The purpose of this report is to make available information regarding the comparative effectiveness and safety profiles of different drugs within pharmaceutical classes. Reports are not usage guidelines, nor should they be read as an endorsement of, or recommendation for, any particular drug, use or approach. Oregon Health & Science University does not recommend or endorse any guideline or recommendation developed by users of these reports.

Richard A. Hansen, Ph.D.
Gerald Gartlehner, M.D., M.P.H.
Daniel J. Kaufer M.D.
Kathleen N. Lohr, Ph.D.
Tim Carey, M.D., M.P.H.

RTI-UNC Evidence-based Practice Center
Cecil G. Sheps Center for Health Services Research
University of North Carolina at Chapel Hill
725 Airport Road, CB# 7590
Chapel Hill, NC 27599-7590
Tim Carey, M.D., M.P.H., Director

Oregon Evidence-based Practice Center
Oregon Health & Sciences University
Mark Helfand, MD, MPH, Director

Copyright © 2006 by Oregon Health & Science University
Portland, Oregon 97201. All rights reserved
Note: A scan of the medical literature relating to the topic is done periodically (see http://www.ohsu.edu/ohsuedu/research/policycenter/DERP/about/methods.cfm for scanning process description). Upon review of the last scan, the Drug Effectiveness Review Project governance group elected not to proceed with another full update of this report. Some portions of the report may not be up to date. Prior version of this report can be accessed at the DERP website.
TABLE OF CONTENTS

INTRODUCTION .. 4
 A. Overview .. 4
 B. Scope and key questions ... 6

METHODS .. 12
 A. Literature search .. 12
 B. Study selection .. 12
 C. Data abstraction ... 14
 D. Quality assessment ... 14

RESULTS .. 16
 Key Question 1. Efficacy/Effectiveness ... 18
 A. Description of studies .. 18
 B. Study populations .. 19
 C. Outcome measures ... 19
 D. Head-to-head comparisons .. 19
 E. Placebo-controlled trials .. 21
 F. Summary of the evidence .. 27
 Key Question 2. Time to Effect ... 33
 Key Question 3. Adverse Events .. 35
 A. Specific adverse events .. 37
 B. Summary of the evidence .. 40
 Key Question 4. Subgroups .. 42
 A. Age .. 42
 B. Race ... 42
 C. Sex .. 43
 D. Parkinsonian features .. 43
 E. Comorbid vascular dementia .. 44
 F. Other drugs .. 45
 G. Summary of the evidence .. 47

REFERENCES ... 51

FIGURE
 Figure 1: Results of literature search ... 57

IN-TEXT TABLES
 Table 1: Current drug treatments for Alzheimer’s disease .. 7
 Table 2: Outcome measures and study eligibility criteria ... 10
 Table 3: Abbreviations and full names of assessment scales and other instruments 17
 Table 4: Summary of trials assessing symptoms and behavioral disturbances 29
 Table 5: Mean incidence of specific adverse events in placebo-controlled trials 36
 Table 6: Summary of trials assessing adverse events .. 41
 Table 7: Summary of trials assessing subgroups ... 48
 Table 8: Key questions and summary of the evidence .. 49
 Table 9: Abbreviations for Evidence Tables ... 49

EVIDENCE TABLES
 Efficacy/Effectiveness ... 61
 Adverse Events ... 160
 Subgroups ... 182

APPENDICES
 Appendix A. Search Strategy ... 195
 Appendix B. Clinical Assessment Scales Commonly Used in AD Therapeutic Trials 197
 Appendix C. Quality Criteria ... 199
Suggested citation for this report:

Funding:

The funding source, the Center for Evidence-based Policy, is supported by 17 organizations, including 15 state Medicaid programs. These organizations selected the topic and had input into the Key Questions for this review. The content and conclusions of the review are entirely determined by the Evidence-based Practice Center researchers. The authors of this report have no financial interest in any company that makes or distributes the products reviewed in this report.
INTRODUCTION

A. Overview
Alzheimer’s disease (AD), the most common adult form of dementia, is an age-associated neurodegenerative disorder pathologically characterized by the abnormal accumulation of intracellular neurofibrillary tangles and extracellular amyloid plaques in selected brain regions. Primary clinical manifestations of AD include the insidious onset and gradual progression of cognitive impairment affecting multiple domains. Impaired recent memory (difficulty learning new information) is the clinical hallmark of AD; other associated cognitive signs include disturbances in language, visuospatial processes, and executive control functions such as insight and judgment. Alterations in behavior (e.g., irritability, paranoia), mood (e.g., depression), and personality (e.g., apathy) frequently occur in AD, are more variable than cognitive symptoms, and often contribute disproportionately to caregiver distress. Following the original case description in 1907 AD was initially viewed as a “pre-senile” dementia, with onset below age 65 years. Over time the term “senile dementia of the Alzheimer type” arose to acknowledge that dementia with AD-like clinical and pathological features occurred more commonly after age 65 years.

The historical distinction between pre-senile and senile forms of AD was abandoned in standard diagnostic criteria for AD developed over the last 25 years; the Diagnostic and Statistical Manual of Psychiatric Disorders (DSM-IV) and the National Institute of Neurological and Communicative Disorders and Stroke, and Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA) have eliminated the historical distinction. The two main types of AD currently recognized are a generally later-onset sporadic form, representing about 95% of all cases, and autosomal-dominant familial forms involving specific mutations in one of three genetic loci (APP, presenilin 1, and presenilin 2) and typically associated with the early-onset of AD symptoms. Genetic polymorphism of the apolipoprotein epsilon locus (apo E4 allele) increases the risk of developing AD two to three-fold and is associated with an earlier age of onset in sporadic AD. Within the last decade, a syndrome referred to as “Mild Cognitive Impairment” (MCI) has gained recognition as a prodrome of AD in many but not all cases. MCI is distinguished from AD by the presence of only short-term memory deficits and the absence of clear-cut functional limitations independent of memory difficulties.
Research diagnostic criteria for AD generally have been shown to be accurate and reliable based upon pathological confirmation studies; nonetheless, the boundaries between MCI and early AD are not always clear. Furthermore, among all dementia cases with AD pathology a significant minority will have concomitant cerebrovascular lesions (infarctions or small-vessel ischemic lesions of the white matter) or Lewy body pathology akin to Parkinson’s disease (PD). The presence of multiple pathological substrates associated with AD also can contribute to diagnostic ambiguity. Further developments in structural and functional neuroimaging techniques, genetic susceptibility testing, and validating biomarker assays will help clarify diagnostic efforts and inform therapeutic drug testing and monitoring.

AD is estimated to affect 4.5 million individuals in the United States with an average course of about 8 to 10 years. Of all individuals over age 65 years, an estimated 6% to 8% have AD or another form of dementia and this rate exceeds 30% at age 85 years and older. Although different estimates vary, roughly half of all AD patients are in the early or mild disease stage and the other half are in the moderate to severe range of severity. The projected prevalence of AD will approximately double over the next 20 years, as a result of the aging of the post-WWII baby-boomer generation.

Since the total current economic burden posed by AD, including direct costs (medical, hospital, and nursing home care) and indirect costs (lost productivity of caregivers) is estimated to exceed $85 billion a year, the current and looming economic impact of AD is staggering. The overall cost of managing AD is significantly greater for patients with severe disease than for those with mild to moderate; the reasons are largely greater dependency needs, higher resource utilization, and increased rate of institutionalization.

The comprehensive management of AD entails both nonpharmacologic and pharmacologic interventions. Nonpharmacologic interventions primarily address behavioral disturbances (e.g., task simplification, environmental modification, minimal excess stimulation, etc.) and other sources of cognitive impairment (e.g., treating comorbid medical conditions, minimizing or eliminating drugs with deleterious cognitive side effects). Pharmacologic strategies have focused on modulating disease-associated neurotransmitter alterations; strategies can be characterized as symptomatic or neuroprotective. Although a symptomatic and a neuroprotective pharmacologic treatment may have similar outcome characteristics in a clinical trial, the key difference is that a neuroprotective therapy will have a cumulative benefit that persists after the treatment is discontinued. Currently available pharmacologic therapies, including cholinesterase inhibitors (ChEIs) and N-methyl-D-aspartate (NMDA) receptor antagonists, are considered symptomatic treatments based on their ability to slow the clinical progression of symptoms across cognitive, behavioral, and functional domains.
Initial pharmacologic strategies for AD focused on increasing cholinergic transmission in the brain based on the “cholinergic hypothesis” of memory dysfunction. Among different strategies employed to increase synaptic levels of acetylcholine (ACh), blocking the breakdown of ACh by inhibiting acetylcholinesterase (AChE) has proven most successful to date. Inhibiting the enzyme butyrylcholinesterase (BuChE), which is a minor constituent in normal brains but in the brains of AD patients is increased in association with plaques and tangles, may also improve cholinergic transmission.\(^7\)

Centrally active ChEIs, which differ in targeting AChE alone or affecting both AChE and BuChE, were the first class of drugs approved by the US Food and Drug Administration (FDA) for the treatment of AD. Currently available ChEIs include donepezil hydrochloride (donepezil), galantamine hydrochloride (galantamine), rivastigmine tartrate (rivastigmine), and tacrine hydrochloride (tacrine). Among these agents galantamine also acts as an allosteric nicotinic receptor modulator, which has been shown to stimulate the presynaptic release of acetylcholine and other neurotransmitters in laboratory preparations.\(^8\)

Because of their more favorable therapeutic profiles, greater convenience, and absence of liver toxicity, the second-generation ChEI agents (i.e., donepezil, galantamine, and rivastigmine) largely have supplanted the first approved drug in this class, tacrine. Neuropharmacologic and pharmacokinetic properties of the currently available ChEIs are summarized in Table 1.

More recent evidence implicates the excitatory neurotransmitter glutamate as playing a role in the pathophysiology of AD.\(^9-11\) Currently, the only available drug targeting cognitive symptoms via a putative glutamatergic mechanism is memantine hydrochloride (memantine). Memantine has been widely used in Germany for more than two decades to treat a variety of conditions, including dementia, PD, neurogenic bladder, and neuropathic pain.\(^12,13\) Memantine has been promoted as a treatment for dementia in Germany since 1989; in 2002 the European Union approved its use in AD. Memantine is a low-affinity noncompetitive NMDA receptor antagonist that blocks pathologic neural toxicity associated with prolonged glutamate release without interfering with the normal physiologic actions of glutamate required for learning and memory functions.\(^14,15\) Neuropharmacologic and pharmacokinetic properties of memantine are summarized in Table 1.

Other more poorly documented pharmacologic approaches include drugs like nicotine, selegiline, vitamin E, ginkgo biloba, piracetam, hormone replacement therapy, anti-inflammatory drugs, statins, and folic acid;\(^14,16\) these will not be considered in this review.
<table>
<thead>
<tr>
<th>Agent</th>
<th>Tacrine (Cognex<sup>®</sup>)</th>
<th>Donepezil (Aricept<sup>®</sup>)</th>
<th>Rivastigmine (Exelon<sup>®</sup>)</th>
<th>Galantamine (Razadyne<sup>®</sup>, Razadyne ER<sup>®</sup>)</th>
<th>Memantine (Namenda™)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer/Distributor</td>
<td>West-Ward Horizon</td>
<td>Eisai Pfizer</td>
<td>Novartis</td>
<td>Janssen Shire</td>
<td>Merz Forest</td>
</tr>
<tr>
<td>Mechanism(s)</td>
<td>AChEI, BuChEI</td>
<td>AChEI</td>
<td>AChEI, BuChEI</td>
<td>AChEI, NRM</td>
<td>NMDA antagonist</td>
</tr>
<tr>
<td>Dose Forms (mg)</td>
<td>10, 20, 30, 40</td>
<td>5, 10</td>
<td>1.5, 3, 4.5, 6</td>
<td>4, 8, 12<sup>d</sup> 4mg/ml<sup>d</sup> 8, 16, 24<sup>e</sup></td>
<td>5, 10</td>
</tr>
<tr>
<td>Dose Frequency</td>
<td>4x /day</td>
<td>1x /day</td>
<td>2x /day</td>
<td>2x /day<sup>g</sup> 1x /day<sup>e</sup></td>
<td>2x /day</td>
</tr>
<tr>
<td>Serum T<sub>1/2</sub> (hrs.)</td>
<td>1.3 – 2</td>
<td>70</td>
<td>2 – 8<sup>a</sup></td>
<td>6 – 8</td>
<td>60 – 80</td>
</tr>
<tr>
<td>Dose Range</td>
<td>40 – 160 mg/d</td>
<td>5 – 10 mg/d</td>
<td>3 – 12 mg/d</td>
<td>8 – 24 mg/d</td>
<td>5 – 20 mg/d</td>
</tr>
<tr>
<td>Target Dose</td>
<td>80 – 160 mg/d</td>
<td>5 – 10 mg/d</td>
<td>6 – 12 mg/d</td>
<td>16 – 24 mg/d</td>
<td>10 – 20 mg/d</td>
</tr>
<tr>
<td>Dose Titration</td>
<td>6 wks.</td>
<td>4 – 6 wks.</td>
<td>2 – 4 wks.</td>
<td>4 wks.</td>
<td>1 wk.</td>
</tr>
<tr>
<td>Metabolism<sup>b</sup></td>
<td>CYP1A2</td>
<td>CYP2D6, 3A4</td>
<td>Non-hepatic</td>
<td>CYP2D6,3A4</td>
<td>Non-hepatic</td>
</tr>
<tr>
<td>Protein-binding</td>
<td>75%</td>
<td>96%</td>
<td>40%</td>
<td>18-19%</td>
<td>45%</td>
</tr>
<tr>
<td>Taken with food?</td>
<td>Yes</td>
<td>Not necessary</td>
<td>Yes</td>
<td>Yes</td>
<td>Not necessary</td>
</tr>
<tr>
<td>Hepatotoxicity?</td>
<td>Yes<sup>c</sup></td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

AChEI = Acetylcholinesterase inhibition
BuChEI = Butyrylcholinesterase inhibition
NRM = Nicotinicreceptor modulator
NMDA = N-methyl d-aspartate
^a Pseudo-irreversable binding; upper range reflects duration of esterase inhibition
^b Hepatic cytochrome p450 enzyme metabolism
^c Requires periodic monitoring of serum liver transaminases (AST, ALT)
^d Razadyne
^e Razadyne ER
B. Scope and key questions

The purpose of this review is to help policy makers and clinicians make informed choices about the use of the four ChEIs and memantine in the treatment of AD. We compare the efficacy, effectiveness, and safety (adverse events) of donepezil, galantamine, rivastigmine, tacrine, and memantine in patients with mild to severe AD. Although we will emphasize comparative head-to-head studies, the few published ones do not allow for a comprehensive evaluation. Accordingly, we will also include supplementary data from individual placebo-controlled trials and observational studies.

The participating organizations of the Drug Effectiveness Review Project (DERP) are responsible for ensuring that the scope of the review reflects the populations, drugs, and outcome measures of interest to their constituencies. The Oregon Evidence-based Practice Center initially prepared preliminary key questions identifying the populations, interventions, and outcomes of interest, and we based the eligibility criteria for studies on these preliminary questions. Representatives of organizations participating in the DERP, in conjunction with experts in the fields of health policy, neurology, pharmacotherapy, and research methods reviewed, revised, and approved the questions and outcome measures. The participating organizations approved the following key questions:

1. How do donepezil, galantamine, rivastigmine, tacrine, and memantine or combinations of these drugs (i.e., acetylcholinesterase inhibitor plus memantine) compare in their efficacy or effectiveness for stabilizing symptoms and treating behavioral disturbances in patients with AD?

2. How do donepezil, galantamine, rivastigmine, tacrine, and memantine (or combinations of these drugs) compare in their time to effect and in the time required to assess the clinical response?

3. What are the comparative incidence and severity of complications of donepezil, galantamine, rivastigmine, tacrine, and memantine (or combinations of these drugs)?

4. Does efficacy, effectiveness, or adverse events of donepezil, galantamine, rivastigmine, tacrine, or memantine (or combinations of these drugs) differ in subgroups of patients with (1) different demographic profiles (age, race, or gender), (2) Parkinsonian features or vascular dementia, or (3) use of other commonly prescribed drugs?
The first key question addresses the issue of effectiveness: do drugs used to treat AD differ in their effects under real-life circumstances? This report addresses both efficacy (i.e., do AD drugs differ in their effects under ideal or highly controlled circumstances) and effectiveness. We distinguish between *efficacy* (*explanatory*) studies and *effectiveness* (*pragmatic*) studies; studies conducted in primary care or office-based settings that use less stringent eligibility criteria (i.e., broad range of population characteristics and disease severity) have long follow-up periods (i.e., greater than one year), and assess health outcomes are characterized as *effectiveness* studies. Studies conducted in more highly selected populations over shorter periods of time are characterized as *efficacy* studies. We summarize the results of efficacy and effectiveness studies separately as the results of effectiveness studies are more generalizable than results from highly selected populations (i.e., efficacy studies).

For assessing efficacy and effectiveness, our review includes methodologically valid comparative evidence from controlled clinical trials and fair- or good-quality systematic reviews. For evaluating safety we include controlled clinical trials, systematic reviews, and observational studies. A summary of outcome measures and study eligibility criteria can be found in Table 2; a more complete description of commonly used scales and outcome measures can be found in Appendix B.

The second key question specifically addresses the time to achieve statistical and clinical differences between available drugs. Although we searched for direct and indirect evidence addressing time to statistical and clinical differences, several points should be considered. In general, determining time to effect and time required to assess clinical response are both difficult tasks given the progressive nature of AD, the design of most trials, and the nature of measurement scales. Because limited evidence compares one AD drug to another and because placebo-controlled trials are too heterogeneous with respect to study design, outcomes assessment, and populations to allow any inferences about the comparative time to effect, drawing conclusions about one drug compared to another is similarly difficult. Furthermore, given the fact that changes in cognition and global assessment can be reached only with sustained treatment with ChEIs and memantine, the clinical significance of time to effect is likely to be of minimal importance to physicians and patients. We review the available evidence below, but we caution readers about interpretation given the nature of the evidence and questionable significance of any differences reported across trials.
Given the progressive nature of AD it is important to note the distinction between clinical improvement and slowing the progression of disease. Although a treatment may not demonstrate clinical improvement from baseline over time, it may be able to slow the rate of cognitive or behavioral deterioration. In this review we use the term “improvement” to reflect the degree to which patients improve with respect to their comparator. Because most of the evidence for these drugs stems from placebo-controlled trials, “improvement” commonly reflects differences between active- and placebo-treated patients. These

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Outcome Measures</th>
<th>Study Eligibility Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficacy / Effectiveness</td>
<td>• Stabilizing or slowing the rate of decline in health outcome measures:</td>
<td>• Head-to-head randomized controlled clinical trials or meta-analyses comparing one AD drug to another</td>
</tr>
<tr>
<td></td>
<td>- Activities of daily living</td>
<td>• When sufficient evidence was not available for head-to-head comparisons we evaluated placebo-controlled trials</td>
</tr>
<tr>
<td></td>
<td>- Instrumental activities of daily living</td>
<td>• Observational studies were reviewed for hospitalizations, an outcome measure rarely assessed in controlled trials for AD</td>
</tr>
<tr>
<td></td>
<td>- Level of care changes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Quality of life</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Behavioral symptoms (e.g., aggression, agitation, psychosis, mood disorders)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Stabilizing or slowing the rate of decline in intermediate outcome measures:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Cognition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Global assessment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Discontinuation effects (i.e., temporary or permanent changes in behavioral</td>
<td></td>
</tr>
<tr>
<td></td>
<td>symptoms, functional capacity, or cognition as a result of discontinuing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>treatment)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Reducing caregiver burden</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Hospitalizations or nursing home placement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Mortality</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety/ Tolerability</td>
<td>• Overall adverse effect reports</td>
<td>• Head-to-head randomized controlled clinical trials or meta-analyses comparing one AD drug to another</td>
</tr>
<tr>
<td></td>
<td>• Withdrawals because of adverse effects</td>
<td>• When sufficient evidence was not available for head-to-head trials, we evaluated:</td>
</tr>
<tr>
<td></td>
<td>• Serious adverse event reports</td>
<td>• placebo-controlled trials</td>
</tr>
<tr>
<td></td>
<td>• Adverse events due to discontinuation</td>
<td>• observational studies</td>
</tr>
<tr>
<td></td>
<td>• Specific adverse events, including:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Gastrointestinal symptoms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Hepatotoxicity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Weight loss</td>
<td></td>
</tr>
</tbody>
</table>

AD – Alzheimer's Disease
patients, in reality, may not be significantly better than they were when they started treatment, but have demonstrated slower deterioration than patients in the other study groups.

As equipotency among the reviewed antidementia drugs is not well established, we assume that dose comparisons made within the recommended daily dosing range are comparable (Table 1). Dose comparisons made outside the recommended daily dosing range are acknowledged in our report, but we do not use them to determine the quality of the evidence. Furthermore, we evaluate studies that assess only initial treatment with these drugs as independent agents; we do not consider the issue of switching from a ChEI to memantine or vice versa. Although some clinicians may use a combination of drugs in clinical practice, we do not specifically consider combination therapy in this report. However, because combination therapy has been addressed by at least one clinical trial, we contrast this trial with other available evidence.

Considerations governing our work on key question 1 and 2 (i.e., dose equivalency, operational definitions) pertain as well (as appropriate) to key questions 3 and 4.
Methods

A. Literature Search

We searched MEDLINE, Embase, The Cochrane Library, and the International Pharmaceutical Abstracts to identify articles relevant to each key question. We used either Medical Subject Headings (MeSH or MH) as search terms when available or key words when appropriate. We combined terms for the selected indication (Alzheimer’s disease), drug interactions, and adverse events with a list of five specific Alzheimer’s drugs (donepezil, galantamine, rivastigmine, tacrine, and memantine); extended release dosage formulations were included in this search. We limited the electronic searches to “human” and “English language”, and searched sources from 1980 to 2005 (December) to identify literature relevant to the scope of our topic. We used the National Library of Medicine publication type tags to identify reviews, randomized controlled trials (RCTs), and meta-analyses. We manually searched reference lists of pertinent and relevant review articles and letters to the editor. All citations were imported into an electronic database (EndNote 8.0).

Additionally, we hand-searched the Center for Drug Evaluation and Research (CDER) database to identify unpublished research submitted to the FDA. Finally, the Center for Evidence-based Policy at the Oregon Health and Science University (OHSU) contacted pharmaceutical manufacturers and invited them to submit dossiers, including citations, using a protocol available at www.ohsu.edu/drueffectiveness. We received dossiers from two pharmaceutical companies.

Our searches found 1,109 citations, unduplicated across databases. We found an additional 58 articles from manually reviewing the reference lists of pertinent review articles. We included no studies originating from pharmaceutical dossiers; all studies submitted from pharmaceutical dossiers were present in our other searches. The total number of citations included in the database was 1,167.

B. Study Selection

Two persons independently reviewed abstracts; if both reviewers agreed that the trial did not meet eligibility criteria we excluded it; we obtained the full text of all remaining articles. Records were considered for exclusion if they did not meet pre-established eligibility criteria with respect to study design or duration, patient population, interventions, outcomes, and comparisons to Alzheimer’s medications outside our scope of interest.
For this review, results from well-conducted, head-to-head trials provide the strongest evidence to compare drugs with respect to efficacy, effectiveness, and adverse events. We defined head-to-head trials as those comparing one Alzheimer’s drug with another. Included studies were RCTs lasting at least 12 weeks that had an outpatient study population with a total sample size greater than 100 participants.

If we could not find sufficient evidence of efficacy or effectiveness from at least one randomized, double-blinded, head-to-head trial, we reviewed randomized, controlled, open-label trials. For comparing different drugs, however, the strength of evidence must be rated lower for these results than for results from blinded trials.

If no head-to-head evidence was published, we reviewed placebo-controlled trials. We reviewed all placebo-controlled trials to provide an overview of efficacy without taking drug equivalency into account. Compared to placebo and all other things equal, higher dosages may yield greater treatment effects than do low or medium dosages. For that reason, we did not evaluate the dosage of one drug relative to the dosage of an alternative drug in a different trial. In addition, heterogeneity among study populations and placebo groups demand caution in making comparative judgments about treatment effects across trials.

We examined adverse events in both experimental and observational studies. For observational studies we included those with large sample sizes (> 100 patients) that lasted at least 1 year and reported an outcome of interest.

We initially reviewed studies with health outcomes as the primary outcome measures. Outcomes were institutionalizations, behavioral symptoms (e.g., aggression, agitation, mood disorders, psychosis), discontinuation effects, mortality, and changes in the rate of decline in day-to-day functioning and activities of daily living. Because health outcomes often were not reported, we also included intermediate outcomes (e.g., cognition, global assessment). Safety parameters included overall and specific adverse events (e.g., hepatotoxicity, weight loss, and gastrointestinal symptoms), withdrawals due to adverse events, discontinuation effects, and drug interactions.

We included meta-analyses in our evidence report if we found them to be relevant for a key question and methodologically sound (based on the QUORUM statement); we did not review individual studies if they had been included in a high-quality meta-analysis. We excluded meta-analyses that were not based on a comprehensive systematic literature search or did not maintain the units of the studies in their
statistical analyses. We included recent pooled analyses of RCTs if they covered all published trials and their methods were sound. We checked our database to ensure that our literature search had identified trials included in any meta-analyses that we discarded; we then obtained any missing articles so that all constituent studies would be represented in this review.

If we could not find sufficient evidence of efficacy or effectiveness from at least one randomized, double-blinded, head-to-head trial, we reviewed placebo-controlled trials and randomized, controlled, open-label trials. For comparing different drugs, however, the strength of evidence must be rated lower for these results than for results from the preferred type of trial. Findings of placebo-controlled trials are hard to compare across studies because disparate populations may respond differently.

Overall, we reviewed 1,167 article abstracts and retrieved 206 of those as full text articles for background information or to be reviewed for inclusion into the evidence report.

C. Data abstraction
We designed and used a structured data abstraction form to ensure consistency in appraising each study. Trained reviewers abstracted data from each study and assigned an initial quality rating; a senior reviewer read each abstracted article, evaluated the completeness of the data abstraction, and confirmed the quality rating. We abstracted the following data from included trials: study design, eligibility criteria, intervention (drugs, dose, duration), additional medications allowed, methods of outcome assessment, population characteristics, sample size, loss to follow-up, withdrawals attributed to adverse events, results, and adverse events reported. We recorded intention-to-treat (ITT) results if available.

D. Quality assessment
We assessed the internal validity (quality) of trials based on predefined criteria (Appendix C). These criteria are based on those developed by the US Preventive Services Task Force (ratings: good, fair, or poor)18 and the National Health Service Centre for Reviews and Dissemination.19 We assessed external validity (generalizability) and reported on it, but these assessments did not influence our quality ratings.

Two independent reviewers assigned quality ratings; they resolved any disagreements by discussion and consensus or by consulting a third independent party. Elements of internal validity assessment included, among others, randomization and allocation concealment, similarity of compared groups at baseline, use of ITT analysis, and overall and differential loss to follow-up.
Loss to follow-up was defined as the number of persons randomized who did not reach the endpoint of the study, independent of the reason and the use of ITT analysis. We adopted an overall loss to follow-up of 40% as a cut-off point for poor quality.

We rated trials that had a fatal flaw in one or more categories as poor quality; we did not include them in this analysis. We rated trials that met all criteria as good quality. The majority of trials received a quality rating of fair. This includes studies that presumably fulfilled all quality criteria but did not report their methodologies to an extent that answered all our questions. Thus, the “fair quality” category includes trials with quite different strengths and weaknesses and a range of validity.

The last observation carried forward (LOCF) method of data analysis is a particular issue in Alzheimer’s disease. The reason is that the natural course of the disease leads to a gradual decline in cognition and daily functioning over time. Particularly in longer studies measurements carried forward can bias results towards an overestimation of the treatment effect. We took this potential bias into consideration when we appraised each study and highlighted possible bias in the text whenever appropriate.
RESULTS

We identified 1,167 citations from searches and reviews of reference lists; we identified no unpublished trials from dossiers submitted by pharmaceutical companies. In total we included 46 studies: 31 RCTs, 8 meta-analyses or systematic reviews, and 7 studies of other design. Furthermore, we retrieved 59 articles for background information. We could not retrieve six articles after multiple attempts.21-26 For some studies, the investigators published more than a single article; therefore, numbers of referenced articles may not always sum to the number of studies (Figure 1, QUORUM Tree).

Reasons for exclusions were based on eligibility criteria or methodological criteria. We excluded nine studies that met the eligibility criteria but were later rated as poor quality for internal validity from the analysis (Appendix D). The main reasons for a poor quality rating were high study attrition rates among RCTs and lack of systematic literature search for meta-analyses. Lack of a systematic literature search leads to a selected spectrum of trials and biased results.

Of 46 included studies, 74 percent were supported financially by pharmaceutical companies; 17 percent were funded by governmental agencies or independent funds. We could not determine the funding source for 9 percent of included studies.

