS
- Brainstem CVA
- High level spinal cord injury
- Traumatic Brain injury
- Cerebral palsy
- Muscular dystrophies
- Multiple sclerosis
- Parkinson’s disease (plus)
- Tumors
Classifications of LIS

- **Complete or total LIS**: Quadriplegia and anarthria. No eye movement
- **Classic LIS**: Preserved vertical eye movement and blinking
- **Incomplete LIS**: Recovery of some voluntary movements in addition to eye movements (Bauer et al, 1979)
Epidemiology of LIS

• Over 2 million people in the U.S. with some level of functional LIS;
• Less than 1% of CVA;
• More than 85% of individuals are still alive after 10 years;
• Average age range: 17 – 52 years;
• Younger patients have better px of survival.
Options for restoring functional motor function

• Rely on capabilities of remaining pathways
 - Eye gaze communication system
 - Head mouse access to computer

• Detouring around neural pathway breaks
 - FES: Direct electrical stimulation of paralyzed muscles through EMG activity in muscles above lesion level.

• Provide the brain with a new, non-muscular communication and control channel: BCI.
Current human BCI research for communication & control

• Invasive BCI: Braingate
 http://www.youtube.com/watch?v=NIG47YqndP8&feature=player_embedded

• Non-invasive BCI: BCI 2000 with P 300 speller
 http://www.youtube.com/watch?v=4QxPR25DMAg&feature=player_embedded
BCI 2000 with P300 speller

- Most commonly used spelling interface
- Uses a grid with randomly flashing rows/columns
- 3 passes of same response = selection
Berlin BCI: Hex-o-spell
RSVP Keyboard

- Rapid
- Serial
- Visual
- Presentation
RSVP BCI Overall Goal

To integrate new engineering developments in EEG analysis with language models for people who are functionally locked-in to communicate and control their environments.
OHSU RSVP BCI Project

Using Brain-Computer Interface for Communication
Unique aspects of OHSU BCI research

1. RSVP: stimulus presentation
2. Language modeling
3. Single event ERP goal
4. Functionally locked-in patients
5. Participatory Action Research
“Through this research project, I have had the opportunity to assist the team in understanding things from a user’s standpoint. It has shaped my concept of what I think would be most helpful, not only for me, but for others who are locked-in. This has been, and continues to be, a wonderful experience for me.” GB
BCI Triangulated Collaboration

Language Modeling Team

Meetings:
- Consensus building for decisions
- Confirm changes with group

Language model building with user vocabularies and customization per user

User Interface Team
- Cognitive factors
- Patient information
- Presentation

Signal processing Team
- EEG classification

Probability matrix for intent decisions from EEG

USER TRIALS
(Clinical team)
LANGUAGE MODELING
Word completion from language corpora

Technology-assisted spelling after # letters (n-gram prediction)

1: Automatic completion
2: Self-select from a list
RSVP Keyboard: Fusing Language Model & EEG Evidence

- RSVP Keyboard makes letter selections based on joint evidence from an n-gram language model and EEG signals.

- Language model is trained using large language databases:
 - Wall Street Journal and New York Times databases
 - Enron e-mails
 - User-provided previous conversations and vocabulary lists

Deniz Erdogmus www.ece.neu.edu/~erdogmus
Language Model Comparisons

- **Row/column scanning**
 (uses optimized grid frequency layout)

- **Huffman scanning**
 (uses an 8-gram language model and a Hoffman code)

- **RSVP (Rapid Serial Visual Presentation)**
 (uses an 8-gram language model and Displays in rank order)

(Models trained using NYT data)
SIGNAL PROCESSING AND INTERFACE DESIGN
Photic stimulation at 1 Hz during routine EEG
P300 is a variable waveform

- Sensitive to alertness and attention
- Amplitude increased by stimulus infrequency and stimulus salience
- Latency affected by target detection difficulty and age
RSVP Keyboard: Spelling stimuli for a P300 signature

- **RSVP:**
 - Rapid
 - Serial
 - Visual
 - Presentation of letters
- 400ms per letter
RSVP Keyboard: A Spelling Interface based on the P3 Signal

- A sample 1-sequence training epoch...
- Multiple sequences of same letters shuffled
 ⇒ multi-trial ERP detection

Subject controls epoch start time

Epoch #1
Press any key

1000ms 400ms

Deniz Erdogmus, Cognitive Systems Laboratory, Northeastern University
TARGET

A
Training Mode

Gathering Data to Train Classifier
(about 15 minutes)

- Subject instructed to look for a specific letter
- 50 series containing 2 sequences that present 30 characters (26 letters and 4 symbols)

Machine Learning
(about 15 minutes)

Learning Algorithm + EEG

Creation of the EEG/P3 Classifier

Free Writing Mode

Sentence Formulation
Subject presented with sequences of possible letters and attempts to write whatever they wish.