Studies reviewed for this report employed several different instruments for assessing symptoms, health status, or quality of life. Table 3 summarizes symptom assessment scales and health status or quality-of-life instruments encountered in this literature and used in this report.
Table 3: Abbreviations and full names of assessment scales and other instruments

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Name of Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAS-cog</td>
<td>Alzheimer's Disease Assessment Scale</td>
</tr>
<tr>
<td>ADCS-ADL</td>
<td>Alzheimer's Disease Cooperative Study – Activities of Daily Living</td>
</tr>
<tr>
<td>ADFACS</td>
<td>Alzheimer's Disease Functional Assessment Change Scale</td>
</tr>
<tr>
<td>aRSS</td>
<td>Abridged Relative Stress Scale</td>
</tr>
<tr>
<td>BEHAVE-AD</td>
<td>Behavioral Symptoms in Alzheimer’s Disease</td>
</tr>
<tr>
<td>BGP</td>
<td>Behavioral Rating Scale for Geriatric Patients</td>
</tr>
<tr>
<td>Bristol ADL</td>
<td>Bristol Activities of Daily Living Scale</td>
</tr>
<tr>
<td>CAS</td>
<td>Caregiver Activity Survey</td>
</tr>
<tr>
<td>CDR-SB</td>
<td>Clinical Dementia Rating Scale – Sum of Boxes</td>
</tr>
<tr>
<td>CGI-C</td>
<td>Clinical Global Impression of Change</td>
</tr>
<tr>
<td>CIBIC-plus</td>
<td>Clinician’s Interview-Based Impression of Change scale</td>
</tr>
<tr>
<td>CMCS</td>
<td>Caregiver-rated Modified Crichton Scale</td>
</tr>
<tr>
<td>DAD</td>
<td>Disability Assessment for Dementia</td>
</tr>
<tr>
<td>FAST</td>
<td>Functional Assessment Staging Scale</td>
</tr>
<tr>
<td>GBS</td>
<td>Gottfries, Brane, and Steen Scale</td>
</tr>
<tr>
<td>GDS</td>
<td>Global Deterioration Scale</td>
</tr>
<tr>
<td>IADL</td>
<td>Instrumental Activities of Daily Living</td>
</tr>
<tr>
<td>IQCODE</td>
<td>Informant Questionnaire on Cognitive Decline in the Elderly</td>
</tr>
<tr>
<td>MENFIS</td>
<td>Mental Function Impairment Scale</td>
</tr>
<tr>
<td>MMSE</td>
<td>Mini Mental State Examination</td>
</tr>
<tr>
<td>NOSGER</td>
<td>Nurse’s Observational Scale for Geriatric Patients</td>
</tr>
<tr>
<td>NPI</td>
<td>Neuropsychiatric Inventory</td>
</tr>
<tr>
<td>PDS</td>
<td>Progressive Deterioration Scale</td>
</tr>
<tr>
<td>SCAG</td>
<td>Sandoz Clinical Assessment Geriatric Scale</td>
</tr>
<tr>
<td>SCGB</td>
<td>Screen for Caregiver Burden</td>
</tr>
<tr>
<td>SIB</td>
<td>Severe Impairment Battery</td>
</tr>
</tbody>
</table>

More detail provided for some of these scales in Appendix B
KEY QUESTION 1

How do donepezil, galantamine, rivastigmine, tacrine, and memantine or combinations of these drugs (i.e., acetylcholinesterase inhibitor plus memantine) compare in their efficacy or effectiveness for stabilizing symptoms and treating behavioral disturbances in patients with Alzheimer’s Disease?

We included 26 RCTs and 8 systematic reviews/meta-analyses. Of the RCTs, 3 were head-to-head trials; 23 were placebo-controlled trials. Only one trial was deemed to be an effectiveness trial.

A. Description of studies

We did not identify any head-to-head, randomized, double-blind, parallel-group study. Of the three head-to-head trials we identified, all were open-label trials blinding only the rater to treatment allocation; two trials compared donepezil to galantamine and one trial compared donepezil to rivastigmine. We included two systematic reviews that pooled placebo-controlled trials of donepezil, galantamine, and rivastigmine to represent ChEIs as a class. Several other systematic reviews pooled placebo-controlled trials for specific medications.

Of the included placebo-controlled trials, 11 compared donepezil to placebo, 6 compared galantamine to placebo, 3 compared rivastigmine to placebo, 1 compared tacrine to placebo, and 2 compared memantine to placebo. Most trials were 3 months to 1 year in duration; one trial followed patients for more than 3.5 years. Only one trial was deemed to be an effectiveness trial. Doses generally were given within the range of the approved package labeling (see Table 1), although several galantamine trials used doses above the recommended 24 mg/day and rivastigmine trials commonly included a low dose arm of 1-4 mg/day.

B. Study populations

We included studies with a sample size greater than 100; the largest trial included in our review randomized 978 patients with probable AD. On average, the mean patient age was between 70 and 75 years; one trial was conducted in a nursing home population with a mean age of 86 years. Most studies were conducted in patients with mild to moderate AD; one donepezil and two memantine trials were
conducted in patients with moderate to severe AD. Most trials specifically excluded patients with vascular dementia and clinically significant neurologic disease other than AD. Some trials did not specify such exclusion criteria or report the proportion of patients with such comorbid disease. Most studies allowed patients to use other medications except for drugs with cholinomimetic effects or anticholinergic medications.

C. Outcome measures

Studies commonly included measures to assess symptom stabilization (e.g., cognition, global assessment of change) and behavioral disturbances. Most studies included a measure of cognition (e.g., ADAS-cog) as the primary outcome; other commonly included measures of cognition were the MMSE and SIB. Global change often was measured using scales such as the CGI-C, CIBIC-plus, or GDS; functional status was commonly assessed using measures such as the ADCS-ADL, DAD, Bristol ADL, and PDS. Changes in mood, behavior, and personality were assessed with measures such as the NPI or BEHAVE-AD. Some studies included other instruments that assessed quality of life or caregiver burden.

D. Head-to-head comparisons

We did not identify any randomized, double-blind, comparative trials. We did identify three open-label head-to-head trials.27-29 One trial compared donepezil to galantamine over 52 weeks,27 one compared donepezil to galantamine over 12 weeks,28 and one compared donepezil to rivastigmine over 12 weeks.29 These trials blinded only the rater to treatment allocation. Although open-label trials are subject to “fatal flaws” for internal validity, we review their results because they provide the only comparative evidence. We do not provide quality ratings for these trials.

We included two meta-analysis30, 31 that evaluated evidence comparing donepezil, galantamine, and rivastigmine with placebo. Although these reviews do not make indirect comparisons among included ChEIs, the quantitative summary of placebo-controlled trials is useful for summarizing evidence for ChEIs in general.

Donepezil vs. Galantamine

One 52-week open-label trial compared donepezil 10 mg/day to galantamine 24 mg/day in 182 patients with probable AD and MMSE scores between 9 and 18 at screening.27 Although raters were blinded to treatment allocation, patients, caregivers, and physicians were not blinded because of differences between
the two study drugs in dosing frequency, escalation schedules, and physical appearance. On average, study participants were 73 years of age with a mean baseline MMSE score of 15. The primary study endpoint was based on function assessed by the Bristol ADL; cognitive outcome measures included the MMSE and ADAS-cog, behavioral disturbances were assessed with the NPI, and caregiver burden was measured using the SCGB scale. At endpoint no statistically significant differences were observed in functional abilities, cognitive symptoms, behavioral disturbances, or caregiver burden between the donepezil and galantamine treatment groups. This trial was funded by the makers of galantamine.

One 12-week open-label trial compared flexible doses of donepezil 5-10mg/day (once daily) and galantamine 8-24mg/day (twice daily) in 120 patients with probable or possible AD.28 as in the 52-week trial, only raters were blinded to treatment allocation. The mean age of study participants was 74 years with a mean baseline MMSE score of 21. On average, baseline MMSE scores for patients in this trial indicated less severe disease than in the 52-week trial. At baseline, patient demographics and disease characteristics were similar in both groups. The primary outcome measure was unblinded physician and caregiver satisfaction as measured on a scale specifically developed by the makers of donepezil for use in another head-to-head trial (presumably this instrument had not been previously validated).29 Secondary outcome measures included cognition (ADAS-cog, MMSE) and disability (DAD). At 12 weeks, both physician and caregiver satisfaction ratings were significantly better for donepezil (P < 0.001 and P < 0.01, respectively). Furthermore, donepezil-treated patients demonstrated significantly more improvement on the ADAS-cog, MMSE, and DAD (P < 0.05). In contrast to the 52-week study that demonstrated no difference between donepezil and galantamine, this trial was funded by the makers of donepezil. Additionally, this trial demonstrated the worst reported galantamine response among all other clinical studies. Both trials utilized similar dosing protocols.

Donepezil vs. Rivastigmine

One 12-week open-label trial compared flexible doses (5-10 mg/day) of donepezil to flexible doses (6-12 mg/day) of rivastigmine in 111 patients with mild to moderate AD.29 The mean age of study participants was 74 years with a mean baseline MMSE score of 20; 54% of donepezil-treated patients and 64% of rivastigmine-treated patients were female. With regard to baseline disease severity, patients in this trial most closely resembled the 12-week trial comparing donepezil to galantamine. Cognitive symptoms and disease severity were assessed with the ADAS-cog and MMSE, respectively. ADAS-cog raters were blinded to treatment allocation, but unblinded clinicians administered the MMSE. At 12 weeks no statistically significant differences in ADAS-cog or MMSE were reported for the two treatment groups. These investigators also administered an unidentified measure of clinician and caregiver satisfaction.
Although physicians and caregivers reported significantly higher scores on the satisfaction measure for donepezil than for rivastigmine, this measure was designed and initially used in this trial and had not been previously validated. This trial was funded by the makers of donepezil.

E. Placebo-controlled trials

We identified 8 systematic reviews or meta-analyses of placebo-controlled trials and 23 RCTs that met the inclusion criteria for our review of placebo-controlled evidence. When good-rated systematic reviews provided comprehensive evidence for a specific drug-placebo comparison, we did not include individual trials already covered in the systematic review. However, in cases where individual trials were too heterogeneous or not adequately described by existing systematic reviews (i.e., donepezil and memantine), we include these trials in our review in addition to the pooled analysis.

Donepezil, Galantamine, and Rivastigmine vs. Placebo (Meta-Analysis)

Two methodologically sound meta-analysis\(^{30, 31}\) evaluated placebo-controlled evidence for donepezil, galantamine, and rivastigmine. These reviews cannot be used to compare one drug to another directly, but quantitative analyses from these studies are relevant to the question of the general effectiveness of ChEIs as a class. The most recently published review\(^{31}\) included 22 trials. The authors attributed a 1.5 to 3.9 point reduction in ADAS-cog scores and a 0.26 to 0.54 point improvement in CIBIC-plus scores to the included drugs, citing serious methodologic flaws in this evidence base.\(^{31}\) The older review\(^{30}\) included 16 trials. The authors defined “global responders” as subjects rated as minimally to very much improved on the CGIC or CIBIC-plus; “cognitive responders” were defined as patients with a 4-point or greater improvement (decrease) from baseline on the ADAS-cog. Compared to placebo the pooled number needed to treat (NNT) to yield one additional ChEI global responder was 12 (95% CI 9-16); the NNT to yield one additional cognitive responder was 10 (95% CI 8-15). These pooled NNT calculations should be interpreted cautiously, as some heterogeneity exists among trials included in this analysis.

Compared to patients receiving placebo,\(^{30}\) significantly more patients receiving ChEIs had adverse events (8%; 95% CI 5%-11%), dropped out (8%; 95% CI 5%-11%), or dropped out because of adverse events (7%; 95% CI 3%-10%). Pooled rates of dropouts and adverse events were not reported for each drug. However, adverse event rates in excess of those for placebo were lowest for donepezil (6%; 95% CI 2%-9%), followed by rivastigmine (8%; 95% CI 1%-10%), and galantamine (12%; 95% CI 7%-18%). Similarly, drop out rates in excess of the rate for placebo were lowest for donepezil (3%; 95% CI 1%-
6%), followed by rivastigmine (9%; 95% CI 5%-12%), and galantamine (14%; 95% CI 8%-21%). Drop out rates due to adverse events demonstrated a similar trend.

Donepezil vs. placebo

We included two meta-analyses\(^\text{32, 33}\) and 11 trials\(^\text{38-48, 61}\) comparing donepezil to placebo. A good meta-analysis pooled data from 13 trials lasting 12 or more weeks and involving 4,365 participants.\(^\text{32}\) Pooled results demonstrated statistically significantly better ratings for 5mg/day and 10mg/day donepezil on all outcomes measures at 24 weeks. For 10mg/day doses, the global assessment with CIBIC-plus, dichotomized into those showing no change or decline and those showing improvement yielded an odds ratio (OR) of 2.18 (95% CI 1.53 – 3.11; P < 0.001) and assessment of cognition with MMSE a weighted mean difference (WMD) of 1.50, (95% CI 0.97 – 2.04; P < 0.0001) and with ADAS-Cog a WMD of -2.92 (95% CI -3.74 - -2.10; P < 0.001). The size of the effect was dose-related and did not differ by severity of the disease. Furthermore, pooled data from two trials assessing activities of daily living (DAD, IADL, PSMS, CMCS) presented a statistically significant benefit for 5mg/day and 10mg/day donepezil treatment at week 12 and week 24. No difference was reported on a patient-rated Quality of Life Scale between donepezil and placebo. These findings were consistent with those of a fair-rated meta-analysis using individual patient data of placebo-controlled trials.\(^\text{33}\)

Of 11 placebo-controlled trials that we examined, all but one\(^\text{46}\) had been included in the meta-analysis by Birks et al.\(^\text{32}\) Because some\(^\text{42, 43, 45}\) of these included trials provide specific results on quality of life and activities of daily living we summarize results in Table 4.\(^\text{38, 40, 44}\)

The only effectiveness study we identified was the only trial on donepezil that was not funded by the pharmaceutical industry.\(^\text{38}\) This UK study enrolled 565 patients and assessed the effectiveness of long-term (3 years and 36 weeks) donepezil treatment in community-residents with mild to moderate AD with or without concomitant vascular dementia. Primary outcome measures were rate of institutionalism and functional capacity (Bristol ADL). No significant differences could be observed in the rates of institutionalism between donepezil and placebo at 1 year (9% vs. 14%; P = 0.15) and at 3 years (42% vs. 44%; P = 0.4). After 12 weeks until the end of the trial, the Bristol ADL scores of donepezil-treated patients were statistically significantly better, though the difference was modest (average +1.0 point, 95% CI 0.5 – 1.6; P = 0.0004). Similarly, MMSE scores were modestly but statistically significantly higher in donepezil- than in placebo-treated patients (average 0.8 points, 95% CI 0.5 – 1.2; P = 0.001); the clinical significance of these findings is questionable. No significant differences were detected in progression of disability (Bristol ADL) or behavioral and psychological symptoms (NPI).
A fair US-based study (n = 431) examined the functional decline of donepezil compared to placebo-treated patients over 1 year. The primary endpoint was time to clinically evident decline in function (defined in study protocol). A higher proportion of placebo than of donepezil-treated patients reached the primary endpoint (56% vs. 41%; P < 0.005). The median time to clinically evident functional decline was significantly shorter for placebo than for donepezil-treated patients on donepezil (208 vs. 380 days; P = 0.0051).

The placebo-controlled study not included in any meta-analysis assessed the efficacy of donepezil on cognitive outcomes. Findings are consistent with results from meta-analyses. Results reported significantly better outcomes for the donepezil than for placebo groups after 24 weeks of treatment.

Galantamine vs. placebo

One good-rated systematic review (updated in 2005), two good-rated RCTs, and four fair-rated RCTs compared galantamine to placebo. We focus the majority of our discussion on the updated systematic review because it provides a comprehensive summary of four of the five RCTs identified in our search. However, for measures of behavior and functional capacity we focus our discussion on individual trials because data in these domains were not pooled in the systematic review.

Trials ranged from 12 to 52 weeks in duration. The most frequent galantamine dose tested was 24mg/day; in most trials patients began at 8 mg/day and increased over time to the daily maximum. Patients reached their maximum daily dose 2 to 8 weeks into the respective trials. All trials used the ADAS-cog to assess cognitive change; other measures of symptomatic change included the European adaptation of the ADAS scale, the expanded ADAS-cog, and the Digit Symbol Substitution Test. Most trials used global rating scales such as the CIBIC-plus or the ADCS-CGIC. Changes in behavior were assessed by the NPI and functional status was assessed using the PDS, DAD, and ADCS-ADL.

Overall, galantamine was significantly better than placebo for improving intermediate outcome measures of cognitive symptoms and global rating scales. Pooled analyses of ADAS-cog scores from trials lasting 5 to 6 months revealed statistically significant differences for all doses of galantamine compared to placebo (8mg: WMD -1.3; 95% CI -2.6-0.3; 16mg: WMD -3.1; 95% CI -4.1- -2.1; 24mg/day: WMD -3.3; 95% CI -3.9- -2.7; 32mg/day: WMD -3.3; 95% CI -4.1- -2.4). Results from trials of 3 months’ duration were similar. Pooled ITT analyses for global rating scales also favored galantamine over placebo. Trials lasting 5 to 6 months demonstrated similar differences (16mg/day: OR 2.04; 95% CI 1.4-
2.9; 24mg/day: OR 1.82; 95% CI 1.4-2.3; 32mg/day: OR 1.79; 95% CI 1.3-2.4), except for the 8mg/day dose, which was not significantly different from placebo. Trials lasting 3 months demonstrated statistically significant differences between galantamine and placebo on global rating scales for doses of 18mg/day (OR 2.44; 95% CI 1.2-5.0), 24mg/day (OR 2.11; 95% CI 1.0-4.6), and 36 mg/day (OR 2.7; 95% CI 1.2-6.2). The good-rated trial not included in the systematic review provided consistent results. The LOCF mean change in ADAS-cog from baseline to 26 weeks was -1.6 (± 0.36) for galantamine, -1.3 (± 0.31) for galantamine prolonged release capsule (PRC), and +1.2 (± 0.33) for placebo. Both galantamine and galantamine PRC were numerically superior to placebo in CIBIC-plus scores, but differences failed to reach statistical significance at 26 weeks.

Although most trials assessed behavior or functional status, the authors of the systematic review did not pool these data, presumably because of differences in study design and reporting. Evidence from individual trials is mixed. Two good-rated trials assessed activities of daily living with the ADCS-ADL scale; ITT results statistically favored galantamine over placebo at 26 weeks in both trials. Another trial that assessed activities of daily living using the PDS found no significant differences between galantamine and placebo. Three trials measured disability using the DAD scale; one reported statistically significant differences between galantamine and placebo for doses of 24mg/day and 32mg/day, one reported statistically significant differences for doses of 32mg/day but not for 24mg/day, and one reported no differences for doses of 24mg/day or 32mg/day. One trial assessed sleep quality using the NPI sleep score and the PSQI; no differences were found between galantamine and placebo on either measure. Three trials assessed behavioral symptoms using the NPI; two reported no statistically significant differences in NPI scores at 26 weeks and the other reported statistically significant differences at 22 weeks for doses of 16mg/day and 24mg/day. Only one trial reported caregiver burden. This study reported the caregiver distress component of the NPI in a 22 week trial comparing galantamine 16mg/day and 24mg/day to placebo. At endpoint, only the 24mg/day dose was significantly better than placebo (P = 0.05).

No galantamine trial specifically reported the effect of drug treatment on rates of institutionalization or death.

Rivastigmine vs. placebo

One good-rated systematic review, one fair-rated systematic review, and three placebo-controlled trials were included in our review of rivastigmine. The good-rated systematic review included 3 published
and 5 unpublished phase II and phase III clinical trials involving 3,450 patients. All trials but one were sponsored by rivastigmine’s manufacturer. The fair-rated systematic review included data from two published trials and one unpublished phase III clinical trial.

Although both systematic reviews included data from two of the same trials, we include them both because each study drew unique conclusions. However, because the Cochrane review received a better quality rating and was more comprehensive, we believe the good-rated Cochrane review gives the best overall summary.

The good-rated systematic review included data from eight trials; studies ranged in duration from 9 to 26 weeks. In most trials, the mean baseline MMSE score was between 18 and 20. Analyses were stratified by dose, characterizing rivastigmine 1-4mg/day as low dose and rivastigmine 6-12mg/day as high dose. Common outcome measures included the ADAS-cog, CIBIC-plus, GDS, MMSE, and PDS. Caregiver activities also were assessed using the CAS. Pooled results suggest significantly greater improvement on the CIBIC-plus for all doses of rivastigmine compared to placebo. Significantly greater improvement also was found for high-dose rivastigmine (6-12mg/day) compared to placebo on the ADAS-cog, MMSE, GDS, and the PDS; pooled results were not significant for low-dose rivastigmine (1-4mg/day) for these outcome measures. The high-dose regimen currently is the recommended dosing range for rivastigmine.

The fair-rated systematic review included data from two published trials and one unpublished trial (B351). In contrast to the good-rated Cochrane review, this review reported statistically significant differences favoring all doses of rivastigmine compared to placebo. Statistically significant differences were reported for the ADAS-cog, CIBIC-plus, GDS, MMSE, and PDS. Although this pooled population includes data from the three largest placebo-controlled trials conducted by Novartis, it does not include a similarly designed phase III trial (i.e., B304). Furthermore, this review presents observed cases analyses for the ADAS-cog and CIBIC-plus but uses LOCF analyses for the PDS. The less conservative LOCF data may allow the natural course of the disease to overestimate treatment effect. This review was funded by Novartis, the makers of rivastigmine.

To contrast differences in the pooled evidence from these reviews, we review data from three published placebo-controlled trials that met the criteria for our review. In contrast to the Cochrane review, one trial found statistically significant differences in the ADAS-cog and GDS for all doses of rivastigmine compared to placebo; a second reported statistically significant differences in these measures only for
rivastigmine 6-12mg/day (but not 1-4mg/day). A third trial reported statistically significant differences in cognitive and behavioral measures between rivastigmine 6mg/day and placebo; similar differences were not observed for patients treated with rivastigmine 4mg/day.

No rivastigmine trial specifically reported the effect of drug treatment on caregiver burden, institutionalization, or death.

Tacrine vs. placebo

A fair-rated meta-analysis pooled individual patient data on 1,984 patients with probable AD from 12 published and unpublished placebo-controlled trials. Dosages in the component trials varied from 20 mg/day to 160 mg/day. Trials lasted 3 to 36 weeks. Pooled results at 12 weeks presented a small beneficial effect of tacrine over placebo for cognitive function (MMSE: +0.62 points, 95% CI: 0.23 – 1.00; P = 0.002), clinical global impression (CGI: OR 1.58, 95% CI: 1.18-2.11; P = 0.002), and behavioral disturbance (ADAS: 0.58 points, 95% CI: 0.17-1.00; P = 0.006). No significant difference could be detected in functional autonomy at 6 weeks (PDS: 0.75 points, 95% CI: -0.34 – 1.93; P = 0.21). The authors did not report if the component studies were critically appraised for methodological quality before inclusion. In studies without a dose titration phase (i.e., no active drug run-in phase before randomization) before the efficacy study, significantly more patients on tacrine than on placebo withdrew from the study (OR: 3.63, 95% CI: 2.80 - 4.71; no absolute numbers reported).

Four placebo-controlled trials met our eligibility criteria. We excluded three of these studies for poor methodological quality because of high overall or high differential loss to follow-up. In all three trials, the high attrition rate reflected frequent adverse events, in particular elevated liver function tests in tacrine-treated patients. The fourth study compared three fixed dosing regimens (20mg/day, 40mg/day, 80mg/day) to placebo in 468 patients with mild to moderate Alzheimer’s disease. We were unable to determine the differential loss to follow-up from the provided data. Thus, differential loss to follow-up may exceed our cut-off level of 15 percentage points. The differential loss to follow-up because of adverse events in this study was 18 percentage points (placebo: 7%; tacrine: 25%). Efficacy results reported statistically significant improvements only for tacrine at 80 mg/day on the CGIC (P = 0.015), ADAS-total (P = 0.029), and caregiver-rated CGIC (P = 0.028) compared to placebo. No significant differences could be detected for ADAS-cog, MMSE, PDS, or for dosages less than 80 mg/day on CGIC.
No tacrine trial specifically reported the effect of drug treatment on caregiver burden, institutionalization, or death.

Memantine vs. placebo

Two fair-rated RCTs\(^{59, 60}\) comparing memantine to placebo met the inclusion criteria for our review. Although we identified one good-rated systematic review,\(^{70}\) it included only one of the two RCTs that met our inclusion criteria so we do not discuss it further.

Both placebo-controlled trials randomized moderate to severe AD patients to memantine 20mg/day or placebo.\(^{59, 60}\) One trial required patients to be receiving stable treatment with donepezil prior to randomization,\(^{60}\) and thus cannot be directly compared to the trial that did not allow concomitant use of donepezil. Population demographics were similar across trials. Outcome measures consistently used in both trials included the CIBIC-plus, SIB, ADCS-ADL, and NPI. In both trials, memantine-treated patients did significantly better on the SIB and ADCS-ADL than placebo-treated patients (the primary outcome measures in both trials). However, only patients randomized to both memantine and donepezil fared significantly better on the CIBIC-plus and NPI than patients randomized to placebo plus donepezil.\(^{60}\) In the memantine monotherapy study, no differences in MMSE, CIBIC-plus, GDS, or NPI were reported between memantine- and placebo-treated patients.

Both included trials assessed caregiver burden.\(^{59, 60}\) One trial incorporated a resource utilization scale,\(^{59}\) and the other trial used a behavioral rating scale (BGP) that assesses caregiver dependence.\(^{60}\) Both trials showed significantly greater improvement in caregiver burden (P < 0.01) for memantine compared to placebo.

F. Summary of the evidence

Comparative evidence for drugs used to treat AD is limited to three open-label head-to-head efficacy trials; two trials compared donepezil to galantamine\(^{27, 28}\) and one compared donepezil to rivastigmine.\(^{29}\) Evidence for the comparison of donepezil with galantamine is mixed. In one 52-week trial,\(^{27}\) donepezil and galantamine did not differ in stabilizing symptoms or improving behavior and functional status. In a shorter trial (12 weeks),\(^{28}\) donepezil was superior to galantamine in its effects on cognition, functional status, and caregiver and clinician satisfaction. The comparison of donepezil to rivastigmine is limited to a single 12-week trial;\(^{29}\) it produced similar improvement in cognitive scores for both drugs, although clinician and caregiver satisfaction ratings were significantly better for donepezil. Because of limitations
in the quantity of evidence, design of available trials (i.e., open-label), use of outcome measures not previously validated in AD populations (e.g., caregiver satisfaction), suspicious directionality of findings favoring the funding drug company, and the minimal differences observed between compared drugs (i.e., clinical significance of differences is inconclusive), we conclude that the evidence is inadequate to draw conclusions about the effectiveness of one AD drug compared to another.

Evidence from placebo-controlled trials and systematic reviews of placebo-controlled trials provide general evidence of the efficacy and effectiveness of these drugs. Overall, the ChEIs as a class are modestly effective in reducing the rate of decline in cognition.\(^{30,31}\) The NNT to yield one additional ChEI (excluding tacrine) global responder is 12; the NNT to yield one additional cognitive responder is 10.\(^{30}\) Evidence from placebo-controlled trials and a systematic review of placebo-controlled trials provide general evidence of the efficacy of memantine.

Evidence from one placebo-controlled effectiveness trial\(^{38}\) and 22 efficacy trials\(^{39-60,64,65}\) supports modest effects on symptom stabilization, behavior, and functional status as measured by various scales. Although some trials did not support statistically significant differences between active treatment and placebo on all outcome measures,\(^{38,39,42,45,48-51,54,58,59}\) most trials yielded data supporting a slower rate of decline or modest improvement in measures of cognition and global assessment. Fewer trials supported differences in measures of behavior or functioning. Caregiver burden was infrequently assessed or reported, although 4 trials found significantly greater improvement for active treatment compared to placebo.\(^{52,59,60,64,65}\) Only one study assessed nursing home placement as a function of medication treatment.\(^{38}\) This trial did not detect significant differences in institutionisations between donepezil and placebo after 1 and 3 years.

The clinical significance of some statistical differences is controversial. Although some trials defined clinical and global responders \textit{a priori}, inconsistencies in trial design and reporting make it difficult to assess the clinical relevance of differences across trials.

Overall, the quality of evidence of general efficacy of ChEIs and memantine is fair; the quality of evidence of \textit{effectiveness} of ChEIs and memantine is limited to one study on donepezil\(^{38}\) and therefore poor. On the basis of current evidence, we cannot demonstrate substantial differences in efficacy between one AD drug and another.
Table 4: Summary of trials assessing symptoms and behavioral disturbances

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Mean Age (years)</th>
<th>N</th>
<th>Duration (weeks)</th>
<th>Disease Severity</th>
<th>Results</th>
<th>Quality Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilcock et al., 2003**</td>
<td>73</td>
<td>188</td>
<td>52</td>
<td>NR</td>
<td>Symptoms: No significant differences in cognition</td>
<td>N/A*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Behavior/function: No significant differences in behavior, measures of daily functioning, or caregiver burden</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jones et al., 2004**</td>
<td>74</td>
<td>120</td>
<td>12</td>
<td>Mild-moderate</td>
<td>Symptoms: significantly better cognitive scores for DON-treated patients</td>
<td>N/A*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Behavior/function: Significantly better physician & caregiver satisfaction and less disability for DON-treated patients</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilkinson et al., 2002**</td>
<td>74</td>
<td>111</td>
<td>12</td>
<td>Mild-moderate</td>
<td>Symptoms: No significant differences in cognition</td>
<td>N/A*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Behavior/function: Clinician and caregiver satisfaction significantly better with DON</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lanctot et al., 2003 (MA)**</td>
<td>NR</td>
<td>7954</td>
<td>≥ 12 weeks</td>
<td>NR</td>
<td>Symptoms: Pooled NNT to yield one additional ChEI global responder was 12; NNT to yield one additional cognitive responder was 10</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Behavior/function: NR</td>
<td></td>
</tr>
<tr>
<td>Kaduszkiewicz et al., 2005 (MA)**</td>
<td>NR</td>
<td>9030</td>
<td>≥ 6 weeks</td>
<td>NR</td>
<td>Symptoms: small beneficial effects for ChEI compared to placebo; the mean difference was 1.5 to 3.9 points for the ADAS-cog and 0.26 to 0.54 points for the CIBIC-plus</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Behavior/function: NR</td>
<td></td>
</tr>
<tr>
<td>Birk, 2004 (MA)**</td>
<td>NR</td>
<td>436</td>
<td>≥ 12</td>
<td>Mild-moderate</td>
<td>Symptoms: significantly better cognitive and global assessment scores for DON</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Behavior/function: no differences in QoL and functional capacity</td>
<td></td>
</tr>
<tr>
<td>Whitehead et al., 2004 (MA)**</td>
<td>NR</td>
<td>237</td>
<td>12-24</td>
<td>Mild-moderate</td>
<td>Symptoms: significantly better ADAS-cog scores for DON treated patients</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Behavior/function: no difference in QoL</td>
<td></td>
</tr>
<tr>
<td>AD2000**</td>
<td>76</td>
<td>565</td>
<td>192</td>
<td>Mild-moderate</td>
<td>Symptoms: significantly better cognition scores for DON</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Behavior/function: no differences in rates of institutionalization and progression of functional decline</td>
<td></td>
</tr>
<tr>
<td>Burns et al., 1999**</td>
<td>72</td>
<td>818</td>
<td>24</td>
<td>Mild-moderate</td>
<td>Symptoms: significantly better cognitive and global assessment scores for DON</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Behavior/function: no difference in QoL</td>
<td></td>
</tr>
<tr>
<td>Feldman et al., 2004**</td>
<td>74</td>
<td>290</td>
<td>24</td>
<td>Moderate-severe</td>
<td>Symptoms: significantly better cognitive and global assessment scores for DON</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Behavior/function: slower decline of measures of daily functioning for DON</td>
<td></td>
</tr>
<tr>
<td>Homma et al., 2000**</td>
<td>70</td>
<td>268</td>
<td>24</td>
<td>Mild-moderate</td>
<td>Symptoms: significantly better cognitive and global assessment scores for DON</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Behavior/function: slower decline of function in DON patients</td>
<td></td>
</tr>
<tr>
<td>Author, Year</td>
<td>Mean Age (years)</td>
<td>N</td>
<td>Duration (weeks)</td>
<td>Disease Severity</td>
<td>Results</td>
<td>Quality Rating</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------</td>
<td>---</td>
<td>------------------</td>
<td>------------------</td>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td>Mohs et al. 2001<sup>42</sup></td>
<td>75</td>
<td>431</td>
<td>54</td>
<td>Mild-moderate</td>
<td>Significantly fewer people on DON than on placebo had clinically significant functional loss</td>
<td>Fair</td>
</tr>
<tr>
<td>Rogers et al., 1996<sup>44</sup></td>
<td>72</td>
<td>161</td>
<td>12</td>
<td>Mild-moderate</td>
<td>Symptoms: significantly better cognitive and global assessment scores for DON</td>
<td>Fair</td>
</tr>
<tr>
<td>Rogers et al., 1998<sup>44</sup></td>
<td>73</td>
<td>473</td>
<td>24</td>
<td>Mild-moderate</td>
<td>Behavior / function: no significant differences in QoL and activities of daily living</td>
<td>Fair</td>
</tr>
<tr>
<td>Rogers et al., 1998<sup>44</sup></td>
<td>74</td>
<td>468</td>
<td>12</td>
<td>Mild-moderate</td>
<td>Behavior / function: QoL scores significantly better with DON 10 mg but not DON 5 mg</td>
<td>Fair</td>
</tr>
<tr>
<td>Seltzer et al. 2004<sup>46</sup></td>
<td>74</td>
<td>157</td>
<td>24</td>
<td>Mild</td>
<td>Symptoms: significantly better cognitive and global assessment scores for DON</td>
<td>Fair</td>
</tr>
<tr>
<td>Tariot et al., 2001<sup>47</sup></td>
<td>86</td>
<td>208</td>
<td>20</td>
<td>Mild-moderate</td>
<td>Behavior / function: NR</td>
<td>Fair</td>
</tr>
<tr>
<td>Winblad et al., 2004<sup>48</sup></td>
<td>73</td>
<td>286</td>
<td>52</td>
<td>Mild-moderate</td>
<td>Behavior / function: no difference in behavior and functional capacity</td>
<td>Fair</td>
</tr>
</tbody>
</table>

Galantamine vs. Placebo

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>N</th>
<th>Duration (weeks)</th>
<th>Disease Severity</th>
<th>Results</th>
<th>Quality Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loy & Schneider, 2005 (SR)<sup>34, 62</sup></td>
<td>NR</td>
<td>3.77 7</td>
<td>NR</td>
<td>Symptoms: significantly slower decline in cognitive and global assessment scores for GAL 16-32mg/d</td>
<td>Good</td>
</tr>
<tr>
<td>Brodaty et al., 2005<sup>49</sup></td>
<td>77</td>
<td>971</td>
<td>26</td>
<td>Mild-moderate</td>
<td>Symptoms: significantly slower decline in cognitive and global assessment scores for GAL and GAL PRC</td>
</tr>
<tr>
<td>Raskind et al., 2000<sup>50</sup></td>
<td>75</td>
<td>636</td>
<td>26</td>
<td>Mild-moderate</td>
<td>Symptoms: significantly slower decline in cognitive and global assessment scores for GAL</td>
</tr>
<tr>
<td>Rockwood et al., 2001<sup>51, 63</sup></td>
<td>75</td>
<td>386</td>
<td>26</td>
<td>Mild-moderate</td>
<td>Symptoms: significantly slower decline in cognitive and global assessment scores for GAL</td>
</tr>
</tbody>
</table>

Final Report Update 1 Drug Effectiveness Review Project

Alzheimer's Drugs Page 30 of 205
<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Mean Age (years)</th>
<th>N</th>
<th>Duration (weeks)</th>
<th>Disease Severity</th>
<th>Results</th>
<th>Quality Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tairot et al., 2000<sup>62</sup>, 64, 65</td>
<td>77</td>
<td>978</td>
<td>22</td>
<td>Mild - moderate</td>
<td>Symptoms: significantly slower decline in cognitive and global assessment scores for GAL 16-24mg/d</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Behavior / function: slower decline of measures of daily function and behavior for GAL 16-24mg/d; 24mg/d had significant reduction in caregiver burden compared to placebo</td>
<td></td>
</tr>
<tr>
<td>Wilcock et al., 2000<sup>53</sup></td>
<td>72</td>
<td>653</td>
<td>26</td>
<td>Mild - moderate</td>
<td>Symptoms: significantly slower decline in cognitive and global assessment scores for GAL 24-32mg/d</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Behavior / function: GAL 32mg/d (but not 24mg/d) patients had significantly less disability</td>
<td></td>
</tr>
<tr>
<td>Wilkinson et al., 2001<sup>54</sup></td>
<td>74</td>
<td>285</td>
<td>12</td>
<td>Mild - moderate</td>
<td>Symptoms: significantly more improvement in cognitive scores for GAL 24mg/d; no significant differences in global improvement</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Behavior / function: No differences in functioning</td>
<td></td>
</tr>
<tr>
<td>Rivastigmine vs. Placebo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birk's et al., 2004<sup>(SR)57</sup></td>
<td>NR</td>
<td>3,450</td>
<td>> 2</td>
<td>NR</td>
<td>Symptoms: Pooled: RIV (all doses) significantly better than placebo on CIBIC-plus; only RIV 6-12mg/d significantly better on ADAS-cog, MMSE, and GDS</td>
<td>Good</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Behavior / function: Pooled: RIV 6-12mg/d (but not RIV 1-4mg/d) better than placebo on measures of functioning</td>
<td></td>
</tr>
<tr>
<td>Schneider et al, 1998<sup>(SR)55,74,75</sup></td>
<td>73</td>
<td>2,126</td>
<td>26</td>
<td>Mild - moderate</td>
<td>Symptoms: significantly more improvement in behavior and global function for RIV (all doses)</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Behavior / function: RIV (all doses) significantly better than placebo on measures of function</td>
<td></td>
</tr>
<tr>
<td>Agid et al., 1998<sup>56</sup></td>
<td>70</td>
<td>402</td>
<td>13</td>
<td>NR</td>
<td>Symptoms: RIV 6mg/day (but not 4mg/day) significantly better than placebo for clinical impression outcomes</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Behavior / function: RIV 6mg/d (but not 4mg/d) better than placebo on measures of behavior</td>
<td></td>
</tr>
<tr>
<td>Corey-Bloom et al., 1996<sup>53</sup></td>
<td>75</td>
<td>699</td>
<td>26</td>
<td>Mild - moderate</td>
<td>Symptoms: RIV (all doses) significantly better than placebo on measures of global function</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Behavior / function: RIV 6-12mg/d (but not RIV 1-4mg/d) better than placebo on measures of functioning</td>
<td></td>
</tr>
<tr>
<td>Rosler et al., 1999<sup>57</sup></td>
<td>NR</td>
<td>725</td>
<td>26</td>
<td>Mild - moderate</td>
<td>Symptoms: RIV 6-12mg/d significantly better on measures of global function; no differences between RIV 1-4mg/d and placebo</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Behavior / function: RIV 6-12mg/d (but not RIV 1-4mg/d) better than placebo for daily function</td>
<td></td>
</tr>
<tr>
<td>Author, Year</td>
<td>Mean Age (years)</td>
<td>N</td>
<td>Duration (weeks)</td>
<td>Disease Severity</td>
<td>Results</td>
<td>Quality Rating</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>---</td>
<td>-----------------</td>
<td>------------------</td>
<td>---------</td>
<td>---------------</td>
</tr>
<tr>
<td>Tacrine vs. Placebo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qizilbash et al., 1998 (MA)</td>
<td>NR</td>
<td>1,98</td>
<td>3-36</td>
<td>NR</td>
<td>Symptoms: small beneficial effect of TAC for cognitive and clinical impression outcomes</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Behavior / function: small beneficial effect of TAC for behavioral outcomes; no difference in functional capacity</td>
<td></td>
</tr>
<tr>
<td>Farlow et al., 1992</td>
<td>71</td>
<td>468</td>
<td>12</td>
<td>Mild-moderate</td>
<td>Symptoms: No differences compared to placebo except for TAC 80mg/d on CGI-C</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Behavior / function: NR</td>
<td></td>
</tr>
<tr>
<td>Memantine vs. Placebo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reisberg et al., 2003</td>
<td>76</td>
<td>252</td>
<td>28</td>
<td>Moderate-severe</td>
<td>Symptoms: MEM significantly better than placebo on cognitive and global assessment measures</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Behavior / function: significantly better daily function and less caregiver time; no difference in behavior</td>
<td></td>
</tr>
<tr>
<td>Tariot et al., 2004</td>
<td>76</td>
<td>404</td>
<td>24</td>
<td>Moderate-severe</td>
<td>Symptoms: significantly slower decline in cognitive and global assessment scores for MEM (+DON)</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Behavior / function: MEM (+DON) significantly better than placebo on measures of function, behavior, and caregiver dependence.</td>
<td></td>
</tr>
</tbody>
</table>

* This trial was open-label; in the absence of meeting all characteristics of an effectiveness trial, this trial would be given a poor quality rating for internal validity

** Effectiveness trial

MA = meta-analysis

SR = systematic review
KEY QUESTION 2

How do donepezil, galantamine, rivastigmine, tacrine, and memantine compare in their time to effect and in the time required to assess the clinical response?

We did not identify any study that directly compared the time to effect or time required to assess the clinical response of one AD drug compared to another. One open-label head-to-head trial provides evidence on the time to effect between donepezil and galantamine. The study reports a trend favoring donepezil in cognition at weeks 4 and 8 that reached statistical significance at week 12 (P < 0.05). DAD scores were significantly greater in donepezil-treated patients at weeks 4 and 12. Other head-to-head trials reported only long-term outcomes.

Placebo-controlled trials are too heterogeneous with respect to study design, outcomes assessment, and populations to allow any inferences about the comparative time to effect. Given that the overall placebo-controlled evidence indicates that long-term treatment with ChEIs and memantine will produce only modest beneficial effects on cognition and global assessment, the clinical significance of time to effect is likely to be of minimal importance to physicians and patients.

In general determining time to effect and time required to assess clinical response is difficult, given the design of most trials and the nature of measurement scales. First, trials commonly were not designed to measure the time required to produce a statistically different response. In most trials, the first follow-up visit was not conducted until 4 to 12 weeks after randomization. Given this relatively large and inconsistent gap in follow-up between randomization and first clinical assessment, comparison across placebo-controlled trials cannot provide accurate information. Second, different studies used different outcome scales that are not necessarily comparable to assess effect sizes. Third, the ability of a trial to detect statistically significant difference depends on the sample size of each respective trial; trials with large sample sizes have greater power to present statistically significant findings at earlier time points.

Interpretation of clinical response (and time to assess it) is also of concern. Three published studies have sought to shed light on the clinical significance of treatment effects in AD trials. In one the authors calculated standardized effect sizes from ChEI trials to assess clinically detectable responses. Effect sizes greater than 0.20 were considered to be clinically detectable, but one cannot determine from the article if this assumption was derived from validated evidence. In another study using a survey of
specialists, the investigators established a change in MMSE score of 3.72 points as a clinically significant difference.

Most of the included studies in this report have used arbitrary cut-off points on cognitive measures such as the ADAS-cog (≥ 4 points improvement from baseline) to define a clinical response. Others have considered any improvement on global assessment scales such as the CGI-C or the CIBIC-plus to define a clinical response. These definitions are arbitrary and have not been validated; consequently, comparisons across trials are impossible.

One generic indicator that influences time to effect is the time to titration of therapeutic dose. Statistically significant differences between donepezil and placebo were reported in most trials for 5mg and 10mg daily doses; because the recommended starting dose of donepezil is 5mg/day (titrating to 10mg/day at 4 to 6 weeks), this finding suggests that donepezil-treated patients are given a therapeutic dose from day 1 of treatment (although steady state of therapeutic concentrations is not achieved for approximately 2 weeks). Titration of rivastigmine-treated patients to a therapeutic dose (i.e., 6mg to 12mg/day) is recommended at week 2, again inferring a relatively short time to therapeutic dose. Conversely, patients treated with galantamine, tacrine, or memantine typically are not titrated to therapeutic doses until 3 weeks or later. Although titration schedules are designed to minimize potential adverse events, some patients may be titrated sooner than recommended. Furthermore, titration schedules do not reflect the time it takes to maintain steady state concentrations. Given the typically long natural course of disease and the modest treatment effects, the clinical significance of these differences is questionable, however.
KEY QUESTION 3

What are the comparative incidence and severity of complications of donepezil, galantamine, rivastigmine, tacrine, and memantine?

In general, adverse events depend on dose and mechanism of action for individual AD drugs. In most trials assessing a range of doses specific adverse events were reported more frequently among patients randomized to higher doses of study drugs. In some trials the speed of dose titration also was believed to be related to greater reporting of adverse events. Based on three open-label head-to-head trials, evidence suggests some differences between compared drugs. In one 12-week trial comparing donepezil with rivastigmine, gastrointestinal-related adverse events were significantly more common among rivastigmine-treated patients; nausea and vomiting were reported by 41.8% and 23.6% of rivastigmine-treated patients compared to 10.7% and 7.1% of donepezil-treated patients, respectively (P = NR). Two trials compared donepezil to galantamine; the evidence is mixed. The incidence of gastrointestinal-related adverse events was not different in a 52-week trial comparing donepezil and galantamine. In one 12-week trial gastrointestinal-related events were reported by 46.4% of patients in the galantamine group compared to 25% of patients in the donepezil group.

Indirect comparisons based on evidence from placebo-controlled trials are difficult to make given differences in trial design, study populations, and assessment and reporting of specific events. Overall, adverse events were reported by 40% to 96% of randomized patients. In general ChEI- and memantine-treated patients appear to report a similar number of adverse events, although evidence is insufficient to compare the incidence of specific adverse events across drugs. Overall discontinuation rates are similar among memantine and ChEIs except for tacrine.

Table 5 presents the mean incidence of specific adverse events based on data provided by placebo-controlled trials of ChEIs and memantine. Statistics are descriptive only. Comparisons across different drugs are limited and should be made with caution. Large confidence intervals for some estimates indicate lack of precision due to a small number of component studies for some medications.
Table 5: Mean incidence of specific adverse events in placebo-controlled trials

<table>
<thead>
<tr>
<th>Drug</th>
<th>Number of Studies</th>
<th>Diarrhea Mean (95% CI)</th>
<th>Vomiting Mean (95% CI)</th>
<th>Anorexia Mean (95% CI)</th>
<th>Dizziness Mean (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donepezil</td>
<td>10</td>
<td>10.5% (6.6 to 14.3)</td>
<td>7.1% (3.4 to 10.9)</td>
<td>5.2% (2.9 to 7.6)</td>
<td>7.2% (5.4 to 8.9)</td>
</tr>
<tr>
<td>Galantamine</td>
<td>5</td>
<td>9.4% (1.8 to 9.4)</td>
<td>13.0% (2.5 to 23.5)</td>
<td>10.8% (3.6 to 17.9)</td>
<td>11.9% (4.2 to 19.6)</td>
</tr>
<tr>
<td>Rivastigmine</td>
<td>2</td>
<td>NR</td>
<td>19% (0 to 44.4)*</td>
<td>11.2% (0 to 46.2)*</td>
<td>17.2% (0 to 45.8)*</td>
</tr>
<tr>
<td>Tacrine</td>
<td>4</td>
<td>8.6% (0 to 19.3)*</td>
<td>20.6% (0 to 43.7)*</td>
<td>NR</td>
<td>10.2% (0 to 22.6)*</td>
</tr>
<tr>
<td>Memantine</td>
<td>2</td>
<td>7.3% (0 to 42.2)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

*negative lower confidence interval

Some of the ChEIs appear to have a higher incidence of vomiting; this is likely attributable to their cholinergic mechanism of action. The highest incidence of nausea and vomiting was reported in rivastigmine trials, although these trials utilized a faster titration schedule than recommended by the product labeling and the rate of adverse events was also higher than normal in the placebo group. However, these estimates are consistent with available comparative evidence, which suggest that the risk of gastrointestinal-related adverse events is greater with rivastigmine and galantamine than with donepezil.

The incidence of specific adverse events reported by memantine-treated patients was generally low. From the single trial in our review that assessed only memantine\(^5\) (rather than memantine plus donepezil),\(^6\) the only adverse events reported by more than 10% of memantine-treated patients were agitation, diarrhea, somnolence, and urinary incontinence; no adverse event was reported in significantly more memantine-treated patients than in placebo-treated patients. The rate of agitation was significantly different in memantine-treated patients than in those on placebo, although significantly more placebo-than memantine-treated patients reported agitation (32% vs. 18%, respectively; P = NR). Urinary tract infections also were more common in placebo-treated patients than in memantine-treated patients (13% vs. 6%, respectively; P = NR).

Discontinuation rates varied across trials. Based on one trial that compared donepezil to rivastigmine,\(^2\) more patients randomized to rivastigmine than donepezil discontinued treatment (30.9% vs. 10.7%, respectively; P = NR). Two open-label trials compared donepezil to galantamine;\(^27, 28\) overall discontinuation rates did not differ significantly. Trials assessing tacrine consistently reported
significantly higher discontinuation rates for tacrine than for placebo patients. The high withdrawal rates were mainly attributable to elevated serum alanine aminotransferase (ALT; a feature of liver toxicity).

Withdrawals because of adverse events in donepezil, galantamine, rivastigmine, and memantine trials varied. Evidence from one open-label head-to-head comparison of donepezil and rivastigmine suggests a higher number of withdrawals due to adverse events among rivastigmine-treated compared to donepezil-treated patients (21.8% vs. 10.7%, respectively; P = NR). Based on two open-label trials comparing donepezil and galantamine, withdrawals due to adverse events were higher among galantamine-treated patients than among donepezil-treated patients in one 12-week trial (21.4% vs. 9.4%, respectively; P = NR), but not in a 52-week trial (13.4% vs. 13.2%, respectively; P not significant). From placebo-controlled evidence, no obvious trend favored one drug over another. Patients treated with higher doses were more likely to discontinue because of an adverse event. A meta-analysis of discontinuation rates did not find a statistically significant difference between donepezil and placebo, even though the incidence of anorexia, diarrhea, dizziness, fatigue, insomnia, muscle cramps, nausea, vomiting, tremor, vertigo, and weight loss were statistically significantly more common in the donepezil than in the placebo group.

We did not identify any study that assessed temporary or permanent adverse events due to discontinuation of donepezil, galantamine, rivastigmine, tacrine or memantine.

A. Specific adverse events

Hepatotoxicity

A major safety concern of tacrine treatment is hepatotoxic effects. A retrospective review of tacrine-trials involving 2,446 AD patients reported that 49% of tacrine-treated patients had elevated ALT levels. Among all patients, 25% presented an ALT elevation three times the upper normal limit; 2% had ALT levels 20 times higher than normal. Patients with elevated ALT levels were generally asymptomatic, although sometimes they experienced eosinophilia, rash, and fever. Few patients developed signs of severe hepatocellular injury (e.g., jaundice); no death attributable to liver toxicity was reported.

Results of this retrospective analysis are consistent with individual trials included in this review. All four placebo-controlled RCTs of tacrine reported high elevations of ALT. We excluded three of these
studies from the efficacy analysis on grounds of quality because of high overall67,68 or differential69 loss to follow-up. In all three trials the high drop-out rate was attributable to a high rate of elevated liver function tests in tacrine-treated patients. The differential loss to follow-up because of adverse events in the fourth study58 was 18 percentage points (placebo: 7%; tacrine: 25%). Hepatotoxicity has not been reported for donepezil, galantamine, rivastigmine, or memantine.

Gastrointestinal adverse events and loss of body weight

ChEI trials commonly reported nausea and vomiting by more than 10% of patients (and as many as 50% of patients) randomized to active treatment. In the only memantine trial the incidence of nausea and vomiting did not differ between the active drug and placebo. Nausea, vomiting, and diarrhea are thought to reflect excessive activation of intestinal muscarinic cholinergic receptors and tend to be dose related. Anorexia and loss of body weight are associated gastrointestinal adverse events.

We did not find any trials directly comparing the incidence of gastrointestinal adverse events among ChEIs and memantine.

In a systematic review of donepezil, galantamine, and rivastigmine trials,14 nausea and vomiting were 3 to 5 times more common in patients randomized to active treatment compared to placebo (P < 0.0001). The odds of having nausea or vomiting with rivastigmine compared to placebo (OR 5.28; 95% CI 4.19-6.65) were consistently higher than with donepezil or galantamine compared to placebo (donepezil OR 2.73; 95% CI 1.86-4.00; galantamine OR 3.01; 95% CI 2.15-4.21), although this finding could likely be attributed, at least in part, to the faster than recommended dose titration used in rivastigmine trials.55,57

Diarrhea was also common in the pooled analysis,14 although the pooled odds ratio was significant for donepezil and rivastigmine (donepezil OR 2.83; 95% CI 2.01-4.00; rivastigmine OR 1.77; 95% CI 1.38-2.28) but not for galantamine (OR 1.37; 95% CI 0.91-2.05). The higher incidence of gastrointestinal events may be related to the significant loss of body weight commonly reported for donepezil-, galantamine-, and rivastigmine-treated patients. Pooled analysis suggests a 2- to 4-fold increase in the risk of anorexia for active treatment compared to placebo. Although tacrine was not included in this analysis, relative trends in gastrointestinal adverse events and loss of body weight reported in tacrine trials are consistent with those seen in donepezil, galantamine, and rivastigmine trials.58,67-69

A retrospective data review of the mean incidence rates of gastrointestinal adverse events of some RCTs shows that the following percentages of patients suffered nausea: donepezil, 11%; rivastigmine, 35%;
and tacrine, 28%. Similarly, the relative proportions of patients who experienced vomiting were 5%, 21% and 28%, respectively; diarrhea occurred in 10%, 16% and 16%, respectively. Another review reported a loss of body weight of 0.5 to 2.5 kilogram for galantamine at doses of 16mg/day to 32mg/day and a loss of body weight of 1.39 to 1.78 kilogram for rivastigmine at doses of 6 mg/day to 12 mg/day.

Data from the Réseau sur la Maladie d’Alzheimer Francais (REAL.FR) cohort was used to assess the risk of weight loss with AChEI. This long-term observational study found the risk of clinically significant weight loss to be similar for Alzheimer’s patients taking AChEIs and patients not taking these drugs (21.1% vs 19.5%, respectively; P = 0.81). However, we excluded this study for reasons of quality because we were unable to assess the similarity or differences between the two populations, and little information was provided with regard to the type, intensity, or duration of drug treatment.

Cardiovascular adverse events

Bradycardia and subsequent dizziness or syncope originates from central and peripheral muscarinic cholinergic stimulation. Cardiovascular adverse events can lead to falls and other types of injury-causing accidents. We did not find any trials directly comparing the incidence of cardiovascular adverse events among ChEIs and memantine.

Cardiovascular adverse events may be of particular concern in patients with cardiac conduction disorders or a sick sinus syndrome. One head-to-head study reports no statistically significant differences in changes of heart rates between donepezil and galantamine. Two open-label comparative trials reported no difference in cardiovascular events between donepezil and galantamine and rivastigmine. Most placebo-controlled trials revealed no other significant differences in cardiovascular events, vital signs, or electrocardiogram (ECG) findings. One trial described a statistically significantly larger reduction of heart rate in patients treated with donepezil than in those given placebo. However, the incidence of bradycardia (heart rate < 50 beats per minute) was not significantly different among treatment groups. An analysis of prescription-event monitoring (n = 1,762) in general practice in the UK did not find evidence for cardiac arrhythmias with donepezil treatment.

One pooled data-analysis of RCTs including 2,791 patients evaluated ECG results from four clinical trials of rivastigmine; rivastigmine had no apparent effect on heart rate. However, patients with underlying ECG abnormalities did not meet eligibility criteria of the RCTs.
B. Summary of the evidence

The overall grade of the evidence on comparative tolerability is poor to fair. Evidence of the comparative incidence of adverse events and tolerability comes from three open-label trials comparing donepezil with galantamine and rivastigmine. One 52-week trial\(^{27}\) and one 12-week trial\(^{28}\) compared donepezil to galantamine. Although the number of adverse events and loss to follow-up differed between trials, withdrawals and withdrawals because of adverse events were not significantly different in the 52-week trial and only minor differences favoring donepezil were observed in the 12-week trial. In one trial that compared donepezil to rivastigmine,\(^{29}\) total withdrawals and withdrawals because of adverse events were significantly greater among rivastigmine-treated patients. Gastrointestinal-related events were most commonly reported among rivastigmine-treated patients. Indirect comparison of the pooled mean incidence of adverse events from placebo-controlled trials also suggests a higher rate of gastrointestinal-related events among rivastigmine-treated patients. However, this comparison is limited by the tremendous variability observed among placebo-controlled evidence.