Hybrid Classifier

EEG/P3 Classifier
Language Model

Prediction and typing of intended letter
RSVP and P300

Target

Non-target (distractor)
CLINICAL ASSESSMENT OF FUNCTIONALLY LOCKED-IN SUBJECTS FOR RSVP BCI
4 Participants

<table>
<thead>
<tr>
<th>Gender</th>
<th>Age</th>
<th>Dx</th>
<th>S/P</th>
<th>LIS</th>
<th>Education</th>
<th>Prof</th>
<th>Residence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male*</td>
<td>42</td>
<td>BS CVA</td>
<td>16 yrs</td>
<td>Incomplete</td>
<td>16 yrs</td>
<td>landscaper</td>
<td>Home with parent</td>
</tr>
<tr>
<td>Male*</td>
<td>42</td>
<td>ALS</td>
<td>2 yrs</td>
<td>Incomplete</td>
<td>19 yrs</td>
<td>architect</td>
<td>Home with wife & daughter</td>
</tr>
<tr>
<td>Male</td>
<td>41</td>
<td>BS CVA</td>
<td>2 yrs</td>
<td>Complete</td>
<td>18 yrs</td>
<td>engineer</td>
<td>ICF</td>
</tr>
<tr>
<td>Male</td>
<td>30</td>
<td>TBI</td>
<td>16 mos</td>
<td>Incomplete</td>
<td>16 yrs</td>
<td>musician</td>
<td>ICF</td>
</tr>
</tbody>
</table>

Team member participant: consults on research design and use
Screening tool criteria*

1. Assess requisite skills for RSVP Keyboard
 1) Vision
 2) Hearing
 3) Language (Auditory & Reading Comprehension; Spelling)
 4) Sustained Visual Attention

2. Easy to administer

3. Less than 45 minutes total time

4. Completed at participant’s residence, at bedside or wheelchair

*Cannot use for Complete LIS participants
Sources for Assessment Design

- Boston Naming Test, Kaplan, Goodglass, and Weintraub, 1983
- Functional Linguistic Communication Inventory, Bayles and Tomoeda, 1994
- Boston Assessment of Severe Aphasia, Helm-Estabrooks, Ramsberger, Morgan, Nicholas, 1989
- Coma Recovery Scale-Revised, Giacino, Kalmar, 2004
- Western Aphasia Battery-Revised, Kertesz, 2006

Ergonomic information regarding computer monitor distance and angle taken from: The United States Department of Labor; Occupational Safety & Health Administration OSHA.
Confirm consistent & reliable YES/NO

• Binary code:
 - Eyes (up/down; left/right)
 - Eye blink
 - Thumb up/down
 - Smile/pucker
Screening: Vision

A. Questions to care providers
 1. Does patient wear glasses? Recent prescription?
 2. Do they see well enough to read?
 3. Any other visual problems (cataracts, macular degeneration, field cut)?

B. Diplopia: present?

C. Visual Perception: Computer-based task for central accuracy and peripheral accuracy
Screening: Hearing

1. Questions about hearing function to participant (y/n response)
2. Questions to care provider about participant’s hearing function
3. Tuning fork test
Screening: Language: Auditory comprehension

A. Object Related Eye Movement Commands
 Look at the (object) X4

B. Non-Object Related Eye Movement Commands
 Look away from me
 Look up/down (at ceiling/floor)

C. Visually based Situational Orientation (yes/no response)
 Am I touching my ear/nose right now? X4

D. Personal Orientation
 Name, age, history

E. Yes/No to Complex Sentences
 “Does a stone sink in water?”
Screening: Language
Reading Comprehension and Spelling

1. Object-picture matching X4
2. Picture-word matching from field of 4
3. Letter identification X4
4. Eye pointing to first letter of a word X4
 Bed
 J M B A
5. Spelling words with eye gaze boards (want, ball, stop)
Screening: Cognition: Sustained Visual Attention

- RSVP Task created on EPRIME software
- Yes/no response to identify when a certain letter is present on the screen.
- Correct target and 3 foils/trial
- Must respond accurately in 9/10 trials
Input from participants with LIS
Harper and Greg as expert consultants
“Giving people with LIS the option to use a BCI in their daily life can provide so many benefits. It has the potential to give us a sense of control, the ability to communicate independently, and a sense of depth. The challenges of designing a BCI system for people who are social and intelligent are making it user friendly, reliable, just as easy and fast as our current communication method, and low-profile.”
“At the very least, I am hoping to get aid in communication from a BCI system. I want to be able to express myself without the help of others at all times. If the system were able to predict text based on how my sentences are formed, that would be helpful. I want to be able to write emails and use Facebook independently. For people like me who are completely locked-in, it would also be nice to be able to control simple things in my environment like my wheelchair and the lift on my van. I would like to turn on lights, the thermostat, the radio, and my television. As I work more with the BCI system, I feel that it has the potential to do an unlimited amount of things in the future.”
Progress to Date

1. 8 Participants (4 enrolled)
2. Clinical protocol completed for inclusion criteria and subject description
3. Working styles of teams are compatible
4. The RSVP keyboard BCI exists and...
...and works
“BCI also can open new doors, which is hard to do when you’re literally locked-in.” GB