Evidence of hepatotoxicity and cardiovascular events comes from comparative trials, meta-analyses, and indirect comparison of placebo controlled evidence. Evidence from one meta-analysis and four placebo-controlled trials indicate substantially higher rates of hepatotoxicity for tacrine.\(^{67, 80}\) Donepezil, galantamine, rivastigmine, and memantine did not present hepatotoxic effects in placebo controlled trials. Two open-label comparative trials reported no difference in cardiovascular events between donepezil and galantamine\(^{28}\) and rivastigmine.\(^{29}\) Placebo-controlled trials revealed no other significant differences in cardiovascular events.
Table 6: Summary of trials assessing adverse events

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>N</th>
<th>Study design</th>
<th>Results</th>
<th>Quality Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatotoxicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watkins et al., 1994</td>
<td>246</td>
<td>secondary data review</td>
<td>49% of tacrine-treated patients presented ALT elevations</td>
<td>N/A</td>
</tr>
<tr>
<td>Farlow et al., 1992</td>
<td>468</td>
<td>RCT</td>
<td>25% of tacrine-treated patients had elevated ALT levels</td>
<td>Fair</td>
</tr>
<tr>
<td>*Knapp et al., 1994</td>
<td>663</td>
<td>RCT</td>
<td>54% of tacrine-treated patients had elevated ALT levels</td>
<td>Poor</td>
</tr>
<tr>
<td>*Wong et al., 1999</td>
<td>100</td>
<td>RCT</td>
<td>51% of tacrine-treated patients had elevated ALT levels</td>
<td>Poor</td>
</tr>
<tr>
<td>*Wood et al., 1994</td>
<td>154</td>
<td>RCT</td>
<td>44% of tacrine-treated patients had elevated ALT levels</td>
<td>Poor</td>
</tr>
<tr>
<td>Gastrointestinal adverse events</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grimley Evans et al., 2004</td>
<td>NR</td>
<td>pooled analysis</td>
<td>Nausea, vomiting, and diarrhea 3 to 5 times more likely for donepezil, galantamine, and rivastigmine than for placebo</td>
<td>N/A</td>
</tr>
<tr>
<td>Cutler et al., 1994</td>
<td>3350</td>
<td>pooled data analysis</td>
<td>Tacrine had a higher rate of adverse events than donepezil and rivastigmine</td>
<td>N/A</td>
</tr>
<tr>
<td>Gauthier et al. 2001</td>
<td>NR</td>
<td>Retrospective data review</td>
<td>dose dependent rates of gastrointestinal adverse events for ChEIs</td>
<td>N/A</td>
</tr>
<tr>
<td>*Gillette-Guyonnet et al. 2005</td>
<td>486</td>
<td>Cohort study</td>
<td>Similar incidence of weight loss for patients taking ChEIs compared to patients not taking ChEIs</td>
<td>Poor</td>
</tr>
<tr>
<td>Cardiovascular adverse events</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dunn et al., 2000</td>
<td>1762</td>
<td>Prescription-event monitoring</td>
<td>No cardiac arrhythmias were reported for donepezil</td>
<td>N/A</td>
</tr>
<tr>
<td>Morganroth et al. 2002</td>
<td>2791</td>
<td>Pooled analysis of RCTs</td>
<td>No effect on heart rate for rivastigmine</td>
<td>Fair</td>
</tr>
</tbody>
</table>

*Poor quality rating for efficacy but included for adverse events
KEY QUESTION 4

Does efficacy, effectiveness, or adverse events of donepezil, galantamine, rivastigmine, tacrine, or memantine differ in subgroups of patients with (1) different demographic profiles (age, race, or sex), (2) Parkinsonian features or vascular dementia, or (3) use of other commonly prescribed drugs?

A. Age

We did not identify any study specifically designed to compare the effect of donepezil, galantamine, rivastigmine, tacrine, or memantine in a younger versus an older population.

We did find age-related information in two sources: one subgroup analysis of rivastigmine-treated patients35 and a placebo-controlled donepezil trial conducted in a population of nursing home residents who were, on average, older than the typical population for donepezil studies.47 The subgroup analysis pooled data from four rivastigmine trials and reported an age-related treatment effect. Patients 75 years and older revealed a greater benefit of rivastigmine than did patients younger than 75 years; 15\% of older patients and 6\% of younger patients were considered responders on the ADAS-cog.35

A single trial47 conducted in nursing home residents with a mean age of 85 years (range 64 to 102 years) provides indirect evidence about age effects when compared to findings from other similarly designed trials in which the mean age was less than 75 years.40, 41, 43-45, 48 Overall, no difference in efficacy or adverse events was apparent in the data on the older population compared to data from the trials in younger populations.

B. Race

We did not identify any study specifically designed to compare the effect of donepezil, galantamine, rivastigmine, tacrine, or memantine in one racial group compared to another. In general, trials were conducted predominantly in white populations.
One study used pooled data from 2,126 patients in three placebo-controlled rivastigmine trials to analyze differences in efficacy among racial subgroups. The pooled population was 93.6% white, 4.4% black, and 2% other races. Treatment response did not differ across racial subgroups.

One donepezil trial was conducted in a Japanese population and one tacrine trial was conducted in a Chinese population. Overall, effect sizes observed in these trials are similar to effect sizes reported in trials conducted predominantly in non-Asian populations. However, the trial conducted in the Japanese population presented treatment effects on low-dose donepezil, which suggests ethnic differences in major enzymes that metabolize ChEIs. This finding was supported by a meta-analysis of ChEIs.

C. Sex

We did not identify any study specifically designed to compare the effect of donepezil, galantamine, rivastigmine, tacrine, or memantine in females compared to males. On average, study populations comprised more females than males; this fact reflects population and disease demographics and does not provide insight into treatment differences.

One review of pooled data from rivastigmine trials conducted a subgroup analysis by sex but reported no differences. No other indirect evidence suggests that effectiveness or adverse events differ between females and males.

D. Parkinsonian features

Dementia with Parkinsonian features, or dementia with Lewy bodies (DLB), is characterized by abnormal protein inclusions (Lewy bodies) in selected areas of the brain. Because these structures, and many of the symptoms of dementia with Lewy bodies, are associated with Parkinson’s and Alzheimer’s diseases, it remains unclear whether DLB is a distinct clinical entity or perhaps a variant of Alzheimer’s or Parkinson’s disease.

We did not identify any trial conducted in patients with AD that compared effectiveness or adverse events in a population with Parkinsonian features to a population without Parkinsonian features. Although some trials specifically excluded patients with suspected PD, trials that did not specifically exclude patients with Parkinsonian features did not report differences among these patients.
Evidence from a recently published large-scale placebo-controlled study supports the general efficacy of rivastigmine in treating patients with PD dementia. This 24-week multicenter European study enrolled 541 subjects with PD dementia (defined as the onset of cognitive symptoms 2 or more years after the onset of PD) who were randomized to either placebo or rivastigmine (1:2 ratio) beginning at 1.5mg twice a day and increased at 4-week intervals as tolerated up to 12 mg/day. Primary efficacy analyses showed better ADAS-cog scores and global ratings in the rivastigmine-treated group compared to placebo group.

E. Comorbid vascular dementia

Vascular dementia is the second most common form of dementia. In many patients with AD, vascular factors contribute to the development or expression of dementia. Mixed vascular dementia includes those patients that have clinical features of AD and clinically significant cerebrovascular disease. Most studies included in our review specifically excluded patients with mixed vascular dementia; studies that did not explicitly exclude patients with comorbid cerebrovascular disease often did not report the prevalence or stratify the results for this subgroup.

Although evidence is difficult to interpret given the inconsistencies in trial design and lack of differentiation between AD and vascular dementia, we discuss four studies that provide general evidence of the efficacy of donepezil, galantamine, rivastigmine, and memantine in populations with comorbid vascular dementia.

The only effectiveness study included in our review randomized patients with or without a coexisting diagnosis of vascular dementia to long-term treatment with donepezil or placebo. Although results are not stratified by coexisting vascular dementia, results support the general efficacy of donepezil in this mixed population.

One placebo-controlled RCT examined the effect of galantamine in patients with probable vascular dementia and AD with cerebrovascular disease. This 26-week trial randomized 592 patients to galantamine or placebo in a 2:1 ratio. Diagnosis of vascular dementia was based on National Institute of Neurological Disorders and Stroke and the Association Internationale pour la Recherche et l'Enseignement en Neurosciences (NINDS-AIREN) International Workshop criteria; computed tomography or magnetic resonance imaging was used to confirm evidence of cerebrovascular disease. Overall, galantamine was significantly better than placebo (P < 0.05) on cognitive, functional, behavioral, and global assessment measures. Treatment differences were of similar size to those seen in galantamine.
studies in patients with AD.50, 52, 53 Galantamine was significantly better than placebo (P < 0.05) only in the subgroup of patients with AD and cerebrovascular disease. Although the study was not powered to detect treatment differences in the subgroups, differences between galantamine and placebo were not significant in patients with vascular dementia.

We identified one subgroup analysis of AD patients with concurrent vascular risk factors from a placebo-controlled RCT of rivastigmine.91 Patients from this trial55 were categorized by their Modified Hachinski Ischemic Score (MHIS); MHIS scores greater than zero were used to identify the presence of vascular risk factors. At 26 weeks, rivastigmine was significantly better than placebo on cognitive, functional, and global assessment measures for patients with and without vascular risk factors. Larger treatment differences between rivastigmine and placebo were found for patients with vascular risk factors.

One systematic review70 of placebo-controlled memantine trials included trials conducted in populations with AD, vascular dementia, and mixed or unspecified AD with vascular dementia. Although individual trials were different with regard to design, duration, dose, and outcome measures, comparison of evidence across populations suggests that results of trials conducted in populations with mixed or unspecified vascular dementia are similar to trials conducted in populations with AD only.

F. Other drugs

We did not identify any published study that specifically compared outcomes among subgroups of patients taking a ChEI or memantine concurrently with another drug to patients not concurrently taking the same medications. To characterize potential and known drug-drug interaction risks as much as possible in this situation, we summarize indirect evidence and pharmacokinetic properties.

In general, ChEIs (i.e., donepezil, galantamine, rivastigmine, tacrine) may interfere with the activity of anticholinergic medications. Likewise, a synergistic effect may be expected when ChEIs are given with cholinomimetics or other ChEIs. Concurrent use of such drugs should be approached with caution.

The NMDA antagonist memantine is believed to be safe when administered in combination with a ChEI. In a 24-week trial, memantine was safely administered in combination with donepezil60 without evidence of altering the pharmacokinetic properties of either drug; evidence of additional benefit of this combination is not clear.
The potential for other drug-drug interactions with donepezil, galantamine, rivastigmine, tacrine, and memantine should be evaluated on an individual basis. Pharmacokinetic parameters and information submitted to the FDA for approval provide useful information.

Donepezil

Donepezil is metabolized by CYP450 isoenzymes 2D6 and 3A4. Because other drugs may compete for or inhibit these metabolic enzymes, a potential for interaction exists with drugs metabolized by the same isoenzymes. Although to our knowledge no *in vivo* studies have been conducted, *in vitro* evidence suggests that donepezil has little effect on the metabolism of other drugs (e.g., theophylline, cimetidine, warfarin, digoxin, etc.). Drugs that inhibit 2D6 and 3A4 (e.g., ketoconazole, miconazole, quinidine, ritonavir, selective serotonin reuptake inhibitors [SSRIs], etc.) have been shown to inhibit donepezil metabolism but clinically significant interactions are rare. Patients taking donepezil in combination with other drugs metabolized by CYP450 isoenzymes 2D6 and 3A4 should be monitored closely.

Although donepezil is highly protein bound (96%) drug displacement studies performed *in vitro* have shown little effect of other highly bound drugs on the binding of donepezil to human albumin. Similarly, donepezil did not affect binding of other drugs to human albumin.

Galantamine

Like donepezil, galantamine is metabolized by CYP450 isoenzymes 2D6 and 3A4. *In vivo* studies have shown increased bioavailability of galantamine when it is administered together with inhibitors of these isoenzymes (e.g., cimetidine, ranitidine, ketoconazole, erythromycin, paroxetine). By contrast, galantamine is believed to have little effect on other drugs metabolized by the CYP system.

Rivastigmine

Because rivastigmine is metabolized primarily through hydrolysis by esterases, minimal interaction with drugs metabolized by CYP450 enzymes is anticipated. No other drug-drug interactions have been demonstrated.

In a subgroup analysis of nicotine users randomized to rivastigmine, a statistically significant relationship in the dose-response relationship was reported; the analysis suggests that nicotine attenuates the benefits of rivastigmine. Another post-hoc analysis of 2,459 patients from 4 placebo-controlled rivastigmine trials evaluated drug interactions with 22 classes of medications. This analysis did not reveal any significant pattern of increase in adverse events that would indicate a drug-drug interaction.
Tacrine

Tacrine is metabolized primarily by the CYP450 isoenzyme 1A2. Drug-drug interactions may occur with other medications metabolized by this enzyme (e.g., theophylline). Administration of tacrine and theophylline has been shown to increase average plasma theophylline concentrations 2-fold. Likewise, administration of cimetidine with tacrine has been shown to increase plasma concentrations of tacrine.

Memantine

Because memantine is eliminated predominantly by the kidney, drugs that are inhibitors and/or substrates of the CYP450 system are not expected to interact with it. However, because memantine is eliminated via renal mechanisms, concurrent administration of drugs that use the same renal mechanisms (e.g., hydrochlorothiazide, triamterene, cimetidine, ranitidine, quinidine, nicotine) could alter the plasma levels of both agents. Additionally, drugs that make the urine alkaline (e.g., sodium bicarbonate, carbonic anhydrase inhibitors) may reduce the clearance of memantine. Patients using these drugs and memantine concurrently should be monitored closely.

G. Summary of the evidence

The overall grade of the evidence on efficacy and tolerability in subgroups is poor. We did not identify any study specifically designed to compare the effect of donepezil, galantamine, rivastigmine, tacrine, or memantine in one subgroup of patients compared to another. Subgroup analyses and indirect evidence from placebo controlled trials provide evidence for some AD drugs.

One subgroup analysis reported greater benefit for rivastigmine in patients older than 75 years. Indirect comparison of evidence from one donepezil trial conducted in nursing home residents to trials conducted in younger populations suggests no apparent difference in efficacy or adverse events.

Subgroup analyses of pooled data from four rivastigmine trials suggest no differences in efficacy or adverse events by sex or race.

No evidence addressed patients with comorbid PD.

Four studies provide general evidence of the efficacy of donepezil, galantamine, rivastigmine, and memantine in populations with comorbid vascular dementia. Only one study stratified patients by
vascular risk factors; larger treatment differences between rivastigmine and placebo were found for patients with vascular risk factors compared to patients without vascular risk factors.

No study compared outcomes among subgroups of patients taking a ChEI or memantine concurrently with another drug to patients not concurrently taking the same medication.

Table 7: Summary of trials assessing subgroups

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>N</th>
<th>Study design</th>
<th>Results</th>
<th>Quality Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schneider et al., 1998</td>
<td>2,126</td>
<td>Pooled Analysis</td>
<td>Better cognitive scores (ADAS-cog) for RIV in patients older than 75 years</td>
<td>Fair</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schneider et al., 1998</td>
<td>2,126</td>
<td>Pooled Analysis</td>
<td>No differences in response to RIV between black and white patients</td>
<td>Fair</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schneider et al., 1998</td>
<td>2,126</td>
<td>Pooled Analysis</td>
<td>No differences in response to RIV between male and female patients</td>
<td>Fair</td>
</tr>
<tr>
<td>Comorbid Vascular Dementia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AD2000</td>
<td>565</td>
<td>RCT</td>
<td>Results not stratified; general efficacy of DON supported in this mixed population</td>
<td>Good</td>
</tr>
<tr>
<td>Erkinjuntti et al., 2002</td>
<td>592</td>
<td>RCT</td>
<td>No comparison of patients with comorbid vascular disease to population with only AD; general evidence of GAL efficacy in population with comorbid vascular disease</td>
<td>Fair</td>
</tr>
<tr>
<td>Kumar et al., 2000</td>
<td>699</td>
<td>RCT subgroup</td>
<td>RIV better than placebo for patients with and without vascular risk factors; larger differences for patients with vascular risk factors</td>
<td>Fair</td>
</tr>
<tr>
<td>Key Question</td>
<td>Quality of Evidence</td>
<td>Conclusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Question 1: Efficacy / Effectiveness</td>
<td>Poor to fair</td>
<td>No double-blind head-to-head trial compared one AD drug to another. Three open-label head-to-head trials compared the efficacy of one AD medication to another; two trials compared donepezil to galantamine and one trial compared donepezil to rivastigmine. Evidence for the comparison of donepezil with galantamine is mixed. In one 52-week trial, donepezil and galantamine did not differ in stabilizing symptoms or improving behavior and functional status. In a shorter trial (12 weeks), donepezil was superior to galantamine in its effects on cognition, functional status, and caregiver and clinician satisfaction. The comparison of donepezil to rivastigmine is limited to a single 12-week trial; similar improvements in cognitive scores were reported for both drugs, although clinician and caregiver satisfaction ratings were significantly better for donepezil. Both trials that reported significant differences were funded by the manufacturer of donepezil while the trial reporting no differences was funded by the manufacturer of galantamine. Evidence of general efficacy for donepezil, galantamine, rivastigmine, tacrine, and memantine is fair; 1 placebo-controlled effectiveness trial, 22 efficacy trials, and 8 systematic reviews support modest effects on symptom stabilization, behavior, and functional status as measured by various scales. Although some trials did not support statistically significant differences between active treatment and placebo on all outcome measures, most trials yielded data supporting modest improvement or a slower rate of decline in measures of cognition and global assessment. Fewer data supported differences in measures of behavior, functioning, rate of institutionalization, or caregiver burden. Although evidence of general efficacy is fair, evidence of effectiveness is poor. We identified only one trial considered to demonstrate effectiveness.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Question 2: Time to Effect</td>
<td>Poor</td>
<td>We did not identify any study that directly compared the time to effect or time required to assess the clinical response of one AD drug compared to another. Placebo-controlled trials are too heterogeneous with respect to study design, outcomes assessment, and populations to allow any inferences about the comparative time to effect or time required to assess clinical response.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Question 3: Adverse events</td>
<td>Poor to Fair</td>
<td>Head-to-head trials did not present differences in adverse events between donepezil and galantamine, and donepezil and rivastigmine. Indirect evidence from placebo-controlled trials indicates a substantially higher risk of hepatotoxicity for tacrine than for donepezil, galantamine, rivastigmine, and memantine.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Question 4: Subgroups</td>
<td>Poor</td>
<td>We did not identify any study specifically designed to compare the effect of donepezil, galantamine, rivastigmine, tacrine, or memantine in one subgroup of patients</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
compared to another. Subgroup analyses and indirect
evidence from placebo controlled trials provide evidence
for some AD drugs.

One subgroup analysis reported greater benefit for
rivastigmine in patients older than 75 years. Indirect
comparison of evidence from one donepezil trial conducted
in nursing home residents to trials conducted in younger
populations suggests no apparent difference in efficacy or
adverse events.

Subgroup analyses of pooled data from four donepezil
trials suggest no differences in efficacy or adverse events
by sex or race.

No evidence addressed patients with comorbid Parkinson’s
disease.

Four studies provide general evidence of the efficacy of
donepezil, galantamine, rivastigmine, and memantine in
populations with comorbid vascular dementia. Only one
study stratified patients by vascular risk factors; larger
treatment differences between rivastigmine and placebo
were found for patients with vascular risk factors compared
to patients without vascular risk factors.

No study compared outcomes among subgroups of
patients taking a ChEI or memantine concurrently with
another drug to patients not concurrently taking the same
medication.
REFERENCES

Figure 1: Results of literature search

- Titles and abstracts identified through searches: n = 1167
- Citations excluded: n = 925
 - Abstracts only: n = 36
 - Unable to retrieve: n = 6
- Full-text articles retrieved: n = 200
- Background: n = 59
- Articles included in drug class review: n = 70
 - 4 on head-to-head trials
 - 42 on placebo controlled trials
 - 13 on systematic reviews or meta-analyses
 - 11 on studies, other design (e.g. pooled data)
- Full text articles excluded: n = 71
 - 2 Not English language
 - 6 Wrong outcomes
 - 4 Drug not included
 - 7 Population not included
 - 19 Wrong publication type
 - 33 Wrong study design
- Poor methodological quality: n = 15
 - for efficacy:
 - 6 on pooled data analysis
 - 8 on RCTs
 - for adverse events:
 - 1 observational cohort study
Drug Class Review on Alzheimer’s Drugs

Final Report Update 1

June 2006

Evidence Tables
Table 9: Abbreviations for Evidence Tables

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACh</td>
<td>acetylcholine</td>
</tr>
<tr>
<td>AChE</td>
<td>acetylcholinesterase</td>
</tr>
<tr>
<td>AD</td>
<td>Alzheimer's disease</td>
</tr>
<tr>
<td>ADAS</td>
<td>Alzheimer's Disease Assessment Scale</td>
</tr>
<tr>
<td>ADAS-Cog</td>
<td>cognitive subscale of Alzheimer's Disease Assessment Scale</td>
</tr>
<tr>
<td>ADAS-Cog 11</td>
<td>cognitive portion of ADAS 11-item cognitive subscale</td>
</tr>
<tr>
<td>ADAS-Cog 13</td>
<td>cognitive portion of ADAS 13-item cognitive subscale</td>
</tr>
<tr>
<td>ADAS-J-Cog</td>
<td>Japanese version of ADAS-Cog</td>
</tr>
<tr>
<td>ADAS-Noncog</td>
<td>noncognitive component of ADAS</td>
</tr>
<tr>
<td>ADCS/ADL</td>
<td>Alzheimer's Disease Cooperative Study Activities of Daily Living</td>
</tr>
<tr>
<td>ADFAcS</td>
<td>Alzheimer's Disease Functional Assessment and Change Scale</td>
</tr>
<tr>
<td>ADL</td>
<td>Activities of Daily Living</td>
</tr>
<tr>
<td>ADS</td>
<td>Alzheimer's Deficit Scale</td>
</tr>
<tr>
<td>ALT</td>
<td>alanine aminotransferase</td>
</tr>
<tr>
<td>AMTS</td>
<td>Abbreviated Mental Test Score</td>
</tr>
<tr>
<td>APOE</td>
<td>apolipoprotein E</td>
</tr>
<tr>
<td>BADLS</td>
<td>Bristol Activities of Daily Living Scale</td>
</tr>
<tr>
<td>BDS</td>
<td>Blessed Dementia Scale</td>
</tr>
<tr>
<td>BDT</td>
<td>Block Design Test</td>
</tr>
<tr>
<td>BGP</td>
<td>Behavioural Rating Scale for Geriatric Patients</td>
</tr>
<tr>
<td>BS-AS</td>
<td>Behavioral Scale for Alzheimer's Disease</td>
</tr>
<tr>
<td>BVR</td>
<td>Benton Visual Retention</td>
</tr>
<tr>
<td>CAMCOG</td>
<td>Cambridge Cognitive Examination</td>
</tr>
<tr>
<td>CASE</td>
<td>Cognitive Abilities Screening Instrument</td>
</tr>
<tr>
<td>CAUST</td>
<td>Canadian Utilization of Services Tracking questionnaire</td>
</tr>
<tr>
<td>CDR</td>
<td>Clinical Dementia Rating Scale</td>
</tr>
<tr>
<td>CDR-SB</td>
<td>Clinical Dementia Rating Sum of the Boxes</td>
</tr>
<tr>
<td>CGIC</td>
<td>Clinical Global Impression Change</td>
</tr>
<tr>
<td>CGRS</td>
<td>Clinicians Global Rating Score</td>
</tr>
<tr>
<td>ChE</td>
<td>cholinesterase</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>CIBI</td>
<td>Clinician Interview-Based Impression</td>
</tr>
<tr>
<td>CIBIC</td>
<td>Clinician Interview-Based Impression of Change</td>
</tr>
<tr>
<td>CIBIC-plus</td>
<td>CIBIC plus Caregiver Input</td>
</tr>
<tr>
<td>CMCS</td>
<td>Caregiver-rated modified Chrichton Scale</td>
</tr>
<tr>
<td>CSS</td>
<td>Caregiver Stress Scale</td>
</tr>
<tr>
<td>CST</td>
<td>Color Slide Test</td>
</tr>
<tr>
<td>CT</td>
<td>computed tomography</td>
</tr>
<tr>
<td>CVD</td>
<td>cerebrovascular disease</td>
</tr>
<tr>
<td>DAD</td>
<td>Disability Assessment for Dementia scale</td>
</tr>
<tr>
<td>DON</td>
<td>donepezil</td>
</tr>
<tr>
<td>DSM-III</td>
<td>Diagnostic and Statistical Manual of Mental Disorders, version III</td>
</tr>
<tr>
<td>DSM-III-R</td>
<td>Diagnostic and Statistical Manual of Mental Disorders, version IV</td>
</tr>
<tr>
<td>DSM-IV</td>
<td>Diagnostic and Statistical Manual of Mental Disorders, version IV</td>
</tr>
<tr>
<td>DST</td>
<td>Digit Span Test</td>
</tr>
<tr>
<td>FAST</td>
<td>Functional Assessment Staging Scale</td>
</tr>
<tr>
<td>FCCA</td>
<td>Final Comprehensive Consensus Assessment</td>
</tr>
<tr>
<td>FLS</td>
<td>Functional Life Scale</td>
</tr>
<tr>
<td>FOME</td>
<td>Fuld Object Memory Evaluation</td>
</tr>
<tr>
<td>FRS</td>
<td>Functional Rating Scale</td>
</tr>
<tr>
<td>GAL</td>
<td>galantamine</td>
</tr>
<tr>
<td>GBS</td>
<td>Gottfried, Brane and Steel Scale</td>
</tr>
<tr>
<td>GDS</td>
<td>Global Deterioration Scale</td>
</tr>
<tr>
<td>GERRI</td>
<td>Geriatric Evaluation by Relative's Rating Instrument</td>
</tr>
<tr>
<td>HDS</td>
<td>Hierarchic Dementia Scale</td>
</tr>
<tr>
<td>HIS</td>
<td>Hachinski Ischemia Scale</td>
</tr>
<tr>
<td>HUI</td>
<td>Health Utilities Index</td>
</tr>
<tr>
<td>IADL</td>
<td>Instrumental activities of daily living</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>ICD-10</td>
<td>International Classification of Diseases 10th revision</td>
</tr>
<tr>
<td>IDDD</td>
<td>Interview for Deterioration in Daily Living Activities in Dementia</td>
</tr>
<tr>
<td>IQCODE</td>
<td>Informant Questionnaire on Cognitive Decline in the Elderly</td>
</tr>
<tr>
<td>ITT</td>
<td>intention-to-treat</td>
</tr>
<tr>
<td>LFT</td>
<td>Liver Function Test</td>
</tr>
<tr>
<td>LMT</td>
<td>Logical Memory Test</td>
</tr>
<tr>
<td>MCID</td>
<td>Minimal clinically important difference</td>
</tr>
<tr>
<td>MEM</td>
<td>memantine</td>
</tr>
<tr>
<td>MENFIS</td>
<td>Mental Function Impairment Scale</td>
</tr>
<tr>
<td>MHIS</td>
<td>Modified Hachinski Ischemic Score</td>
</tr>
<tr>
<td>MMSE</td>
<td>Mini-Mental State Examination</td>
</tr>
<tr>
<td>3MS</td>
<td>Modified MMSE</td>
</tr>
<tr>
<td>MSQ</td>
<td>Mental Status Questionnaire</td>
</tr>
<tr>
<td>N/A</td>
<td>not applicable</td>
</tr>
<tr>
<td>NINCDS/ADRDA</td>
<td>National Institute of Neurological & Communicative Disorders and Stroke and Alzheimer's Disease and Related Disorders Association</td>
</tr>
<tr>
<td>NINDS-AIREN</td>
<td>National Institute of Neurological Disorders and Stroke and the Association Internationale pour la Recherche l'Enseignement en Neurosciences</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-methyl-D-aspartate</td>
</tr>
<tr>
<td>NOSIE</td>
<td>Nurse Observation Scale for Inpatient Evaluation</td>
</tr>
<tr>
<td>NOSGER</td>
<td>Nurse Observation Scale for Geriatric Patients (also abbreviated as NOSGP)</td>
</tr>
<tr>
<td>NOSGP</td>
<td>See NOSGER</td>
</tr>
<tr>
<td>NPI</td>
<td>Neuropsychiatric Inventory</td>
</tr>
<tr>
<td>NPI-NH</td>
<td>NPI-Nursing Home version</td>
</tr>
<tr>
<td>NR</td>
<td>not reported</td>
</tr>
<tr>
<td>OR</td>
<td>odds ratio</td>
</tr>
<tr>
<td>PDS</td>
<td>Progressive Deterioration Scale</td>
</tr>
<tr>
<td>PSM/S</td>
<td>Physical Self-Maintenance Scale</td>
</tr>
<tr>
<td>PSQI</td>
<td>Pittsburgh Sleep Quality Index</td>
</tr>
<tr>
<td>PWT</td>
<td>Paired Words Test</td>
</tr>
<tr>
<td>QALY</td>
<td>Quality-adjusted-life-year</td>
</tr>
<tr>
<td>QOL</td>
<td>quality of life</td>
</tr>
<tr>
<td>RDRS-II</td>
<td>Rapid Disability Rating Scale II</td>
</tr>
<tr>
<td>RGRS</td>
<td>Relatives Global Rating Scale</td>
</tr>
<tr>
<td>RIV</td>
<td>rivastigmine</td>
</tr>
<tr>
<td>RR</td>
<td>relative risk</td>
</tr>
<tr>
<td>SCAG</td>
<td>Sandoz Clinical Assessment Geriatric Scale</td>
</tr>
<tr>
<td>SGRS</td>
<td>Stockton Geriatric Rating Scale</td>
</tr>
<tr>
<td>SIB</td>
<td>Severe Impairment Battery</td>
</tr>
<tr>
<td>sMMSE</td>
<td>Screening standardized MMSE</td>
</tr>
<tr>
<td>TAC</td>
<td>tacrine</td>
</tr>
<tr>
<td>UTI</td>
<td>urinary tract infection</td>
</tr>
<tr>
<td>VaD</td>
<td>Vascular dementia</td>
</tr>
<tr>
<td>VAS</td>
<td>Visual Analogue Scales</td>
</tr>
<tr>
<td>VRF</td>
<td>vascular risk factors</td>
</tr>
<tr>
<td>WFT</td>
<td>Word Fluency Test</td>
</tr>
<tr>
<td>WMD</td>
<td>weighted mean difference</td>
</tr>
</tbody>
</table>
Efficacy/Effectiveness

| **STUDY:** | Authors: AD2000 Collaborative Group
Year: 2004
Country: UK |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNDING:</td>
<td>NHS Executive R&D and Health Authorities in the West Midlands, East Lancashire, Iechyrd Morgannwg, and North Nottingham</td>
</tr>
<tr>
<td>RESEARCH OBJECTIVE:</td>
<td>To determine whether long-term DON treatment produces worthwhile improvements in disability, dependency, behavioral, and psychological symptoms or delay in institutionalism</td>
</tr>
</tbody>
</table>
| **DESIGN:** | Study design: RCT *Effectiveness trial*
Setting: Multi-center (22 memory clinics)
Sample size: 565 |
| **INTERVENTION:** |
| Dose: | **donepezil**
5 or 10 mg/d
192 weeks
282 |
| **placebo**
N/A
192 weeks
283 |
| **Sample size:** | |
| **INCLUSION:** | Community residents referred by treating doctor; DSM-IV diagnosis of AD with or without co-existing VaD; regular caretaker |
| **EXCLUSION:** | Taking a ChE inhibitor or a contraindication against DON |
| **OTHER MEDICATIONS/INTERVENTIONS ALLOWED:** | All medications except other AChE inhibitors |
Authors: AD2000 Collaborative Group
Year: 2004

POPULATION CHARACTERISTICS:

<table>
<thead>
<tr>
<th>Groups similar at baseline: Yes</th>
<th>Alzheimer classification: Mild to moderate</th>
</tr>
</thead>
<tbody>
<tr>
<td>donepezil</td>
<td>placebo</td>
</tr>
<tr>
<td>Median age (years):</td>
<td>Median baseline MMSE</td>
</tr>
<tr>
<td>76</td>
<td>75</td>
</tr>
<tr>
<td>58</td>
<td>60</td>
</tr>
<tr>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>18%</td>
<td>15%</td>
</tr>
<tr>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
</tr>
</tbody>
</table>

OUTCOME ASSESSMENT:

Primary Outcome Measures: Entry to institutionalized care; progression of disability defined by loss of 2 of 4 basic or 6 of 11 instrumental activities on the BADLS

Secondary Outcome Measures: Functional ability measured by the BADLS; NPI; MMSE; compliance (defined as dropouts); death from AD

Timing of assessments: Baseline and every 12 weeks during treatment

RESULTS:

Health Outcome Measures:
- No significant difference observed between DON and placebo in rates of institutionalism (9% vs. 14% at 1 year; P = 0.15; 42% vs. 44% at 3 years; P = 0.4)*
- Progression of disability similar between DON and placebo (13% vs. 19% at 1 year; P = 0.3; 55% vs. 53% at 3 years; P = 0.9)
- No significant difference in BADLS at 12 weeks, but thereafter DON was significantly better than placebo (average difference: 1.0 points, 95% CI: 0.5 – 1.6; P = 0.0004)*
- The number of severe adverse events and deaths in both groups were similar
- No differences found between DON and placebo on the NPI (P = 0.4)
- No significant differences in behavioral or psychological differences at any point in time

Intermediate Outcome Measures:
- MMSE was significantly better in DON group than placebo group at 2 years (+ 0.8 points 95% CI: 0.5 – 1.2; P < 0.0001)
<table>
<thead>
<tr>
<th>ADVERSE EVENTS:</th>
<th>donepezil</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall adverse effects reported:</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Specific adverse effects reported:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant differences in adverse events:</td>
<td>Significantly more DON than placebo-treated patients withdrew because of adverse events after 12 weeks (13% vs. 7%; P = 0.02) and between 13 and 60 weeks (7% vs. 3%; P = 0.05)</td>
<td></td>
</tr>
</tbody>
</table>

ANALYSIS:

- ITT: Yes
- Post randomization exclusions: Yes (at least 1)

ADEQUATE RANDOMIZATION:

- Yes

ADEQUATE ALLOCATION CONCEALMENT:

- Yes

BLINDING OF OUTCOME ASSESSORS:

- Yes

ATTRITION (overall):

- Overall loss to follow-up: 17% after 60 weeks of treatment
- Loss to follow-up differential high: No

ATTRITION (treatment specific):

- Loss to follow-up (60 weeks): Withdrawals due to adverse events:
 - donepezil: 17% 7%
 - placebo: 18% 3%

QUALITY RATING:

- Fair

*primary outcome measures
Efficacy/Effectiveness

<table>
<thead>
<tr>
<th>Study</th>
<th>Alzheimer Drugs</th>
</tr>
</thead>
</table>
| **STUDY:** | **Authors:** Agid et al.36
Year: 1998
Country: Multinational |
| **FUNDING:** | Novartis Pharma AG |
| **RESEARCH OBJECTIVE:** | To investigate the efficacy and tolerability of two different dosages of RIV in elderly patients with probable AD |
| **DESIGN:** | Study design: RCT
Setting: Multi-center (Europe, 54 centers)
Sample size: 402 |
| **INTERVENTION:** | **Rivastigmine**
Dose: 4 mg/d
Duration: 13 weeks
Sample size: 136
Rivastigmine
Dose: 6 mg/d
Duration: 13 weeks
Sample size: 133
Placebo
Sample size: 133 |
| **INCLUSION:** | Diagnosis of mild-to-moderate dementia using DSM-IV and DSM-III-R criteria and diagnosis of probable AD according to NINCDS/ADRDA criteria |
| **EXCLUSION:** | NR |
| **OTHER MEDICATIONS/INTERVENTIONS ALLOWED:** | Medications for non-cognitive aspects of AD such as hypnotics provided they were not long-acting agents; drugs for other concomitant conditions at continued dosage |
Authors: Agid et al.
Year: 1998

POPULATION CHARACTERISTICS:
- **Groups similar at baseline:** NR
- **Alzheimer classification:** Mild-moderate

<table>
<thead>
<tr>
<th></th>
<th>rivastigmine 4 mg/d</th>
<th>rivastigmine 6 mg/d</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (years)</td>
<td>68.62</td>
<td>68.68</td>
<td>70.80</td>
</tr>
<tr>
<td>Sex (% female)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Other germane population qualities</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

OUTCOME ASSESSMENT:
- **Primary Outcome Measures:** CGIC

- **Secondary Outcome Measures:** FOME; Digit Symbol Substitution test; BVR; Trail Making test; NOSGER; MMSE

- **Timing of assessments:** Baseline and weeks 7 and 13

RESULTS:
- **Health Outcome Measures:**
 - No statistically significant differences between RIV and placebo for NOSGER

- **Intermediate Outcome Measures:**
 - Significantly more patients on RIV 6 mg/d than on placebo had marked or moderate improvements on CGIC (42.7% vs. 29.9%; P = 0.05); 4 mg/d differences not significant
 - At week 13, patients on RIV 6 mg/d had significantly better scores on Digit Symbol Substitution test and FOME (P < 0.05) than placebo-treated patients; 4 mg/d differences not significant
 - No statistically significant differences between RIV and placebo for MMSE, BVR, and Trail Making test
 - Patients on RIV 4 mg/d presented statistically significant difference to placebo only on FOME
Authors: Agid et al.
Year: 1998

ADVERSE EVENTS:

<table>
<thead>
<tr>
<th>Overall adverse effects reported:</th>
<th>rivastigmine 4 mg/d</th>
<th>rivastigmine 6 mg/d</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Vomiting</td>
<td>17%</td>
<td>31%</td>
<td>6%</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>10%</td>
<td>18%</td>
<td>3%</td>
</tr>
<tr>
<td>Dizziness</td>
<td>7%</td>
<td>12%</td>
<td>2%</td>
</tr>
<tr>
<td>Headache</td>
<td>6%</td>
<td>20%</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>4%</td>
<td>13%</td>
<td>6%</td>
</tr>
</tbody>
</table>

Significant differences in adverse events:

Significantly more patients suffered from nausea, vomiting, diarrhea, dizziness, and headache in RIV groups especially at higher doses; P = NR

ANALYSIS:

ITT: No
Post randomization exclusions: NR

ADEQUATE RANDOMIZATION:

NR

ADEQUATE ALLOCATION CONCEALMENT:

Yes

BLINDING OF OUTCOME ASSESSORS:

Yes

ATTRITION (overall):

<table>
<thead>
<tr>
<th>Overall loss to follow-up:</th>
<th>11.2%</th>
</tr>
</thead>
</table>

ATTRITION (treatment specific):

<table>
<thead>
<tr>
<th>Loss to follow-up:</th>
<th>rivastigmine 4 mg/d</th>
<th>rivastigmine 6 mg/d</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Withdrawals due to adverse events:</td>
<td>12.5%</td>
<td>15%</td>
<td>6%</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>12%</td>
<td>4%</td>
</tr>
</tbody>
</table>

QUALITY RATING:

Fair

*primary outcome measures
Efficacy/Effectiveness

Study

Authors: Birks et al.
Year: 2004
Country: Multinational

Funding

Review funded by NHS R&D UK

Design

Study design: Meta-analysis
Number of patients: 17 trials contributed 4,365 participants; studies ranged from 12 - 566 participants

Aims of Review

To assess whether DON improves the well-being of patients with dementia due to AD

Studies Included in Meta-Analysis

A total of 17 placebo-controlled RCT studies were included, 13 of which provide sufficient details for analysis

Time Period Covered

Trials completed before October 9, 2002 that were included in the Specialized Register of the Cochrane Dementia and Cognitive Improvement Group

Characteristics of Included Studies

Unconfounded, randomized trials of patients with dementia due to AD in which treatment with DON was administered for more than a day compared with a placebo group; trials in which allocation of treatment or control was not randomized, or in which treatment allocation was not concealed were excluded; all studies were multi-center, randomized, and double-blind

Characteristics of Included Populations

Patients diagnosed with probable AD using accepted criteria such as ICD-10; DSM; and NINCDS/ADRDA
<table>
<thead>
<tr>
<th>CHARACTERISTICS OF INTERVENTIONS:</th>
<th>DON given at any dose for more than one day with parallel concomitant placebo group; outcome measures included: Global assessment (CIBIC-plus, GBS, MENFIS, CDR-SB, ADAS-Cog, MMSE); ADL’s (PDS, DAD, IADL, PSMS, CMCS); behavioral disturbances; QOL; caregiver stress; side effects</th>
</tr>
</thead>
</table>
| MAIN RESULTS: | Quality of life
- No significant difference between DON and placebo for QOL and behavioral disturbance

Activities of daily living
- Pooled data from 2 studies provided evidence of benefit of DON at 12 and 24 weeks (P < 0.01)

Global assessment
- The CIBIC-plus scale was dichotomized into those showing no change or decline against those showing improvement; overall there are benefits associated with 5 and 10 mg/d DON compared with placebo at 12 and 24 weeks (P < 0.005) as shown by the ITT-LOC analyses:
 - 24 weeks, 10 mg/d: OR 2.18; 95% CI: 1.53 – 3.11; P < 0.001
 - 24 weeks 5 mg/d: OR 2.38; 95% CI: 1.78 – 3.19; P < 0.001
- The CDR-SB showed a benefit with 5 and 10 mg/d of DON compared with placebo at 12 weeks and 10 mg/d of DON compared with placebo at 24 weeks
 - 24 weeks, 10 mg/d: WMD -0.53; 95% CI: -0.73 – -0.33; P < 0.001
 - 24 weeks 5 mg/d: WMD -0.51; 95% CI: -0.70 – -0.32; P < 0.001

Cognitive function
- Evidence of benefits associated with 5 and 10 mg/d of DON compared with placebo on cognitive function was shown by improvement in the ADAS-Cog and MMSE test scores at 12 and 24 weeks (P < 0.005)
 - ADAS-Cog:
 - 24 weeks, 10 mg/d: WMD -2.92; 95% CI: -3.74 – -2.10; P < 0.001
 - 24 weeks 5 mg/d: WMD -2.02; 95% CI: -2.77 – -1.26; P < 0.001
 - MMSE:
 - 24 weeks, 10 mg/d: WMD 1.50; 95% CI: 0.97 – 2.04; P < 0.0001
 - 24 weeks 5 mg/d: WMD 1.44; 95% CI: 0.64 – 2.24; P < 0.001
| Authors: Birks et al.
Year: 2004 |
|---|---|
| **ADVERSE EVENTS:** | **Withdrawals due to adverse events:** A meta-analysis of withdrawals before the end of treatment showed no significant differences between the 5 mg/d group and the placebo group at 12 and 24 weeks; there were significant differences for the 10 mg/d group in favor of placebo at 12, but not at 24 and 52 weeks (29/184 DON, 13/178 placebo) (OR 2.31; 95% CI: 1.21 – 4.40, P = 0.01)
Anorexia, diarrhea, dizziness, fatigue, insomnia, muscle cramps, nausea, vomiting, tremor, vertigo, and weight loss were statistically significantly more common in the DON than in the placebo group |
<p>| COMPREHENSIVE LITERATURE SEARCH STRATEGY: | Trials were selected from Specialized Register of the Cochrane Dementia and Cognitive Improvement Group |
| STANDARD METHOD OF APPRAISAL OF STUDIES: | Yes |
| QUALITY RATING: | Good |</p>
<table>
<thead>
<tr>
<th>Efficacy/Effectiveness</th>
<th>Alzheimer Drugs</th>
</tr>
</thead>
</table>
| **STUDY:** | **Authors:** Birks et al. 17
Year: 2004
Country: Multinational |
| **FUNDING:** | NHS R&D Executive UK |
| **DESIGN:** | **Study design:** Meta-analysis
Number of patients: 8 trials involving 3,450 participants |
<p>| AIMS OF REVIEW: | To determine the clinical efficacy and safety of RIV for patients with dementia of Alzheimer’s type |
| TIME PERIOD COVERED: | Trials completed before October 21, 2003 |
| CHARACTERISTICS OF INCLUDED STUDIES: | All trials were randomized, double-blind, parallel group, and placebo-controlled in which RIV was administered for longer than 2 weeks |
| CHARACTERISTICS OF INCLUDED POPULATIONS: | Diagnostic criteria for all studies were DSM-IV and probable AD according to NINCDS/ADRDA except Tai 2000 which provided none |</p>
<table>
<thead>
<tr>
<th>CHARACTERISTICS OF INTERVENTIONS:</th>
<th>RIV given at any dose with parallel placebo control; outcome measures included: dependency, global impression, functional performance, cognitive function, behavioral disturbance, QOL, effect on caregiver, death, institutionalization rates, withdrawals, incidence of adverse events</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIN RESULTS:</td>
<td>• Meta-analysis of ADAS-Cog WMDs reveals statistically significant benefit of RIV 6/12 mg/d over placebo at 26 weeks (WMD -2.1; 95% CI: -2.6 – -1.5), and for RIV 1-4 mg/d (WMD -0.8; 95% CI: -1.5 – -0.2); pooled results across doses not presented</td>
</tr>
<tr>
<td></td>
<td>• ITT meta-analysis of ADAS-Cog dichotomized into those showing < 4 points improvement and those showing ≥ 4 points improvement at 26 weeks shows benefit of cognitive function for RIV 6-12 mg/d (83%, 878/1054 did not show 4 points improvement compared to 89%, 787/863; OR 0.6; 95% CI: 0.4 – 0.8), but NOT for the 1-4 mg/d (88%, 571/650 did not show 4 points improvement compared to 90%, 576/643; OR 0.84; 95% CI: 0.60 – 1.19); pooled results across does not presented</td>
</tr>
<tr>
<td></td>
<td>• ITT meta-analysis for MMSE shows similar results to ADAS-Cog at 26 weeks; 6-12 mg/d WMD -0.83; 95% CI: -1.12 – -0.53 and 1-4 mg/d WMD -0.43; 95% CI: -0.78 – -0.08</td>
</tr>
<tr>
<td></td>
<td>• ITT analysis of CIBIC-plus dichotomized into those showing no change or decline against those showing improvement shows there are benefits to 1-4 mg/d at 26 weeks (74%, 457/614 showed no improvement compared with 80%, 500/623; OR 0.71; 95% CI: 0.55 – 0.93), and for 6-12 mg/d (73%, 715/973 showed no improvement compared to 80%, 675/839; OR 0.68; 95% CI: 0.55 – 0.85); pooled results across does not presented</td>
</tr>
<tr>
<td></td>
<td>• ITT analysis of PDS at 26 weeks revealed significant improvement in RIV 6-12 mg/d versus placebo (WMD -2.2; 95% CI: -3.2 – -1.1), but not with 1-4 mg/d (WMD 0.4; 95% CI: -0.9 – 1.6); pooled results across does not presented</td>
</tr>
<tr>
<td></td>
<td>• ITT analysis of GDS dichotomized counting those showing moderately severe, severe, or very severe dementia against those showing moderate or mild dementia revealed significant benefit at 26 weeks for RIV 6-12 mg/d (55%, 579/1056 showed the worse condition compared to 59%, 511/868; OR 0.78; 95% CI: 0.64 – 0.94); results did not differ between 1-4 mg/d and placebo (P = NR)</td>
</tr>
</tbody>
</table>
| Authors: Birks et al.
Year: 2004 | ADVERSE EVENTS: |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Withdrawals for any reason before the end of treatment show that there are no significant differences between withdrawals in the 1-4 mg/d RIV group and placebo group at 12 and 26 weeks; there are significant differences for the 6-12 mg/d group in favor of placebo at 12, 18 and 26 weeks; (20/133 vs. 8/133, 16/45 vs. 2/24, 367/1052 vs. 145/868; OR 2.60; 95% CI: 1.19 – 5.68; OR 4.02; 95% CI: 1.31 – 12.32; OR 2.40; 95% CI: 1.95 – 2.96)</td>
<td></td>
</tr>
<tr>
<td>• Withdrawals by week 26 for adverse events showed no significant differences between the 1-4 mg/d RIV and placebo groups (55/645 vs. 54/646; OR 1.01; 95% CI: 0.75 – 1.34); however, there are significant differences between the 6-12 mg/d and placebo groups in favor of the latter (257/1052 vs. 74/868; OR 2.97; 95% CI: 2.33 – 3.79)</td>
<td></td>
</tr>
<tr>
<td>• Meta-analyses overall adverse event rates show no significant differences by the end of the titration period between 1-4 mg/d RIV and placebo groups (440/644 vs. 437/646; OR 1.04; 95% CI: 0.82 – 1.31); the same is true at 26 weeks (509/644 vs 518/646; OR 0.93; 95% CI: 0.71 – 1.23); however, there were significant differences between the 6-12 mg/d RIV and placebo groups in favor of the latter by the end of the titration period (920/1071 vs. 584/878; OR 2.98; 95% CI: 2.40 – 3.70) and by 26 weeks (960/1052 vs 687/868; OR 2.67; 95% CI: 2.05 – 3.46); the pattern is similar for the number of patients with at least one severe adverse event; the 1-4 mg/d group did not differ significantly from the placebo group, but there were significant differences between 6-12 mg/d and placebo groups in favor of the latter; results for the titration period were 130/1052 vs. 61/868; OR 1.88; 95% CI: 1.39 – 2.55) and by 26 weeks 166/1052 vs. 114/868 (OR 1.29; 95% CI: 1.00 –1.67)</td>
<td></td>
</tr>
<tr>
<td>• There are significant differences in favor of placebo for number of patients suffering nausea, vomiting, diarrhea, anorexia, headache, syncope, abdominal pain and dizziness;</td>
<td></td>
</tr>
</tbody>
</table>
| **Authors:** Birks et al.
Year: 2004 |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPREHENSIVE LITERATURE SEARCH STRATEGY</td>
</tr>
<tr>
<td>Refers to Cochrane Dementia and Cognitive Improvement Group search strategy; trials were selected from Specialized Register of the Cochrane Dementia and Cognitive Improvement Group, containing records from a number of published and unpublished electronic databases (e.g., MEDLINE, CCTR/Central, EMBASE)</td>
</tr>
<tr>
<td>STANDARD METHOD OF APPRAISAL OF STUDIES:</td>
</tr>
<tr>
<td>Cochrane Collaboration approach</td>
</tr>
<tr>
<td>QUALITY RATING:</td>
</tr>
<tr>
<td>Good</td>
</tr>
</tbody>
</table>
Efficacy/Effectiveness
Alzheimer Drugs

| STUDY: | Authors: Brodaty et al.
Year: 2005
Country: Multinational (US, Australia, Canada, South Africa, New Zealand) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNDING:</td>
<td>NR (one author from Johnson & Johnson Pharmaceuticals)</td>
</tr>
<tr>
<td>RESEARCH OBJECTIVE:</td>
<td>To evaluate the efficacy and tolerability of a flexible dosing regimen of galantamine prolonged-release capsule compared with galantamine IR and placebo in patients with mild to moderate AD</td>
</tr>
</tbody>
</table>
| DESIGN: | Study design: RCT
Setting: Multi-center (93 sites)
Sample size: 971 |
| INTERVENTION: |
| Dose: | galantamine PRC
16 or 24 mg/d
6 months
320 |
| Duration: |
| Sample size: |
| galantamine | 16 or 24 mg/d
6 months
327 |
| placebo | N/A
6 months
324 |
| INCLUSION: | Clinical diagnosis of mild to moderate AD based on NINCDS-ADRDA criteria; score of 10-24 on the MMSE; score of 18 or greater on the ADAS-cog/11; responsible caregiver; cognitive decline that was gradual in onset over a period of 6 months or greater |
| EXCLUSION: | Neurodegenerative disorders or cognitive impairment due to acute cerebral trauma, hypoxic cerebral damage, vitamin deficiency states, infection, mental retardation, cerebral neoplasia, endocrine or metabolic disease; vascular dementia or clinically active cerebrovascular disease; epilepsy; psychiatric disease; peptic ulcer; clinically significant illnesses that would impede the subject’s ability to complete the trial |
| OTHER MEDICATIONS/ INTERVENTIONS ALLOWED: | None for the treatment of dementia |
Authors: Brodaty et al.
Year: 2005

<table>
<thead>
<tr>
<th>POPULATION CHARACTERISTICS:</th>
<th>Groups similar at baseline: Yes</th>
<th>Alzheimer classification: Mild to moderate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (years):</td>
<td>galantamine PRC</td>
<td>galantamine</td>
</tr>
<tr>
<td>Sex (% female):</td>
<td>76.6</td>
<td>76.5</td>
</tr>
<tr>
<td>Ethnicity:</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>Black:</td>
<td>3%</td>
<td>4%</td>
</tr>
<tr>
<td>White:</td>
<td>93%</td>
<td>90%</td>
</tr>
<tr>
<td>Hispanic:</td>
<td>1%</td>
<td>2%</td>
</tr>
<tr>
<td>Asian:</td>
<td>3%</td>
<td>2%</td>
</tr>
<tr>
<td>Other:</td>
<td>1%</td>
<td>3%</td>
</tr>
<tr>
<td>Other germane population qualities:</td>
<td>MMSE</td>
<td>17.96</td>
</tr>
</tbody>
</table>

OUTCOME ASSESSMENT:

Primary Outcome Measures: ADAS-cog/11 score; CIBIC-plus score

Secondary Outcome Measures: ADCS-ADL; NPI

Timing of assessments: Screening, baseline, and weeks 4,8,12, and 26

RESULTS:

Health Outcome Measures:
- Both galantamine treatments were significantly more effective than placebo as measured by the ADAS-cog/11 score (P < 0.001 galantamine PRC, P < 0.01 for galantamine)
- No statistically significant differences were observed between active treatments and placebo on the CIBIC-plus scale
- Both galantamine treatments were significantly more effective than placebo in ADCS-ADL measure (P < 0.001 galantamine PRC, P = 0.018 for galantamine)
- No statistically significant differences were observed between the active treatments and placebo on the NPI measure

Intermediate Outcome Measures:
- N/A
ADVERSE EVENTS:

<table>
<thead>
<tr>
<th>Overall adverse effects reported (%)</th>
<th>galantamine PRC</th>
<th>galantamine</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anorexia</td>
<td>6</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Nausea</td>
<td>17</td>
<td>14</td>
<td>5</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>5</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Vomiting</td>
<td>7</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Depression</td>
<td>6</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Injury</td>
<td>8</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Dizziness</td>
<td>10</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Headache</td>
<td>8</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Respiratory tract infection</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>7</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Fall</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Significant differences in adverse events: Not reported

ANALYSIS:

ITT: Yes
Post randomization exclusions: NR

ADEQUATE RANDOMIZATION: Yes

ADEQUATE ALLOCATION CONCEALMENT: Yes

BLINDING OF OUTCOME ASSESSORS: Yes

ATTRITION (overall):
Overall loss to follow-up: 197 (20%)
Loss to follow-up differential high: No

ATTRITION (treatment specific):
Loss to follow-up:
Withdrawals due to adverse events:

<table>
<thead>
<tr>
<th>galantamine PRC</th>
<th>galantamine</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>21% (68)</td>
<td>23% (75)</td>
<td>17% (54)</td>
</tr>
<tr>
<td>9% (28)</td>
<td>7% (24)</td>
<td>5% (15)</td>
</tr>
</tbody>
</table>

QUALITY RATING: Good

*primary outcome measures
Efficacy/Effectiveness

Authors:
Burns et al. 1999

Year:
1999

Country:
Multinational (9 countries)

FUNDING:
Eisai Inc., Teaneck, NJ and Eisai Co. Ltd., Tokyo, Japan

RESEARCH OBJECTIVE:
To investigate the efficacy and safety of DON in a multinational setting in patients with mild to moderately severe AD

DESIGN:
- **Study design:** RCT
- **Setting:** Multi-center (82 clinical centers)
- **Sample size:** 818

INTERVENTION:

<table>
<thead>
<tr>
<th>Dose</th>
<th>Duration</th>
<th>Sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td>donepezil 5 mg</td>
<td>5 mg/d 24 weeks</td>
<td>271</td>
</tr>
<tr>
<td>donepezil 10 mg</td>
<td>10 mg/d 24 weeks</td>
<td>273</td>
</tr>
<tr>
<td>placebo</td>
<td>N/A</td>
<td>274</td>
</tr>
</tbody>
</table>

INCLUSION:
Fifty years of age or older; met DSM-III-R criteria for AD; met NINCDS/ADRDA for probable AD; MMSE scores between 10 and 26 (inclusive); CDR scores of 1 or 2

EXCLUSION:
Patients with structural lesions or significant vascular changes in a recent CT or MRI scan; patients with other neurological or psychiatric disorders; patients with asthma or significant uncontrolled gastrointestinal, renal, hepatic, endocrine or oncological disorders

OTHER MEDICATIONS/INTERVENTIONS ALLOWED:
NR; patients taking “prohibited” study medications were excluded
Authors: Burns et al.
Year: 1999

POPULATION CHARACTERISTICS:

- **Groups similar at baseline:** Yes
- **Alzheimer classification:** Mild to moderate

<table>
<thead>
<tr>
<th></th>
<th>donepezil 5 mg</th>
<th>donepezil 10 mg</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (years)</td>
<td>72</td>
<td>72</td>
<td>71</td>
</tr>
<tr>
<td>Sex (% female)</td>
<td>61</td>
<td>57</td>
<td>55</td>
</tr>
<tr>
<td>Ethnicity:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>100%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>Other</td>
<td><1%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Other germane population qualities:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline mean MMSE</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

OUTCOME ASSESSMENT:

- **Primary Outcome Measures:** ADAS-Cog; CIBIC-plus
- **Secondary Outcome Measures:** CDR-SB; patient rated quality of life (scale not specified but reported in Rogers et al., 1998); modified IDDD

- **Timing of assessments:** Baseline and weeks 6, 12, 18, 24 and 30 (endpoint = 24 weeks; placebo washout phase = 30 weeks; outcome measures reported for 24 weeks)

RESULTS:

- **Health Outcome Measures:**
 - No significant differences in quality of life scores at any time during the study; authors note significant variability in scale scores and inherent problems with measurement
 - Mean improvement in IDDD total score and self-care score NR; statistically significant improvement in IDDD-complex tasks score for DON 10 mg/d (P = 0.0072) but not for DON 5 mg/d

- **Intermediate Outcome Measures:**
 - Statistically significant improvement in ADAS-Cog scores for both DON groups compared to placebo; P = 0.0021 for 5 mg/d; P < 0.001 for 10 mg/d*
 - Statistically significant improvement in CIBIC-plus scores for both DON groups compared to placebo; P = 0.0072 for 5 mg/d; P = 0.0002 for 10 mg/d*
 - Statistically significant improvement in CDR-SB scores for both DON groups compared to placebo; P = 0.0344 for 5 mg/d; P = 0.0033 for 10 mg/d
ADVERSE EVENTS:

Overall adverse effects reported:
- Nausea
- Diarrhea
- Vomiting
- Nervous system

<table>
<thead>
<tr>
<th></th>
<th>donepezil 5 mg</th>
<th>donepezil 10 mg</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall loss to follow-up</td>
<td>132 (24%)</td>
<td>164 (26%)</td>
<td>132 (24%)</td>
</tr>
<tr>
<td>Loss to follow-up differential high</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Withdrawals due to adverse events: donepezil 5 mg</td>
<td>22%</td>
<td>9%</td>
<td></td>
</tr>
<tr>
<td>donepezil 10 mg</td>
<td>26%</td>
<td>18%</td>
<td></td>
</tr>
<tr>
<td>placebo</td>
<td>20%</td>
<td>10%</td>
<td></td>
</tr>
</tbody>
</table>

Significant differences in adverse events: Patients taking DON had significantly more adverse digestive and nervous system events (dizziness, confusion, insomnia: incidence < 10%) than placebo; P ≤ 0.05

ANALYSIS:

ITT: Yes
Post randomization exclusions: NR

ADEQUATE RANDOMIZATION:

NR

ADEQUATE ALLOCATION CONCEALMENT:

NR

BLINDING OF OUTCOME ASSESSORS:

NR

ATTRITION (overall):

Overall loss to follow-up: 132 (24%)
Loss to follow-up differential high: No

ATTRITION (treatment specific):

Loss to follow-up:
Withdrawals due to adverse events: donepezil 5 mg | 22% | 9% | 79% | 7% | 10% | 4% | 36% |
| donepezil 10 mg | 26% | 18% | 86% | 24% | 16% | 40% |
| placebo | 20% | 10% | 76% | 7% | 4% | 4% | 29% |

QUALITY RATING:

Fair

primary outcome measures
<table>
<thead>
<tr>
<th>Efficacy/Effectiveness</th>
<th>Alzheimer Drugs</th>
</tr>
</thead>
</table>
| **STUDY:** | **Authors:** Corey-Bloom et al.
 Year: 1998
 Country: US |
| **FUNDING:** | **Novartis** |
| **RESEARCH OBJECTIVE:** | **To evaluate the efficacy and safety of RIV tartrate for patients with AD** |
| **DESIGN:** | **Study design:** RCT
 Setting: Multi-center (22)
 Sample size: 699 |
| **INTERVENTION:** | |
| **Dose:** | **placebo** | **rivastigmine** | **rivastigmine** |
| **Duration:** | N/A
 26 weeks
 235 | 1-4 mg/d
 26 weeks
 233 | 6-12 mg/d
 26 weeks
 231 |
| **Sample size:** | |
| **INCLUSION:** | **Age between 45 and 89 years; non-childbearing potential for females; criteria for AD according to DSM-IV; probable AD according to NINCDS/ADRDA criteria; mild-to-moderate impairment based on MMSE score between 10 and 26; head CT or MRI consistent with AD within 12 months of inclusion; responsible caregiver who provided written consent** |
| **EXCLUSION:** | **Severe and unstable medical illnesses; use of anticholinergics ACh precursor health food supplements, memory enhancers, insulin, and psychotic drugs must be discontinued** |
| **OTHER MEDICATIONS/INTERVENTIONS ALLOWED:** | **Occasional use of chloral hydrate for agitation or insomnia** |
Authors: Corey-Bloom et al.
Year: 1998

POPULATION CHARACTERISTICS:

<table>
<thead>
<tr>
<th></th>
<th>placebo</th>
<th>rivastigmine (low)</th>
<th>rivastigmine (high)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (years):</td>
<td>74.8</td>
<td>74.9</td>
<td>73.8</td>
</tr>
<tr>
<td>Sex (% female):</td>
<td>58</td>
<td>57</td>
<td>68</td>
</tr>
<tr>
<td>Ethnicity:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>94%</td>
<td>95%</td>
<td>97%</td>
</tr>
<tr>
<td>Black</td>
<td>4%</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>Asian</td>
<td>1%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Other</td>
<td>< 1%</td>
<td>1%</td>
<td>0%</td>
</tr>
<tr>
<td>Other germane population qualities:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean dementia duration (months)</td>
<td>40.4</td>
<td>39.3</td>
<td>38.4</td>
</tr>
<tr>
<td>Mean MMSE score</td>
<td>20</td>
<td>19.5</td>
<td>19.62</td>
</tr>
</tbody>
</table>

Alzheimer classification:

- Mild-moderate

Groups similar at baseline:

- No (more females in high dose RIV group)

OUTCOME ASSESSMENT:

Primary Outcome Measures: ADAS-Cog; CIBIC-plus; PDS

Secondary Outcome Measures: MMSE; GDS

Timing of assessments: Baseline and weeks 12, 18, 26 or early termination

RESULTS:

Health Outcome Measures:

- PDS: high-dose RIV vs. placebo difference was significant ($P < 0.05$); only the high dose RIV group had a significantly greater number of treatment responders than placebo on the PDS ($P < 0.01$)

Intermediate Outcome Measures:

- ADAS-Cog, CIBIC-plus: for both doses of RIV, the mean changes from baseline on ADAS-Cog and CIBIC-plus were significantly better than those for placebo ($P < 0.05$)
- MMSE: both high dose and low dose RIV MMSE scores were better than placebo, but only high dose RIV was statistically significant ($P < 0.05$)
- GDS: both high and low dose RIV were significantly more improved than placebo ($P < 0.05$)
<table>
<thead>
<tr>
<th>ADVERSE EVENTS:</th>
<th>placebo</th>
<th>rivastigmine (low)</th>
<th>rivastigmine (high)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall adverse effects reported:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titration Phase</td>
<td>4%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>Fatigue</td>
<td>2%</td>
<td>13%</td>
<td>2%</td>
</tr>
<tr>
<td>Asthenia</td>
<td>15%</td>
<td>24%</td>
<td>9%</td>
</tr>
<tr>
<td>Dizziness</td>
<td>2%</td>
<td>14%</td>
<td>48%</td>
</tr>
<tr>
<td>Somnolence</td>
<td>3%</td>
<td>7%</td>
<td>27%</td>
</tr>
<tr>
<td>Nausea</td>
<td>11%</td>
<td>14%</td>
<td>48%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>3%</td>
<td>7%</td>
<td>27%</td>
</tr>
<tr>
<td>Anorexia</td>
<td>4%</td>
<td>8%</td>
<td>20%</td>
</tr>
<tr>
<td>Maintenance Phase</td>
<td>4%</td>
<td>8%</td>
<td>14%</td>
</tr>
<tr>
<td>Dizziness</td>
<td>3%</td>
<td>8%</td>
<td>20%</td>
</tr>
<tr>
<td>Nausea</td>
<td>2%</td>
<td>5%</td>
<td>16%</td>
</tr>
<tr>
<td>Vomiting</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Significant differences in adverse events:
- Titration Phase: sweating, fatigue, asthenia, weight decrease, malaise, dizziness, somnolence, nausea, vomiting, anorexia, flatulence (P < 0.05)
- Maintenance Phase: dizziness, nausea, vomiting, dyspepsia, sinusitis (P < 0.05)

ANALYSIS:
- **ITT:** Yes
- **Post randomization exclusions:** No

ADEQUATE RANDOMIZATION:
- Yes (independent firm cited, along with voice responses system for randomization code assignment)

ADEQUATE ALLOCATION CONCEALMENT:
- Yes

BLINDING OF OUTCOME ASSESSORS:
- Yes

ATTRITION (overall):
- Overall loss to follow-up: 22%
- Loss to follow-up differential high: Yes

ATTRITION (treatment specific):
- Placebo:
 - 16.6%
 - 7.2%
- Rivastigmine (low):
 - 14.6%
 - 8.2%
- Rivastigmine (high):
 - 35.5%
 - 29%

QUALITY RATING:
- Fair

*primary outcome measures
<table>
<thead>
<tr>
<th>Efficacy/Effectiveness</th>
<th>Alzheimer Drugs</th>
</tr>
</thead>
</table>
| **STUDY:** | **Authors:** Farlow et al. 58
Year: 1992
Country: US and Canada |
| **FUNDING:** | Warner-Lambert |
| **RESEARCH OBJECTIVE:** | To compare efficacy and safety of TAC with placebo in patients with probable AD |
| **DESIGN:** | **Study design:** RCT
Setting: 23 centers (21 US and 2 Canada)
Sample size: 468 |
| **INTERVENTION:** | **tacrine**
Dose: 20 to 80 mg/d
Duration: 12 weeks
Sample size: 310 |
| | **placebo**
Dose: NA
Duration: 12 weeks
Sample size: 158 |
<p>| INCLUSION: | Men and women with probable AD based on NINCDS criteria and symptoms for 1 year; MMSE 10-26; age ≥ 50 years; mild to moderate AD; without other significant medical conditions |
| EXCLUSION: | Patients with stroke, tumor, subdural hematoma, hydrocephalus, or VaD |
| OTHER MEDICATIONS/INTERVENTIONS ALLOWED: | Concurrent medications with cognitive properties such as anticholinergics, anticonvulsants, antidepressants, antipsychotics, anxiolytics, and stimulants were prohibited |</p>
<table>
<thead>
<tr>
<th>Authors: Farlow et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year: 1992</td>
</tr>
</tbody>
</table>

POPULATION CHARACTERISTICS:

<table>
<thead>
<tr>
<th>Groups similar at baseline: Yes</th>
<th>Alzheimer classification: Mild-moderate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean age (years):</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex (% female):</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethnicity: (% white):</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Other germane population qualities:</td>
<td></td>
</tr>
<tr>
<td>MMSE</td>
<td></td>
</tr>
<tr>
<td>HIS</td>
<td></td>
</tr>
<tr>
<td>ADAS-Cog</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tacrine</th>
<th>Placebo</th>
<th>Total (n = 468)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20; 40; 60; 80 mg/d</td>
<td>placebo; placebo/20 mg/d</td>
<td>71.3</td>
</tr>
<tr>
<td>70.7; 71.9; 72.1; 70.8</td>
<td>71; 71.6</td>
<td>71.3</td>
</tr>
<tr>
<td>49; 50; 55; 47</td>
<td>49; 59</td>
<td>52</td>
</tr>
<tr>
<td>97; 97; 96; 99</td>
<td>91; 99</td>
<td>97</td>
</tr>
</tbody>
</table>

OUTCOME ASSESSMENT:

<table>
<thead>
<tr>
<th>Primary Outcome Measures: ADAS-Cog; CGIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Secondary Outcome Measures: ADAS-Noncog; ADAS total score; MMSE; caregiver-rated CGIC; PDS</td>
</tr>
</tbody>
</table>

Timing of assessments: Weeks 4, 6, 10 and 12

RESULTS:

<table>
<thead>
<tr>
<th>Health Outcome Measures:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Significantly better PDS score only for TAC 40 mg/d compared to placebo (P = 0.046)</td>
</tr>
</tbody>
</table>

Intermediate Outcome Measures: (observed cases)

- Significant improvement in ADAS-Cog and CGIC at 12 weeks for TAC compared to placebo only for 80 mg/d (P = 0.015 for both)*
- No significant differences in ADAS-Noncog or MMSE at 12 weeks
- Significantly greater improvement in ADAS total score only for 80 mg/d TAC (P = 0.029)
- Significantly greater improvement in caregiver-rated CGIC for TAC 40 mg/d and 80 mg/d compared to placebo (P = 0.034 and P = 0.028, respectively)
<table>
<thead>
<tr>
<th>Authors: Farlow et al.</th>
<th>Year: 1992</th>
</tr>
</thead>
</table>

ADVERSE EVENTS:
Overall adverse effects reported:
- Elevated transaminases
- Nausea/Vomiting
- Diarrhea

<table>
<thead>
<tr>
<th></th>
<th>tacrine 20, 40, 80 mg/d</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>51% (mean treatment-related)</td>
<td>34% (treatment-related)</td>
</tr>
<tr>
<td></td>
<td>19.8%; 19.8%; 11.7%</td>
<td>1.9%</td>
</tr>
<tr>
<td></td>
<td>4.7%; 5.9%; 11.7%</td>
<td>3.2%</td>
</tr>
<tr>
<td></td>
<td>3.4%; 3.2%; 10%</td>
<td>3.2%</td>
</tr>
</tbody>
</table>

Significant differences in adverse events: Significance NR, although clearly significant differences in adverse events noted above

ANALYSIS:
ITT: No; ITT results available upon request and “generally” consistent

Post randomization exclusions: Yes

ADEQUATE RANDOMIZATION:
Unable to assess method of randomization; groups adequately balanced

ADEQUATE ALLOCATION CONCEALMENT:
Yes

BLINDING OF OUTCOME ASSESSORS:
Yes

ATTRITION (overall):
Overall loss to follow-up: 41.7% (not included in analysis)

Loss to follow-up differential high: NR

<table>
<thead>
<tr>
<th></th>
<th>tacrine</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>7%</td>
</tr>
</tbody>
</table>

Withdrawals due to adverse events:

QUALITY RATING:
Fair

*primary outcome measures
Efficacy/Effectiveness

Authors and year:
- Gauthier et al. 2002

Country:
Multinational (Canada, Australia, France)

Funding:
Eisai, Inc. and Pfizer, Inc.

RESEARCH OBJECTIVE:
To examine the efficacy and safety of DON in patients with moderate to severe AD; subgroup analyses focus on behavioral symptoms and patients with moderate severity

DESIGN:
Study design: RCT
Setting: Multi-center (32)
Sample size: 290

Intervention:

<table>
<thead>
<tr>
<th>Dose</th>
<th>Duration</th>
<th>Sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td>donepezil</td>
<td>5-10 mg/d</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>24 weeks</td>
<td></td>
</tr>
<tr>
<td>placebo</td>
<td>N/A</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>24 weeks</td>
<td></td>
</tr>
</tbody>
</table>

INCLUSION:
- All of the following criteria: probable or possible AD according to DSM-IV and the NINCDS; a screening standardized MMSE score of 5-17; Functional Assessment Staging Test of ≤ 6 at baseline; ambulatory; CT or MRI scan within past 24 months consistent with AD

EXCLUSION:
- Patients requiring total nursing care; evidence of other cause of dementia; complicating delirium, depression, or other concurrent diagnosis that might interfere with study participation; history of drug or alcohol misuse; hypersensitivity to AChE inhibitors; significant COPD, asthma, hematologic or oncologic disorders; B₁₂ or folate deficiency; active GI, renal, hepatic, endocrine, or cardiovascular system disease

OTHER MEDICATIONS/INTERVENTIONS ALLOWED:
- Most concomitant medications were allowed except for those with anticholinergic effects and investigational drugs
Authors: Feldman et al.
Year: 2001

POPULATION CHARACTERISTICS:

<table>
<thead>
<tr>
<th></th>
<th>donepezil</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (years):</td>
<td>73.3</td>
<td>74.0</td>
</tr>
<tr>
<td>Sex (% female):</td>
<td>61.1</td>
<td>61.0</td>
</tr>
</tbody>
</table>

Other germane population qualities:
- Mean baseline sMMSE score

<table>
<thead>
<tr>
<th></th>
<th>donepezil</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11.72</td>
<td>11.97</td>
</tr>
</tbody>
</table>

OUTCOME ASSESSMENT:

Primary Outcome Measures: CIBIC-plus

Secondary Outcome Measures: sMMSE; SIB; DAD; ADL; IADL; modified IADL (IADL+); PSMS+; NPI; FRS; CSS; Caregiver SF-36; CAUST

Timing of assessments: Baseline and weeks 4, 8, 12, 18 and 24

RESULTS:

Health Outcome Measures:

- DON-treated patients had a significantly slower decline of measures of daily functioning than placebo-treated patients; differences were +6.83 (P < 0.001) in IADL, +1.32 (P = 0.0015) in PSMS, and 8.24 in DAD (P < 0.0001) at week 24
- Behavioral and neuropsychiatric symptoms, as measured by NPI 12 item, showed significant differences in favor of DON (mean difference = 6.64 at 24 weeks); significant differences in favor of DON were found in depression/dysphoria (P = 0.0166), anxiety (P = 0.0128), and apathy/indifference (P = 0.0018)

Intermediate Outcome Measures:

- There were significant differences in favor of DON in the CIBIC-plus scores at all visits (mean difference = 0.54 at 24 weeks); at 24 weeks 63% of DON and 42% of placebo were rated as improved or no decline (P < 0.0001)*
- There were significant mean improvements in favor of DON on both the sMMSE and SIB (mean difference = 1.79 on sMMSE (P < 0.0001); mean difference = 5.62 on SIB (P < 0.0001))
Authors: Feldman et al.
Year: 2001

RESULTS:

Intermediate Outcome Measures (Cont’d.):

- Stabilization of global function, as measured by FRS, showed significant differences in favor of DON (mean difference = 1.28 at 24 weeks; \(P = 0.0002 \))
- A subgroup analysis of patients with moderate AD (MMSE 10-17) presented significant drug-placebo differences in CIBIC-plus scores (mean treatment difference = 0.53, \(P = 0.0003 \)); improvement in MMSE and SIB (mean treatment difference = 2.06, -4.44; \(P = 0.0002, 0.0026 \)); improvement on IADL+ and PSMS (\(P = 0.0002, 0.001 \))

ADVERSE EVENTS:

Overall adverse effects reported:

<table>
<thead>
<tr>
<th></th>
<th>donepezil</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhea</td>
<td>83%</td>
<td>80%</td>
</tr>
<tr>
<td>Headache</td>
<td>12.5%</td>
<td>4.8%</td>
</tr>
<tr>
<td>Respiratory tract infection</td>
<td>11.8%</td>
<td>4.1%</td>
</tr>
</tbody>
</table>

Significant differences in adverse events: Significance not reported; mild, moderate, and severe AEs were similar between treatment groups

ANALYSIS:

ITT: ITT/LOCF
Post randomization exclusions: Unable to determine

ADEQUATE RANDOMIZATION:
Yes

ADEQUATE ALLOCATION CONCEALMENT:
Yes (identical appearing blister packs)

BLINDING OF OUTCOME ASSESSORS:
Yes

ATTRITION (overall):
Overall loss to follow-up: 14.8%
Loss to follow-up differential high: No

ATTRITION (treatment specific):
Loss to follow-up:
Withdrawals due to adverse events:

<table>
<thead>
<tr>
<th></th>
<th>donepezil</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.0%</td>
<td>8%</td>
<td>13.7%</td>
</tr>
</tbody>
</table>

ATTRITION:
Loss to follow-up:
Withdrawals due to adverse events:

<table>
<thead>
<tr>
<th></th>
<th>donepezil</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>8%</td>
<td>8%</td>
<td>6%</td>
</tr>
</tbody>
</table>

QUALITY RATING:
Good

*primary outcome measures
<table>
<thead>
<tr>
<th>Efficacy/Effectiveness</th>
<th>Alzheimer Drugs</th>
</tr>
</thead>
</table>
| **STUDY:** | Authors: Homma et al.\(^{41}\)
 | Year: 2000
 | Country: Japan |
| **FUNDING:** | NR |
| **RESEARCH OBJECTIVE:** | To evaluate efficacy and safety of DON at 5 mg/d in patients with mild to moderate AD over 24 weeks |
| **DESIGN:** | Study design: RCT
 | Setting: Multi-center (54)
 | Sample size: 268 |
| **INTERVENTION:** | donepezil
 | 5 mg/d
 | 24 weeks
 | 116
 | placebo
 | N/A
 | 24 weeks
 | 112 |
| **Dose:** | donepezil
 | 5 mg/d |
| **Duration:** | donepezil
 | 24 weeks |
| **Sample size:** | donepezil
<pre><code> | 116 |
</code></pre>
<p>| INCLUSION: | Outpatients diagnosed as having AD by the diagnostic criteria of DSM-IV; CDR of (1) mild or (2) moderate; MMSE score of 10-26 points; ADAS-J-Cog score of at least 15 points |
| EXCLUSION: | Patients with neurological signs such as parkinsonism; patients with definite symptoms of depression, and patients with old had trauma associated with disturbances of consciousness; patients with visual or hearing impairment or with aphasia who could not undergo the cognitive performance test and patients with no caregivers to provide assistance in outpatient examinations; patients with serious complications; patients with peptic ulcers |
| OTHER MEDICATIONS/INTERVENTIONS ALLOWED: | Concomitant use of choline activators, anticholinergics, cerebral vasodilators, activators of cerebral metabolism, psychotropic drugs, hypnotics, antiparkinsonism agents, and nonsteroidal anti-inflammatory drugs was prohibited; initiation of rehabilitation was prohibited but patients could continue existing rehabilitation |</p>
<table>
<thead>
<tr>
<th>POPULATION CHARACTERISTICS:</th>
<th>Groups similar at baseline: Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alzheimer classification: Mild-moderate</td>
</tr>
<tr>
<td>Mean age (years):</td>
<td>donepezil</td>
</tr>
<tr>
<td>Sex (% female):</td>
<td>70.1</td>
</tr>
<tr>
<td>Ethnicity (% Japanese):</td>
<td>68</td>
</tr>
<tr>
<td>Other germane population qualities:</td>
<td></td>
</tr>
<tr>
<td>CDR 1,2</td>
<td>100</td>
</tr>
<tr>
<td>Mean baseline MMSE</td>
<td>68%, 32%</td>
</tr>
<tr>
<td>Mean ADAS-J-Cog</td>
<td>17.8</td>
</tr>
<tr>
<td></td>
<td>22.91</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OUTCOME ASSESSMENT:</th>
<th>Primary Outcome Measures: ADAS-J-Cog; J-CGIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Secondary Outcome Measures: CDR-SB; MENFIS; CMCS</td>
</tr>
<tr>
<td>Timing of assessments:</td>
<td>Baseline and every 4 weeks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RESULTS:</th>
<th>Health Outcome Measures:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Significantly more improvement in CMCS for DON-treated patients (P = 0.01) at endpoint</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intermediate Outcome Measures:</th>
</tr>
</thead>
<tbody>
<tr>
<td>DON was significantly better than placebo on ADAS-J-Cog (P = 0.003) and J-CGIC (P < 0.001)*</td>
</tr>
<tr>
<td>Significantly more improvement in CDR-SB for DON-treated patients (P < 0.001) at endpoint</td>
</tr>
<tr>
<td>Significantly more improvement in MENFIS for DON-treated patients (P = 0.004) at endpoint</td>
</tr>
<tr>
<td>Authors: Homma et al. Year: 2000</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>ADVERSE EVENTS: Overall adverse effects reported:</td>
</tr>
<tr>
<td>• Cold syndrome</td>
</tr>
<tr>
<td>Significant differences in adverse events:</td>
</tr>
<tr>
<td>ANALYSIS:</td>
</tr>
<tr>
<td>ADEQUATE RANDOMIZATION:</td>
</tr>
<tr>
<td>ADEQUATE ALLOCATION CONCEALMENT:</td>
</tr>
<tr>
<td>BLINDING OF OUTCOME ASSESSORS:</td>
</tr>
<tr>
<td>ATTRITION (overall):</td>
</tr>
<tr>
<td>ATTRITION (treatment specific):</td>
</tr>
<tr>
<td>Loss to follow-up:</td>
</tr>
<tr>
<td>Withdrawals due to adverse events:</td>
</tr>
<tr>
<td>Donepezil</td>
</tr>
<tr>
<td>NR</td>
</tr>
<tr>
<td>QUALITY RATING:</td>
</tr>
</tbody>
</table>

*primary outcome measures
<table>
<thead>
<tr>
<th>Efficacy/Effectiveness</th>
<th>Alzheimer Drugs</th>
</tr>
</thead>
</table>
| **STUDY:** | **Authors:** Jones et al. \(^{28}\)
Year: 2004
Country: Multinational (UK, Finland, Germany, Norway) |
| **FUNDING:** | Eisai Inc., Pfizer Inc. |
| **RESEARCH OBJECTIVE:** | To directly compare the effectiveness and tolerability of DON and GAL in the treatment of AD and investigate effects of both treatments on cognition and activities of daily living |
| **DESIGN:** | **Study design:** RCT (open-label)
Setting: Multi-center (14 centers)
Sample size: 120 |
| **INTERVENTION:** | **donepezil**
Dose: 5-10 mg once daily
Duration: 12 weeks
Sample size: 64 |
| | **galantamine**
Dose: 4-12 mg twice daily
Duration: 12 weeks
Sample size: 56 |
| **INCLUSION:** | At least 50 years of age diagnosed with probable or possible mild to moderate AD consistent with NINCDS/ADRDA and DSM-IV criteria; MMSE score at screening within range 10-24 inclusive; results of CT or MRI scan within past 18 months consistent with AD diagnosis; availability of caregiver to provide information on patient’s status and ensure compliance |
| **EXCLUSION:** | Previous treatment with ChE inhibitor or with known hypersensitivity to ChE inhibitors; clinically significant obstructive pulmonary disease, asthma, gastrointestinal, endocrine, or cardiovascular disease; known sensitivity to piperidine or alkaloid derivatives or any investigational drug therapy within 30 days of screening visit; medications with pronounced anticholinergic effects such as drugs used for Parkinson’s disease, neuroleptics, or tricyclic antidepressants within 1 month of study entry |
| **OTHER MEDICATIONS/ INTERVENTIONS ALLOWED:** | NR |
Authors: Jones et al.
Year: 2004

POPULATION CHARACTERISTICS:

<table>
<thead>
<tr>
<th>Groups similar at baseline:</th>
<th>No (gender distribution differed significantly)</th>
<th>Alzheimer classification:</th>
<th>Mild-moderate</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Mean age (years):</th>
<th>donepezil</th>
<th>galantamine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>73.8</td>
<td>75.1</td>
</tr>
<tr>
<td></td>
<td>51.6</td>
<td>71.4</td>
</tr>
<tr>
<td></td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sex (% female):</th>
<th>donepezil</th>
<th>galantamine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>73.5</td>
<td>74.6</td>
</tr>
<tr>
<td></td>
<td>3.1</td>
<td>3.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ethnicity:</th>
<th>donepezil</th>
<th>galantamine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other germane population qualities:</th>
<th>donepezil</th>
<th>galantamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age onset AD diagnosis (median)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Months since diagnosis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OUTCOME ASSESSMENT:

Primary Outcome Measures: Physician’s and Caregiver’s Satisfaction Questionnaires (developed by Pfizer and Eisai)

Secondary Outcome Measures: ADAS-Cog 11; ADAS-Cog 13; MMSE; DAD (40-item)

Timing of assessments: Weeks 4, 8 and 12; cognitive assessments at screening, weeks 4, 8 and 12

RESULTS:

Health Outcome Measures:
- DON-treated patients had significantly better physician and caregiver satisfaction scores at endpoint (P < 0.01).
- Significantly greater improvement of DAD scores for DON than GAL-treated patients (P < 0.05) at endpoint

Intermediate Outcome Measures:
- At endpoint DON-treated patients had significantly greater improvements on ADAS-Cog 11 (P < 0.05) and ADAS-Cog 13 (P < 0.05) than GAL-treated patients
- Significantly better MMSE scores for DON-treated patients at endpoint (P < 0.05)
- Significantly more DON than GAL-treated patients had a substantial response (i.e., ≥ 7 points; 28.3% vs. 11.5%; P < 0.029) or a good response (i.e., ≥ 4 points; 53.3% vs. 28.8%; P < 0.009)
Authors: Jones et al.
Year: 2004

<table>
<thead>
<tr>
<th>ADVERSE EVENTS:</th>
<th>donepezil</th>
<th>galantamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall adverse effects reported:</td>
<td>67.2%</td>
<td>73.2%</td>
</tr>
<tr>
<td>• Nausea</td>
<td>15.6%</td>
<td>23.2%</td>
</tr>
<tr>
<td>• Diarrhea</td>
<td>9.4%</td>
<td>14.3%</td>
</tr>
<tr>
<td>• Anorexia</td>
<td>4.7%</td>
<td>8.9%</td>
</tr>
<tr>
<td>• Vomiting</td>
<td>0.0%</td>
<td>12.5%</td>
</tr>
<tr>
<td>• Headache</td>
<td>6.3%</td>
<td>5.4%</td>
</tr>
<tr>
<td>• UTI</td>
<td>3.1%</td>
<td>7.1%</td>
</tr>
<tr>
<td>• Dizziness</td>
<td>1.6%</td>
<td>5.4%</td>
</tr>
</tbody>
</table>

Significant differences in adverse events: NR

ANALYSIS:
ITT: Yes
Post randomization exclusions: NR

ADEQUATE RANDOMIZATION: Yes

ADEQUATE ALLOCATION CONCEALMENT: NR

BLINDING OF OUTCOME ASSESSORS: Open-label; only cognitive assessments were implemented by independent raters who were blinded to patient assignment;

ATTRITION (overall):
Overall loss to follow-up: 6.7%
Loss to follow-up differential high: No

ATTRITION (treatment specific):
Loss to follow-up:
Withdrawals due to adverse events:
<table>
<thead>
<tr>
<th>donepezil</th>
<th>galantamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7%</td>
<td>8.9%</td>
</tr>
<tr>
<td>4.7%</td>
<td>7.1%</td>
</tr>
</tbody>
</table>

QUALITY RATING: N/A

*primary outcome measures
<table>
<thead>
<tr>
<th>Efficacy/Effectiveness</th>
<th>Alzheimer Drugs</th>
</tr>
</thead>
</table>
| **STUDY:** | **Authors:** Kaduszkiewicz et al.\(^1\)
Year: 2005
Country: Authors are German-- studies from any country were included |
| **FUNDING:** | None |
| **DESIGN:** | **Study design:** SR
Number of patients: NR |
| **AIMS OF REVIEW:** | This review assessed the scientific evidence for the recommendation of the cholinesterase inhibitors donepezil, rivastigmine, and galantamine for treatment of AD. |
| **STUDIES INCLUDED IN META-ANALYSIS** | Rogers SL, Friedhoff LT. 1996;
Rogers SL, Doody RS, Mohs RC, Friedhoff LT, and the Donepezil Study Group. 1998a;
AD2000 Collaborative Group. 2004;
Agid Y, Dubois B, on behalf of the International Rivastigmine Investigators, Anand R, Gharabawi G. 1998;
Forette F, Anand R, Gharabawi G. 1999;
<table>
<thead>
<tr>
<th>TIME PERIOD COVERED:</th>
<th>1989 – November 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHARACTERISTICS OF INCLUDED STUDIES:</td>
<td>Randomized, double blind, placebo controlled trials with donepezil, rivastigmine, or galantamine in patients with Alzheimer’s disease; Excluded trials that did not examine clinical outcomes or focused on vascular dementia; Excluded head to head comparisons in the analysis</td>
</tr>
<tr>
<td>CHARACTERISTICS OF INCLUDED POPULATIONS:</td>
<td>NR</td>
</tr>
<tr>
<td>AUTHORS: Kaduszkiewicz et al.</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>YEAR: 2005</td>
<td></td>
</tr>
</tbody>
</table>

CHARACTERISTICS OF INTERVENTIONS:
Duration of treatment varied between six weeks and three years; Number of patients included per study varied between 27 and 978; All studies included patients with an established diagnosis of probable or possible Alzheimer’s disease, according to the National Institute of Neurological and Communicative Disorders and Stroke—Alzheimer Disease and Related Disorders Association with one exception where a DSM-IV diagnosis of dementia was used for inclusion; Fourteen of 22 trials used the ADAS-cog as the primary measurement of efficacy; In 12 trials, the CIBIC-plus was used to assess efficacy.

MAIN RESULTS:
- Methodological assessment of all studies found considerable flaws: The use of several “primary end points without correction for multiple comparisons. After correction, two of the five trials on rivastigmine do not show any significant benefit on primary endpoint measures any more; missing ITT analysis, as in 15 of the 22 trials patients were excluded from analysis after randomization; In at least eight of the trials the last observation carried forward (LOCF) method was used to include dropouts into endpoint analyses.

ADVERSE EVENTS:
Donepezil, rivastigmine, and galantamine caused a broad spectrum of adverse events—nausea, vomiting, diarrhea, and weight loss were the most common.

COMPREHENSIVE LITERATURE SEARCH STRATEGY:
Yes

STANDARD METHOD OF APPRAISAL OF STUDIES:
Yes

QUALITY RATING:
Good
Efficacy/Effectiveness

<table>
<thead>
<tr>
<th>Alzheimer Drugs</th>
</tr>
</thead>
</table>
| **STUDY:** | Authors: Lanctot et al.\(^{30}\)
Year: 2003
Country: Canada |
| **FUNDING:** | NR; several authors have received speaker fees or honoraria from pharmaceutical companies; two authors are employed by pharmaceutical companies |
| **DESIGN:** | Study design: Meta analysis of placebo-controlled trials
Number of patients: 7,954 |
| **AIMS OF REVIEW:** | To quantitatively summarize data on the efficacy and safety of ChE inhibitors in AD |
| **TIME PERIOD COVERED:** | Studies published through May, 2002 |
| **CHARACTERISTICS OF INCLUDED STUDIES:** | RCTs of currently marketed ChE inhibitors (DON, GAL, and RIV) used in therapeutic doses for at least 12 weeks; a cognitive outcome was measured (and reported) on any validated scale |
| **CHARACTERISTICS OF INCLUDED POPULATIONS:** | AD diagnosed on basis of DSM-IV or NINCDS; therapeutic doses for at least 12 weeks of any available second-generation ChE inhibitors; cognitive measure must have been measured; original reports of RCTs |
CHARACTERISTICS OF INTERVENTIONS:

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Dosage</th>
<th>Duration</th>
<th>Outcome Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>DON</td>
<td>1-10 mg/d</td>
<td>12-54 weeks</td>
<td>CGIC, CIBIC, ADAS-Cog, MMSE, NPI, DAD, FRS, PDS, unspecified QOL scale, IDDD</td>
</tr>
<tr>
<td>RIV</td>
<td>1-12 mg/d</td>
<td>13-26 weeks</td>
<td></td>
</tr>
<tr>
<td>GAL</td>
<td>8-36 mg/d</td>
<td>3-6 months</td>
<td></td>
</tr>
</tbody>
</table>

Global response defined as improved on a global assessment scale (CGIC or CIBIC plus) and cognitive responders were defined as subjects with a 4-point or greater improvement in ADAS-Cog.

MAIN RESULTS:

Global responders extracted from 9 studies: pooled mean proportion of global responders to ChE inhibitor treatment in excess of that for placebo treatment was 9% (95% CI: 6% – 10%) excluding one study because of heterogeneity; proportion of cognitive responders could be extracted from 5 studies: pooled mean proportion of cognitive responders to ChE inhibitor treatment in excess of that for placebo treatment was 10% (95% CI: 4% – 17%).

ADVERSE EVENTS:

Compared with those receiving placebo, significantly more subjects receiving ChE inhibitor treatment had adverse events (8%) (95% CI: 5% – 11%), dropped out (8%) (95% CI: 5% – 11%) and dropped out because of adverse events (7%) (95% CI: 3% – 10%).

COMPREHENSIVE LITERATURE SEARCH STRATEGY:

MEDLINE and EMBASE searches from January 1980 to May 2002; key words ChE inhibitor and AD, and the limits were RCT, English and human; Cochrane library also searched.

STANDARD METHOD OF APPRAISAL OF STUDIES:

Trials included if they were randomized, double-blind, placebo-controlled, parallel group studies and if patients satisfied inclusion criteria; study quality rated on Jadad scale but quality was not identified as an exclusion criteria; no other methods were discussed as to how trials were evaluated to be included in the meta analysis.

QUALITY RATING:

Good
Efficacy/Effectiveness

STUDY:

Authors: Mohs et al. 42
Year: 2001
Country: US

FUNDING:
Eisai, Inc. and Pfizer, Inc.

RESEARCH OBJECTIVE:
To examine the effects of DON compared to placebo on the preservation of function in patients with AD over a 1-year period

DESIGN:
Study design: RCT
Setting: Multi-center (31)
Sample size: 431

INTERVENTION:

<table>
<thead>
<tr>
<th>Dose</th>
<th>Duration</th>
<th>Sample size</th>
</tr>
</thead>
</table>
| **donepezil** | 10 mg/d (28 day escalation)
54 weeks
214 | |
| **placebo** | N/A
54 weeks
217 | |

INCLUSION:
Probable AD according to DSM-IV and the NINCDS; a MMSE score of 12-20; CDR score of 1 (mild) or 2 (moderate); MHIS ≤ 4 at both screening and baseline; protocol amendment allowed patients to enroll with MMSE scores of 21 at baseline if their scores at screening were 20; subjects were also required to be able to perform 8 of 10 instrumental ADL (each score ≤ 2) on the ADFACS at both screening and baseline

EXCLUSION:
Evidence of stroke; Parkinson’s Disease; schizophrenia; dementia complicated by other organic disease; delirium; depression; AD with significant delusions; history of alcoholism or drug misuse; hypersensitivity to ChE inhibitors; use of any investigational drug or TAC within 1 month of screening; concomitant use of anticholinergics, cholinomimetics, tricyclic antidepressants, antiparkinsonian agents, and neuroleptics were not permitted; no reliable caregiver

OTHER MEDICATIONS/INTERVENTIONS ALLOWED:
Vitamin E; Gingko biloba; NSAIDs; and estrogens
<table>
<thead>
<tr>
<th>POPULATION CHARACTERISTICS:</th>
<th>Groups similar at baseline: Yes</th>
<th>Alzheimer classification: Mild-moderate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (years):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex (% female):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethnicity:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• White</td>
<td>94.9%</td>
<td>89.4%</td>
</tr>
<tr>
<td>• Black</td>
<td>0.9%</td>
<td>4.6%</td>
</tr>
<tr>
<td>• Other</td>
<td>4.2%</td>
<td>6.0%</td>
</tr>
<tr>
<td>Other germane population qualities:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Baseline MMSE score</td>
<td>17.1</td>
<td>17.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OUTCOME ASSESSMENT:</th>
<th>Primary Outcome Measures: ADFACS; CDR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clinically evident functional decline, defined as any of the following:</td>
</tr>
<tr>
<td></td>
<td>1) Decline ≥ 1 point on ADFACS basic ADLs present at baseline, except that a decline from 0 (no impairment) to 1 (mild impairment) was not considered clinically significant</td>
</tr>
<tr>
<td></td>
<td>2) Decline in ability to perform 20% or more of ADFAC instrumental ADLs; a decline from 0 (no impairment) to 1 (mild impairment) was not considered clinically significant but other declines of one or more were</td>
</tr>
<tr>
<td></td>
<td>3) Increase in global CDR score ≥ 1 point compared to baseline</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Secondary Outcome Measures:</th>
<th>ADL; CDR; MMSE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>RESULTS:</th>
<th>Health Outcome Measures:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Higher proportion of placebo patients (56%, n = 116 of ITT population) compared with DON patients (41%, n = 84) met criteria for clinically evident functional decline (P < 0.005)*</td>
</tr>
<tr>
<td></td>
<td>Median time (in days) to clinically evident functional decline was shorter in placebo group (208 days) compared to DON (357 days)*</td>
</tr>
<tr>
<td></td>
<td>No difference in adjusted mean change from baseline scores on ADFACS at endpoint*</td>
</tr>
</tbody>
</table>
Authors: Mohs et al.
Year: 2001

RESULTS:

Intermediate Outcome Measures:
- Differences in mean change from baseline to endpoint for DON differed from placebo for both instrumental ADL (P = 0.001) and basic ADL (P = 0.007)
- No significant differences in CDR-SB or MMSE scores at endpoint, although significant differences in favor of DON were observed at weeks 6, 18, 24, 36 and 42

ADVERSE EVENTS:

<table>
<thead>
<tr>
<th>Overall adverse effects reported:</th>
<th>donepezil</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhea</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Agitation</td>
<td>17%</td>
<td>5%</td>
</tr>
<tr>
<td>Rhinitis</td>
<td>12%</td>
<td>10%</td>
</tr>
<tr>
<td>UTI</td>
<td>13%</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>12%</td>
<td>7%</td>
</tr>
</tbody>
</table>

Significant differences in adverse events: Frequency of adverse event was significantly higher in DON compared to placebo for headache, UTI, and those associated with digestive systems (anorexia, diarrhea, dyspepsia, nausea)

ANALYSIS:

ITT: Yes
Post randomization exclusions: Yes; 5.1% placebo and 6.5% DON

ADEQUATE RANDOMIZATION:

Yes

ADEQUATE ALLOCATION CONCEALMENT:

Method NR

BLINDING OF OUTCOME ASSESSORS:

Yes, but method NR

ATTRITION (overall):

Overall loss to follow-up: 27%

Loss to follow-up differential high: Yes but inherent differential in study design

ATTRITION (treatment specific):

<table>
<thead>
<tr>
<th>donepezil</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss to follow-up:</td>
<td></td>
</tr>
<tr>
<td>28%</td>
<td>26%</td>
</tr>
<tr>
<td>10.7%</td>
<td>7.4%</td>
</tr>
</tbody>
</table>

QUALITY RATING:

Fair

*primary outcome measures
<table>
<thead>
<tr>
<th>Efficacy/Effectiveness</th>
<th>Alzheimer Drugs</th>
</tr>
</thead>
</table>
| **STUDY:** | **Authors:** Olin & Schneider, Loy & Schneider (update)
 Year: 2004, 2005
 Country: Multinational |
| **FUNDING:** | NIMH; NIA; NIMH Clinical Antipsychotic Trials of Interventions Effectiveness |
| **DESIGN:** | **Study design:** Meta-analysis
 Number of patients: Seven trials with the number of participants ranging from 95 - 978 |
| **AIMS OF REVIEW:** | To assess the clinical effects of GAL in patients with probable AD, and to assess possible moderators of an effect. |
| **STUDIES INCLUDED IN META-ANALYSIS** | A total of 7 placebo-controlled RCT studies were included, 6 of which were Phase II or III industry-sponsored multi-center trials: Wilkinson et al. 2001; GAL Investigator’s Brochure; Wilcock 2000; Rockwood et al. 2001; Raskind et al. 2000; Tariot et al. 2000; and Kewitt et al. 1994 |
| **TIME PERIOD COVERED:** | Trials completed before May 15, 2002 included in the Specialized Register of the Cochrane Dementia and Cognitive Improvement Group |
| **CHARACTERISTICS OF INCLUDED STUDIES:** | Double-blind, parallel-group, placebo-controlled with randomized and unconfounded treatment assignment to placebo or GAL; other inclusion criteria: sample selection criteria, outcome instruments or duration specified; most of the trials of acceptable methodological quality having been designed as Phase II or III clinical trials; five trials had quality ratings of ‘A,’ the remainder had quality ratings of B because randomization schemes were not reported |
| **CHARACTERISTICS OF INCLUDED POPULATIONS:** | Elderly patients who met criteria for NINCDS/ADRDA ‘probable AD’ or DSM-III-R primary degenerative dementia of the Alzheimer’s type |
CHARACTERISTICS OF INTERVENTIONS:

Any oral dose of GAL versus placebo for a duration greater than 4 weeks; outcome measures included ADAS-Cog, CIBIC-plus, ADCS-CGIC, ADCS-ADL, DAD, and NPI)

MAIN RESULTS:

Global Rating Scales
(CIBIC-plus k = 2; ADCS-CGIC k = 4; unspecified physician global rating k = 1)

Data were dichotomized into those that had no change or improvement versus those that worsened; for ITT analyses trials of 3 months duration, doses of 18 mg/d (OR 2.44; 95% CI: 1.2 – 5.0), 24 mg/d (OR 2.11; 95% CI: 1.0 – 4.6) and 36 mg/d (OR 2.7; 95% CI: 1.2 – 6.2) revealed statistically significant benefit of GAL versus placebo; for trials of 6 months duration, 8 mg/d failed to have an effect whereas other doses demonstrated significant benefit of GAL over placebo (16mg: OR 2.04; 95% CI: 1.4 – 2.9; 24mg: OR 1.82; 95% CI: 1.4 – 2.3; 32 mg: OR 1.79; 95% CI: 1.3 – 2.4); no apparent dose-response relationship between GAL and global rating

Cognitive tests (ADAS-Cog)
ITT analyses of 6 months data revealed statistically significant benefit of GAL over placebo (8 mg: WMD -1.3; 95% CI: -2.6 – 0.03; 16 mg WMD -3.1; 95% CI: -4.1 – -2.1; 24 mg WMD -3.3; 95% CI: -3.9 – -2.7; 32 mg WMD -3.3; 95% CI: -4.1 – -2.4); the two 3 month trials also show significant benefit of GAL over placebo

Activities of Daily Living (ADCS-ADL, DAD)

One trial provided data using the ADCS-ADL scale; observed case analysis revealed statistically significant benefits of GAL (16 mg: WMD -3.5; 95% CI: -5.2 – -1.8; 24 mg: WMD -2.4; 95% CI: -4.1 – -0.07); ITT results revealed statistically significant benefit of GAL (MD = NR; OR = NR; P = NR)

Two trials provided data using DAD; in one 3 month trial, ITT results revealed statistically significant benefit of GAL (32mg: WMD 4.8; 95% CI: 2.0 – 7.5); in the 6 month trial, ITT results revealed statistically significant benefit of GAL (32 mg: WMD 3.5; 95% CI: 0.5 – 6.5)

Behavior (NPI)

Two trials provided data using the NPI; observed case analysis revealed statistically significant benefits of GAL (16 mg: WMD -2.4; 95% CI: -4.5 – -1.3; 24 mg: WMD -2.4; 95% CI: -4.6 – -0.01); ITT results revealed statistically significant benefit of GAL (MD = NR; OR = NR; P = NR)
<p>| ADVERSE EVENTS: | Three 6-month studies reported those adverse events appearing at least 5% of the time occurred more frequently in GAL versus placebo; the proportion of subjects with those adverse events was analyzed; OR >1 indicates greater adverse events for GAL; adverse events recorded (in order of magnitude of the greatest effect size by daily dose): tremor, anorexia, vomiting, nausea, weight loss, headache, abdominal pain diarrhea, dizziness, and agitation; at 8 mg/d, the differences between GAL and placebo were not significant; at 16 mg/d nausea, vomiting, and diarrhea were statistically more frequent in GAL (P = NR); at 24 mg/d nausea, vomiting, dizziness, weight loss, anorexia, tremor and headache were statistically more frequent in GAL (P = NR); at 32 mg/d nausea, vomiting, dizziness, weight loss, anorexia, abdominal pain, tremor, and headache were statistically more frequent in GAL. |
| COMPREHENSIVE LITERATURE SEARCH STRATEGY: | Refers to Cochrane Dementia and Cognitive Improvement Group search strategy; trials were selected from the Trial-based Specialized Register of the Cochrane Dementia and Cognitive Improvement Group, containing records from a number of published and unpublished electronic databases (e.g., MEDLINE, CCTR/Central, EMBASE) |
| STANDARD METHOD OF APPRAISAL OF STUDIES: | Cochrane Collaboration guidelines (Mulrow 1997) |
| QUALITY RATING: | Good |</p>
<table>
<thead>
<tr>
<th>Efficacy/Effectiveness</th>
<th>Alzheimer Drugs</th>
</tr>
</thead>
</table>
| **STUDY:** | Authors: Qizilbash *et al.*³⁶
Year: 1998
Country: NR |
| **FUNDING:** | Some authors were supported by Parke-Davis and SmithKline Beecham |
| **DESIGN:** | **Study design:** Meta-analysis of individual patient data
Number of patients: 1,984 |
| **AIMS OF REVIEW:** | To determine the effects of TAC on the symptoms of AD in terms of cognitive performance, clinical global impression, behavior, and functional autonomy |
| **STUDIES INCLUDED IN META-ANALYSIS** | A total of 12 published and unpublished studies identified from the Cochrane registry; 6 crossover studies and 6 parallel group designs |
| **TIME PERIOD COVERED:** | Trials completed before January 1, 1996 |
| **CHARACTERISTICS OF INCLUDED STUDIES:** | Randomized, double-blind, placebo-controlled trials in which TAC had been given for more than 1 day; treatment comparisons of TAC vs. placebo or TAC plus lecithin vs. lecithin were considered |
| **CHARACTERISTICS OF INCLUDED POPULATIONS:** | All patients were diagnosed as having “probable” AD according to NINCDS/ADRDA criteria |
Authors: Qizilbash et al.
Year: 1998

CHARACTERISTICS OF INTERVENTIONS:

The trials involved dosages varying from 20 to 160 mg/d, varying duration of treatment (3-36 wks), and varying times and frequencies of assessment; two studies contained more than 1 TAC group with fixed dosage regimens; in 3 of the remaining 10 studies, patients were given their “best dose” based on pre-randomization dose titration, and in the other 7 studies, patients were titrated to their best dose by the clinician after randomization, giving possible maximum dosages between 80 and 120 mg/d.

MAIN RESULTS:

- In pooled ITT analysis for MMSE scores at 12 weeks, there was a 0.62 point difference in favor of TAC relative to placebo (95% CI: 0.23 – 1.00; P = 0.002)
- The CGIC and CIBI revealed an improvement for TAC compared to placebo: OR 1.58; 95% CI: 1.18 – 2.11; P = 0.002)
- ADAS-Noncog used as a measure of behavioral disturbance showed a 0.58 difference in favor of TAC at 12 weeks (95% CI: 0.17 – 1.00; P = 0.006)
- The PDS, used in 4 studies, did not differ significantly at 6 weeks between treatment and control (difference = 0.75; 95% CI: -0.43 – 1.93; P = 0.21)

ADVERSE EVENTS:

In 5 studies with no dose titration phase prior to the main efficacy phase patients receiving TAC were significantly more likely to withdraw (OR for withdrawal from TAC compared with placebo was 3.63; 95% CI: 2.80 – 4.71; P < 0.001); reason for withdrawal was not available for all patients, but in two studies elevated transaminase levels was given as the main reason (NNT for withdrawal = 4)

COMPREHENSIVE LITERATURE SEARCH STRATEGY:

Studies were identified from the Cochrane Dementia Group database of trials by searching the terms TAC and tetrahydroaminoacridine

STANDARD METHOD OF APPRAISAL OF STUDIES:

NR

QUALITY RATING:

Fair
Efficacy/Effectiveness

| STUDY: | Authors: Raskind et al.\(^{50}\)
Year: 2000
Country: US |
| FUNDING: | Janssen Research Foundation |
| RESEARCH OBJECTIVE: | To evaluate the efficacy and safety of two doses of galantamine compared with placebo over 6 months in patients with mild to moderate AD |
| DESIGN: | Study design: RCT
Setting: Multi-center (33 sites)
Sample size: 636 |
| INTERVENTION: |
Dose:
Duration:
Sample size: |
| galantamine | 24 or 32 mg/d
6 months
212/211 (423 total) |
| placebo | N/A
6 months
213 |
INCLUSION:	History of cognitive decline that had been gradual in onset and progressive over a period of at least 6 months; diagnosis of probable AD according to the criteria of the NINCDS-ARDA; presence of mild to moderate dementia; MMSE score of 11 to 24 and a score of \(\geq 12 \) on the standard cognitive subscale of the ADAS-Cog; responsible caregiver
EXCLUSION:	Patients with evidence of any neurodegenerative disorders other than AD; cardiovascular disease thought likely to prevent completion of the study; clinically significant CVD; active major psychiatric disorders; hepatic, renal, pulmonary, metabolic or endocrine conditions or urinary outflow obstruction; active peptic ulcer; any history of epilepsy, drug abuse, or alcohol abuse; treatment for AD with a ChE inhibitor in the preceding 3 months
OTHER MEDICATIONS/INTERVENTIONS ALLOWED:	All drugs except sedative-hypnotics and sedating cough and cold remedies, which were discontinued, if possible, 48 hours before the cognitive evaluation; anticholinergic and cholinomimetic drugs avoided
Authors: Raskind et al.
Year: 2000

Groups similar at baseline: Yes
Alzheimer classification: Mild-moderate

<table>
<thead>
<tr>
<th></th>
<th>galantamine 24 mg/d</th>
<th>galantamine 32 mg/d</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (years):</td>
<td>75.9</td>
<td>75.0</td>
<td>75.3</td>
</tr>
<tr>
<td>Sex (% female):</td>
<td>65.6</td>
<td>58.8</td>
<td>61.5</td>
</tr>
<tr>
<td>Ethnicity (% white):</td>
<td>92</td>
<td>90</td>
<td>92</td>
</tr>
<tr>
<td>Other germane population qualities:</td>
<td>94.3%</td>
<td>91.9%</td>
<td>95.3%</td>
</tr>
<tr>
<td>MMSE score</td>
<td>19.5</td>
<td>19.1</td>
<td>19.2</td>
</tr>
</tbody>
</table>

OUTCOME ASSESSMENT:

Primary Outcome Measures: ADAS-Cog 11; CIBIC-plus

Secondary Outcome Measures: ADAS-Cog 13; ADAS-Cog 11 responders (≥ 4 point improvement); DAD

Timing of assessments: Baseline and 3 weeks, 3 months, 6 months

RESULTS:

Health Outcome Measures:
- No significant differences between treatment groups in the mean change in total DAD score from baseline

Intermediate Outcome Measures:
- ADAS-Cog 13: NR
- GAL-treated patients showed significantly improved cognitive function relative to placebo (3.9 pts (lower dose) and 3.8 (higher dose) on the ADAS-Cog 11 (P < 0.001) for observed cases analysis); ITT analysis also was significant but showed smaller differences 0.1 pts (lower dose) and 3.4 pts (higher dose) difference relative to placebo
- Significantly more ADAS-Cog 11 responders for both doses of GAL compared to placebo (P < 0.001)
- Better outcome on CIBIC-plus than placebo (P < 0.05)
Authors: Raskind et al.
Year: 2000

ADVERSE EVENTS:

<table>
<thead>
<tr>
<th>Overall adverse effects reported:</th>
<th>galantamine 24 mg/d</th>
<th>galantamine 32 mg/d</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea</td>
<td>92.0%</td>
<td>92.4%</td>
<td>78.9%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>37.3%</td>
<td>43.6%</td>
<td>13.1%</td>
</tr>
<tr>
<td>Dizziness</td>
<td>20.8%</td>
<td>25.6%</td>
<td>7.5%</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>13.7%</td>
<td>18.5%</td>
<td>11.3%</td>
</tr>
<tr>
<td>Anorexia</td>
<td>12.3%</td>
<td>19.4%</td>
<td>9.9%</td>
</tr>
<tr>
<td>Weight loss</td>
<td>13.7%</td>
<td>20.4%</td>
<td>5.6%</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>12.3%</td>
<td>10.9%</td>
<td>4.7%</td>
</tr>
<tr>
<td></td>
<td>6.6%</td>
<td>10.9%</td>
<td>4.2%</td>
</tr>
</tbody>
</table>

Significant differences in adverse events: NR

ANALYSIS:

- **ITT:** Yes
- **Post randomization exclusions:** NR

ADEQUATE RANDOMIZATION:

Yes

ADEQUATE ALLOCATION CONCEALMENT:

Yes

BLINDING OF OUTCOME ASSESSORS:

Yes

ATTRITION (overall):

- Overall loss to follow-up: 31.1%
- Loss to follow-up differential high: Yes

ATTRITION (treatment specific):

<table>
<thead>
<tr>
<th>galantamine 24 mg/d</th>
<th>galantamine 32 mg/d</th>
<th>placebo</th>
</tr>
</thead>
</table>
| Loss to follow-up: | Overall loss to follow-up: 31.1%
| 32.1% | 42.2% | 19.2% |
| 23.1% | 31.8% | 7.5% |

QUALITY RATING:

Fair

*primary outcome measures
Efficacy/Effectiveness

<table>
<thead>
<tr>
<th>Alzheimer Drugs</th>
<th></th>
</tr>
</thead>
</table>
| **STUDY:** | **Author and Year:** Reisberg et al., 2003; Rive et al., 2004; Doody et al., 2004⁷⁷
Country: US |
| **FUNDING:** | Merz Pharmaceuticals; NIH |
| **RESEARCH OBJECTIVE:** | To assess the efficacy of MEM in outpatients with moderate to severe AD |
| **DESIGN:** | **Study design:** RCT
Setting: Multi-center (32)
Sample size: 252 |
| **INTERVENTION:** |
Dose: memantine
20 mg/d
28 weeks
126
placebo
N/A
28 weeks
126 |
| **INCLUSION:** | Probable AD according to DSM-IV and NINCDS/ARDA criteria; baseline MMSE scores of 3 - 14; stage of 5 or 6 on the GDS; stage of 6a or greater on the Functional Assessment Staging Instrument; reliable caregivers; CT or MRI of the brain within previous 12 months |
| **EXCLUSION:** | VaD; clinically significant neurological or medical diseases; clinically significant co-existing medical conditions |
| **OTHER MEDICATIONS/INTERVENTIONS ALLOWED:** | Antidepressive treatment and chloral hydrate allowed; anticonvulsant, antiparkinson, hypnotic, anxiolytic, and neuroleptic agents not allowed |
Authors and Year: Reisberg et al. 2003; Rive et al. 2004; Doody et al. 2004

POPULATION CHARACTERISTICS:

<table>
<thead>
<tr>
<th></th>
<th>Groups similar at baseline: Yes</th>
<th>Alzheimer classification: Moderate-severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (years):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex (% female):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethnicity:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• White</td>
<td>88.9%</td>
<td>91.3%</td>
</tr>
<tr>
<td>• Black</td>
<td>4.0%</td>
<td>4.8%</td>
</tr>
<tr>
<td>• Other</td>
<td>7.1%</td>
<td>3.9%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other germane population qualities:</th>
<th>memantine</th>
<th>placebo</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSE score</td>
<td>NR</td>
<td>NR</td>
<td>76.1</td>
</tr>
</tbody>
</table>

OUTCOME ASSESSMENT:

<table>
<thead>
<tr>
<th>Primary Outcome Measures:</th>
<th>CIBIC-Plus; ADCS-ADL modified for severe dementia (ADCS-ADLsev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary Outcome Measures:</td>
<td>SIB; MMSE; GDS; FAST; NPI; Resource Utilization in Dementia; G2 scale</td>
</tr>
</tbody>
</table>

| Timing of assessments: | Baseline and weeks 12 and 28 |

RESULTS:

<table>
<thead>
<tr>
<th>Health Outcome Measures:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MEM patients had significantly less deterioration on ADCS/ADL (difference 2.1; P = 0.02)</td>
<td></td>
</tr>
<tr>
<td>Caregivers spent significantly less time (45.8 hours/mo) with patients receiving MEM (P = 0.01)</td>
<td></td>
</tr>
<tr>
<td>FAST (P = 0.02) was significantly less deteriorated for MEM patients</td>
<td></td>
</tr>
<tr>
<td>No significant differences in NPI</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intermediate Outcome Measures:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MEM was not significantly different from placebo on the CIBIC-PLUS (difference 0.3; P = 0.06)*</td>
<td></td>
</tr>
<tr>
<td>SIB (P = 0.002) was significantly less deteriorated for MEM patients</td>
<td></td>
</tr>
<tr>
<td>No significant differences in MMSE</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Single item analysis of the ADL scales:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MEM showed an advantage over all 19 items of the ADCS-ADL</td>
<td></td>
</tr>
<tr>
<td>“Makes conversation”, “clears the table” and “disposes of litter” were significantly better in MEM (P < 0.05 for all 3)</td>
<td></td>
</tr>
<tr>
<td>MEM showed a statistically significant improvement in 6 out of 17 items of functional capacity using the G2 scale, including stand up, move, dress, eat, take in fluid and use the toilet</td>
<td></td>
</tr>
</tbody>
</table>
Authors and Year: Reisberg et al. 2003; Rive et al. 2004; Doody et al. 2004

<table>
<thead>
<tr>
<th>ADVERSE EVENTS:</th>
<th>memantine</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall adverse effects reported:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Agitation</td>
<td>84%</td>
<td>87%</td>
</tr>
<tr>
<td>• Insomnia</td>
<td>18%</td>
<td>32%</td>
</tr>
<tr>
<td>• Diarrhea</td>
<td>10%</td>
<td>8%</td>
</tr>
</tbody>
</table>

Significant differences in adverse events:	No significant differences in adverse events	
ANALYSIS:	ITT: Yes	
Post randomization exclusions:	NR	
ADEQUATE RANDOMIZATION:	Yes	
ADEQUATE ALLOCATION CONCEALMENT:	NR	
BLINDING OF OUTCOME ASSESSORS:	Method not reported	
ATTRITION (overall):	Overall loss to follow-up: 28.2%	
Loss to follow-up differential high:	No	
ATTRITION (treatment specific):		
Loss to follow-up:		
Withdrawals due to adverse events:		
memantine	23.0%	10%
placebo	33.3%	17%
QUALITY RATING:	Fair	

*primary outcome measures
Efficacy/Effectiveness

<table>
<thead>
<tr>
<th>STUDY:</th>
<th>Authors and Year: Rockwood et al., 2001; Markowitz et al., 2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country:</td>
<td>Multinational</td>
</tr>
</tbody>
</table>

| **FUNDING:** | Janssen Research Foundation |

| **RESEARCH OBJECTIVE:** | To assess the efficacy and safety of GAL in AD |

<table>
<thead>
<tr>
<th>DESIGN:</th>
<th>Study design: RCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting:</td>
<td>Multi-center (43 centers in 6 countries)</td>
</tr>
<tr>
<td>Sample size:</td>
<td>386</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INTERVENTION:</th>
<th>galantamine</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose:</td>
<td>24 – 32 mg/d</td>
<td>N/A</td>
</tr>
<tr>
<td>Duration:</td>
<td>3 months</td>
<td>3 months</td>
</tr>
<tr>
<td>Sample size:</td>
<td>261</td>
<td>125</td>
</tr>
</tbody>
</table>

| **INCLUSION:** | History of cognitive decline over the last 6 months; diagnosis of probable AD according to NINCDS/ADRDA; presence of mild to moderate dementia; MMSE of 11-24; ≥ 2 on ADAS-Cog; contact with a responsible caregiver |

| **EXCLUSION:** | Concomitant medical disease; other neurodegenerative disorder; previously treated with cholinomimetic agents except muscarinic agonists |

| **OTHER MEDICATIONS/INTERVENTIONS ALLOWED:** | All drugs except anticholinergic or cholinomimetic drugs were permitted; psychotropic drugs had to be discontinued 48 hours before cognitive evaluation |
Authors and Year: Rockwood et al. 2001; Markowitz et al. 2003

POPULATION CHARACTERISTICS:

<table>
<thead>
<tr>
<th>Mean age (years):</th>
<th>galantamine</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex (% female):</td>
<td>75.2</td>
<td>74.6</td>
</tr>
<tr>
<td>Ethnicity:</td>
<td>56.7</td>
<td>53.6</td>
</tr>
<tr>
<td>Other germane population qualities:</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>• Other medical conditions</td>
<td>90.0%</td>
<td>89.6%</td>
</tr>
<tr>
<td>• MMSE score</td>
<td>19.6</td>
<td>19.7</td>
</tr>
</tbody>
</table>

Groups similar at baseline: Yes

Alzheimer classification: Mild-moderate

OUTCOME ASSESSMENT:

Primary Outcome Measures: ADAS-Cog 11; CIBIC-plus

Secondary Outcome Measures: ADAS-Cog 13; ADAS-Cog 11 responders (≥ 4 point improvement); NPI; DAD; PSQI; NPI sleep score

Timing of assessments: Baseline and months 1 and 3

RESULTS:

Health Outcome Measures:

- Activities of daily living were significantly better in GAL group than in placebo group (DAD score: +4.3 points; P = 0.004)
- No significant differences in sleep quality between groups (PSQI: P = 0.929; NPI sleep score: P = 0.929)
- No significant differences in behavioral symptoms between GAL and placebo (NPI mean change)

Intermediate Outcome Measures:

- GAL-treated patients showed significantly superior cognitive functions compared to placebo (ADAS-Cog 11: +1.6 points; P < 0.001; ADAS-Cog 13: P = 0.004)*
- Overall clinical response was significantly better in GAL group than in placebo group (CIBIC-plus: P = 0.003)*
- No significant differences in the number of ADAS-Cog 11 responders for ITT analysis; significantly more responders for observed cases analysis (P = 0.02)
<table>
<thead>
<tr>
<th>ADVERSE EVENTS:</th>
<th>overall adverse effects reported:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>galantamine</td>
</tr>
<tr>
<td>Nausea</td>
<td>86.2%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>32.2%</td>
</tr>
<tr>
<td>Dizziness</td>
<td>14.6%</td>
</tr>
<tr>
<td>Anorexia</td>
<td>14.9%</td>
</tr>
<tr>
<td></td>
<td>11.9%</td>
</tr>
<tr>
<td>Significant differences in adverse events:</td>
<td>NR</td>
</tr>
</tbody>
</table>

ANALYSIS:
- ITT: Yes
- Post randomization exclusions: Yes (4)

ADEQUATE RANDOMIZATION:
Yes

ADEQUATE ALLOCATION CONCEALMENT:
Yes

BLINDING OF OUTCOME ASSESSORS:
Yes

ATTRITION (overall):
- Overall loss to follow-up: 25%
- Loss to follow-up differential high: Yes (23.3 percentage point difference)

ATTRITION (treatment specific):
- Loss to follow-up:
 - galantamine: 32.9%
 - placebo: 9.6%
- Withdrawals due to adverse events:
 - galantamine: 25.3%
 - placebo: 4.0%

QUALITY RATING:
Fair

*primary outcome measures
Efficacy/Effectiveness

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| **STUDY:** | Authors: Rogers et al.\(^\text{35}\)
Year: 1996
Country: US |
| **FUNDING:** | Eisai America, Inc., Teaneck, NJ, USA and Eisai Co Ltd., Tokyo, Japan |
| **RESEARCH OBJECTIVE:** | To evaluate the efficacy and safety of DON in patients with mild to moderately severe AD and to examine the relationships between plasma DON concentration, red blood cell AChE activity and clinical response |
| **DESIGN:** | Study design: RCT
Setting: Multi-center
Sample size: 161 |
| **INCLUSION:** | Male and female subjects ages 55-85 with established diagnosis of mild to moderately severe AD for at least 1 year prior to study; MMSE between 18 and 26 and CDR of 1 or 2; fully ambulatory or able to walk with assistive device and had vision and hearing sufficient for compliance with test procedures; females at least 2 years post-menopausal or surgically sterile; presence of AD supported by CT or MRI |
| **EXCLUSION:** | Patients with other psychiatric or neurological disorders who had had clinically significant or active gastrointestinal, renal, hepatic, endocrine or cardiovascular diseases or any form of diabetes, obstructive pulmonary disease, hematologic or oncologic disorders of recent onset (≤ 2 years); vitamin B\(_12\) or folate deficiency; alcohol or drug abuse; hypersensitivity to ChE inhibitor; used investigational drug |
| **OTHER MEDICATIONS/INTERVENTIONS ALLOWED:** | NR |

<table>
<thead>
<tr>
<th></th>
<th>donepezil</th>
<th>donepezil</th>
<th>donepezil</th>
<th>placebo</th>
</tr>
</thead>
</table>
| **Dose:** | 1 mg
12 weeks | 3 mg
12 weeks | 5 mg
12 weeks | N/A
12 weeks |
| **Duration:** | 42 | 40 | 39 | 40 |
| **Sample size:** | 42 | 40 | 39 | 40 |
Authors: Rogers et al.
Year: 1996

| POPULATION CHARACTERISTICS: | Groups similar at baseline: Yes
<table>
<thead>
<tr>
<th></th>
<th>Alzheimer classification: Mild to moderately severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (years):</td>
<td></td>
</tr>
<tr>
<td>Sex (% female):</td>
<td></td>
</tr>
<tr>
<td>Ethnicity:</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>97.6%</td>
</tr>
<tr>
<td>Black</td>
<td>2.4%</td>
</tr>
<tr>
<td>Other</td>
<td>0%</td>
</tr>
<tr>
<td>Other germane population qualities:</td>
<td></td>
</tr>
</tbody>
</table>

| OUTCOME ASSESSMENT: | Primary Outcome Measures: ADAS-Cog; CGIC
| | Secondary Outcome Measures: ADL; MMSE; CDR-SB; QOL-P (patient); QOL-C (caregiver)
| | Timing of assessments: Screening visit, baseline, and weeks 1, 3, 6, 9, 12 and 14

| RESULTS: | Health Outcome Measures:
| | No significant differences between DON and placebo in quality of life (patient and caregiver) and activities of daily living measures
| | Intermediate Outcome Measures:
| | DON 3 mg/d and 5 mg/d treated patients showed statistically significantly better ADAS-Cog scores than placebo-treated patients at endpoint (P = 0.036 and P = 0.002, respectively)*; significant differences observed beginning at week 3
| | No significant differences between DON and placebo in CGIC at endpoint*
| | No significant differences between DON and placebo on MMSE and CDR-SB

<table>
<thead>
<tr>
<th>donepezil 1mg</th>
<th>donepezil 3mg</th>
<th>donepezil 5 mg</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>72.6</td>
<td>71.0</td>
<td>72.9</td>
<td>70.6</td>
</tr>
<tr>
<td>72.5</td>
<td>55</td>
<td>62.5</td>
<td>52.6</td>
</tr>
<tr>
<td>97.6%</td>
<td>92.5%</td>
<td>94.9%</td>
<td>100%</td>
</tr>
<tr>
<td>2.4%</td>
<td>7.5%</td>
<td>2.6%</td>
<td>0%</td>
</tr>
<tr>
<td>0%</td>
<td>0%</td>
<td>2.6%</td>
<td>0%</td>
</tr>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>
ADVERSE EVENTS:

<table>
<thead>
<tr>
<th>Overall adverse effects reported:</th>
<th>donepezil 1mg</th>
<th>donepezil 3mg</th>
<th>donepezil 5 mg</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea/vomiting</td>
<td>64%</td>
<td>68%</td>
<td>67%</td>
<td>65%</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>7%</td>
<td>0%</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td>Dizziness</td>
<td>0%</td>
<td>3%</td>
<td>10%</td>
<td>3%</td>
</tr>
<tr>
<td>Nasal congestion</td>
<td>5%</td>
<td>3%</td>
<td>8%</td>
<td>10%</td>
</tr>
<tr>
<td>Common cold</td>
<td>2%</td>
<td>13%</td>
<td>5%</td>
<td>8%</td>
</tr>
<tr>
<td>Headache</td>
<td>10%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Flushing</td>
<td>10%</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Coughing</td>
<td>2%</td>
<td>10%</td>
<td>3%</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>2%</td>
<td>3%</td>
<td>10%</td>
<td>3%</td>
</tr>
</tbody>
</table>

Significant differences in adverse events: NR

ANALYSIS:

<table>
<thead>
<tr>
<th>ITT: Yes</th>
<th>Post randomization exclusions: NR</th>
</tr>
</thead>
</table>

ADEQUATE RANDOMIZATION:

Method not reported but groups well balanced

ADEQUATE ALLOCATION CONCEALMENT:

Method not reported

BLINDING OF OUTCOME ASSESSORS:

Yes

ATTRITION (overall):

Overall loss to follow-up: 12.4%

Loss to follow-up differential high: No

ATTRITION (treatment specific):

<table>
<thead>
<tr>
<th>Loss to follow-up:</th>
<th>donepezil 1mg</th>
<th>donepezil 3mg</th>
<th>donepezil 5 mg</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Withdrawals due to adverse events:</td>
<td>19%</td>
<td>5%</td>
<td>12.8%</td>
<td>12.5%</td>
</tr>
<tr>
<td>11.9%</td>
<td>5%</td>
<td>7.7%</td>
<td>5%</td>
<td></td>
</tr>
</tbody>
</table>

QUALITY RATING:

Fair
Efficacy/Effectiveness

Alzheimer Drugs

| STUDY: | Authors: Rogers et al.43
Year: 1998
Country: US |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNDING:</td>
<td>Eisai Inc, Teaneck NJ and Eisai Co Ltd, Tokyo Japan</td>
</tr>
<tr>
<td>RESEARCH OBJECTIVE:</td>
<td>To examine the efficacy and safety of DON in treatment of mild to moderately severe AD</td>
</tr>
</tbody>
</table>
| DESIGN: | Study design: RCT
Setting: Multi-center (23 clinical centers)
Sample size: 468 |
| INTERVENTION: | **donepezil 5 mg**
Dose: 5 mg/d
Duration: 12 weeks
Sample size: 157 |
| | **donepezil 10 mg**
Dose: 10 mg/d
Duration: 12 weeks
Sample size: 158 |
| | **placebo**
Dose: N/A
Duration: 12 weeks
Sample size: 153 |
| INCLUSION: | ≥50 yrs old; diagnosis of probable AD consistent with NINCDS and DSM-IV criteria; mild to moderately severe disease based on MMSE scores of 10-26; CDR scores of 1 or 2 |
| EXCLUSION: | Major medical illness – diabetes, COPD, asthma, hematologic or oncologic disorders; vitamin B\textsubscript{12} or folate deficiency; gastrointestinal, renal, hepatic, endocrine, or cardiovascular disease; evidence of other psychiatric or neurological disorders; HIS score > 5; known hypersensitivity to ChE inhibitors |
| OTHER MEDICATIONS/INTERVENTIONS ALLOWED: | Occasional use of hypnotics and cold preparations allowed; concomitant medications that could affect the central nervous system or interfere with efficacy assessments (anticholinergic, cholinomimetic, anticonvulsant, antidepressant, antipsychotic, antianxiety, stimulating agents, anti-Parkinsonian) and certain antihypertensives were prohibited |
Authors: Rogers et al.
Year: 1998

POPULATION CHARACTERISTICS:

<table>
<thead>
<tr>
<th></th>
<th>Groups similar at baseline: Yes</th>
<th>Alzheimer classification: Mild to moderate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (years):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex (% female):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethnicity:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other germane population qualities:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean baseline MMSE</td>
<td>19.39</td>
<td>19.35</td>
</tr>
</tbody>
</table>

OUTCOME ASSESSMENT:

Primary Outcome Measures: ADAS-Cog; CIBIC-plus

Secondary Outcome Measures: MMSE; CDR-SB; unspecified 7-item QOL scale

Timing of assessments: Baseline and three week intervals throughout trial

RESULTS:

Health Outcome Measures:
- Mean QOL score was significantly better than placebo for DON 10 mg/d ($P = 0.02$) but not 5 mg/d

Intermediate Outcome Measures:
- Mean change in ADAS-Cog: -2.1 for the 5 mg/d DON group (95% CI: -3.59 – -1.29) and -2.7 for the 10 mg/d DON group (95% CI: -4.22 – -1.92); both were significantly better than the mean change for placebo (0.4, $P < 0.001$)*
- CIBIC-plus was 3.9 for the 5 mg/d DON group and 3.8 for the 10 mg/d DON group; both were significantly better than placebo score of 4.2. ($P = 0.003$ for 5 mg/d and $P = 0.08$ for 10 mg/d)*
- MMSE significantly better for DON (both doses) compared to placebo ($P < 0.004$)
- No differences in CDR-SB at endpoint

<table>
<thead>
<tr>
<th></th>
<th>donepezil 5 mg</th>
<th>donepezil 10 mg</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>69</td>
<td>61</td>
<td>61</td>
</tr>
<tr>
<td>Ethnicity:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>95%</td>
<td>96%</td>
<td>96%</td>
</tr>
<tr>
<td>Black</td>
<td>4%</td>
<td>1%</td>
<td>4%</td>
</tr>
<tr>
<td>Other</td>
<td>1%</td>
<td>3%</td>
<td>0%</td>
</tr>
<tr>
<td>Mean baseline MMSE</td>
<td>19.39</td>
<td>19.35</td>
<td>19.8</td>
</tr>
</tbody>
</table>
Authors: Rogers et al.
Year: 1998

<table>
<thead>
<tr>
<th>ADVERSE EVENTS:</th>
<th>donepezil 5 mg</th>
<th>donepezil 10 mg</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall adverse effects reported:</td>
<td>68%</td>
<td>78%</td>
<td>69%</td>
</tr>
<tr>
<td>• Nausea</td>
<td>7%</td>
<td>22%</td>
<td>8%</td>
</tr>
<tr>
<td>• Insomnia</td>
<td>8%</td>
<td>18%</td>
<td>5%</td>
</tr>
<tr>
<td>• Diarrhea</td>
<td>6%</td>
<td>13%</td>
<td>3%</td>
</tr>
<tr>
<td>• UTI</td>
<td>6%</td>
<td>4%</td>
<td>13%</td>
</tr>
</tbody>
</table>

Significant differences in adverse events: Nausea, insomnia and diarrhea were significantly more common in patients taking high dose DON than patients taking placebo (P < 0.001); placebo treated patients had significantly more UTI’s (P = 0.009)

ANALYSIS:
ITT: Yes
Post randomization exclusions: Yes

ADEQUATE RANDOMIZATION: Method not reported

ADEQUATE ALLOCATION CONCEALMENT: Yes

BLINDING OF OUTCOME ASSESSORS: Yes

ATTRITION (overall):
Overall loss to follow-up: 56 (12%)
Loss to follow-up differential high: No

ATTRITION (treatment specific):
Loss to follow-up:
Withdrawals due to adverse events:
<table>
<thead>
<tr>
<th>donepezil 5 mg</th>
<th>donepezil 10 mg</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 (10%)</td>
<td>29 (18%)</td>
<td>11 (7%)</td>
</tr>
<tr>
<td>7 (4%)</td>
<td>16 (10%)</td>
<td>3 (2%)</td>
</tr>
</tbody>
</table>

QUALITY RATING: Fair

*primary outcome measures
Efficacy/Effectiveness

| STUDY: | Authors: Rogers et al.
Year: 1998
Country: US |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNDING:</td>
<td>Eisai Inc.</td>
</tr>
<tr>
<td>RESEARCH OBJECTIVE:</td>
<td>To study the efficacy and safety of DON for patients with mild to moderate AD</td>
</tr>
</tbody>
</table>
| DESIGN: | Study design: RCT
Setting: Multi-center (20 sites)
Sample size: 473 |
| INTERVENTION: |
| **Dose:** | donepezil
5 mg/d
24 weeks
154 | donepezil
10 mg/d
24 weeks
157 | placebo
N/A
24 weeks
162 |
<p>| Sample size: | |
| INCLUSION: | Men and women of any race ≥ 50 yrs old diagnosed with uncomplicated AD; probable AD diagnosed by NINCDS guidelines; MMSE score of 10 – 26; CDR score of 1 or 2 |
| EXCLUSION: | Patients with evidence of insulin dependent diabetes, mellitus or other endocrine disorders; asthma, obstructive pulmonary disease or clinically significant uncontrolled gastrointestinal, hepatic, or cardiovascular diseases; patients with hypersensitivity to ChE inhibitors or taking TAC within 1 month of baseline were excluded |
| OTHER MEDICATIONS/INTERVENTIONS ALLOWED: | Concomitant medications such as anticholinergics, anticonvulsants, antidepressants, and antipsychotics were not allowed; drugs with central nervous system activity were either prohibited or partially prohibited; all other drugs allowed |</p>
<table>
<thead>
<tr>
<th>POPULATION CHARACTERISTICS:</th>
<th>Groups similar at baseline: No; mean age of DON 10 mg/d group was 2 years older than placebo (P = 0.03)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alzheimer classification: Mild-moderate</td>
</tr>
<tr>
<td>Mean age (years):</td>
<td>donepezil 5mg</td>
</tr>
<tr>
<td>Sex (% female):</td>
<td>72.9</td>
</tr>
<tr>
<td>Ethnicity:</td>
<td>63</td>
</tr>
<tr>
<td>• White</td>
<td>95%</td>
</tr>
<tr>
<td>• Black</td>
<td>3%</td>
</tr>
<tr>
<td>• Other</td>
<td>2%</td>
</tr>
<tr>
<td>Other germane population qualities:</td>
<td>Mean baseline MMSE</td>
</tr>
<tr>
<td></td>
<td>19.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OUTCOME ASSESSMENT:</th>
<th>Primary Outcome Measures: ADAS-Cog; CIBIC-plus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary Outcome Measures:</td>
<td>MMSE; QOL; CDR-SB</td>
</tr>
<tr>
<td>Timing of assessments:</td>
<td>Baseline and every 6 weeks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RESULTS:</th>
<th>Health Outcome Measures:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 mg/d DON-treated patients showed significant improvement in QOL score compared to placebo at week-24 (P < 0.05); no statistically significant differences for DON 10 mg/d</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intermediate Outcome Measures:</th>
<th>5 mg/d and 10mg/d DON-treated patients had significantly less ADAS-Cog deterioration than placebo at 24 weeks (mean difference of -2.49 and -2.88, respectively; P < 0.0001)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 mg/d and 10 mg/d DON-treated patients had significantly better CIBIC-plus scores than placebo at 24 weeks (mean difference of 0.36 and 0.44, respectively; P < 0.005)*</td>
</tr>
<tr>
<td></td>
<td>5 mg/d and 10 mg/d DON-treated patients had significantly better MMSE scores than placebo at 24 weeks (mean difference of 1.21 and 1.36, respectively; P < 0.001)</td>
</tr>
<tr>
<td></td>
<td>5 mg/d and 10 mg/d DON-treated patients had significantly better CDR-SB scores than placebo at 24 weeks (mean difference of 0.59 and 0.60, respectively; P < 0.001)</td>
</tr>
</tbody>
</table>
ADVERSE EVENTS:

Overall adverse effects reported:
- Fatigue
- Diarrhea
- Nausea
- Vomiting
- Muscle cramps
- Dizziness

<table>
<thead>
<tr>
<th></th>
<th>donepezil 5mg</th>
<th>donepezil 10mg</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>5%</td>
<td>8%</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>9%</td>
<td>17%</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td>4%</td>
<td>17%</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>3%</td>
<td>10%</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>6%</td>
<td>7%</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>8%</td>
<td>1%</td>
<td></td>
</tr>
</tbody>
</table>

Significant differences in adverse events: Yes; DON 10 mg/d had significantly more reports of fatigue, diarrhea, nausea, vomiting and muscle cramps (P ≤ 0.05)

ANALYSIS:
- ITT: Yes
- Post randomization exclusions: NR

ADEQUATE RANDOMIZATION:
- Yes

ADEQUATE ALLOCATION CONCEALMENT:
- NR

BLINDING OF OUTCOME ASSESSORS:
- NR

ATTRITION (overall):
- Overall loss to follow-up: 22%
- Loss to follow-up differential high: No (< 15 percentage point differential)

<table>
<thead>
<tr>
<th></th>
<th>donepezil 5mg</th>
<th>donepezil 10mg</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>15%</td>
<td>32%</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>6%</td>
<td>16%</td>
<td>7%</td>
<td></td>
</tr>
</tbody>
</table>

ATTRITION (treatment specific):

Loss to follow-up:
Withdrawals due to adverse events:

QUALITY RATING:
- Fair

*primary outcome measures
Efficacy/Effectiveness

Alzheimer Drugs

| STUDY: | Authors: Rösler et al.
Year: 1999
Country: Europe and North America |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNDING:</td>
<td>Novartis Pharma AG, Basle, Switzerland</td>
</tr>
<tr>
<td>RESEARCH OBJECTIVE:</td>
<td>To assess the effects of RIV on the core domains of AD</td>
</tr>
</tbody>
</table>
| DESIGN: | Study design: RCT
Setting: Multi-center (45 centers in North America and Europe)
Sample size: 725 |
| INTERVENTION: | Dose: rivastigmine 1-4 mg/d
Duration: 1-4 mg/d
26 weeks
Sample size: 243
rivastigmine 6-12 mg/d
6-12 mg/d
26 weeks
Sample size: 243
placebo
N/A
26 weeks
Sample size: 239 |
| INCLUSION: | 50-85 years of age; not able to bear children; met DSM-IV criteria for Alzheimer’s type dementia; met criteria for probable AD according to NINCDS/ADRDA; MMSE scores of 10-26; had a responsible caregiver |
| EXCLUSION: | Severe and unstable cardiac disease; severe COPD; life threatening conditions |
| OTHER MEDICATIONS/INTERVENTIONS ALLOWED: | Drugs for coexisting diseases allowed except anticholinergic drugs, health food supplements containing ACh precursors, putative memory enhancers, insulin, and psychotropic drugs |
Authors: Rösler et al.
Year: 1999

POPULATION CHARACTERISTICS:

<table>
<thead>
<tr>
<th>Mean age (years):</th>
<th>Sex (% female):</th>
<th>Ethnicity:</th>
<th>Other germane population qualities:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Baseline ADAS-Cog</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Baseline PDS</td>
</tr>
</tbody>
</table>

Groups similar at baseline: Yes
Alzheimer classification: Mild to moderately severe

<table>
<thead>
<tr>
<th>rivastigmine 1-4 mg/d</th>
<th>rivastigmine 6-12 mg/d</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>23.87</td>
<td>23.57</td>
<td>23.29</td>
</tr>
<tr>
<td>53.8</td>
<td>55.22</td>
<td>54.1</td>
</tr>
</tbody>
</table>

OUTCOME ASSESSMENT:

Primary Outcome Measures: ADAS-Cog; PDS; CIBIC
Secondary Outcome Measures: MMSE; GDS
Timing of assessments: Primary outcome measures at baseline and weeks 12, 18 and 26; secondary outcome measures at baseline and week 26

RESULTS:

Health Outcome Measures:
- Scores on PDS improved in patients taking high dose RIV when compared with placebo, $P < 0.05$ (LOCF analysis); no significant difference observed between low dose RIV and placebo, $P > 0.05^*$
- PDS scores significantly more improved for high dose RIV compared to placebo ($P < 0.05$) but not for low dose RIV

Intermediate Outcome Measures:
- Scores on ADAS-Cog improved in patients taking high dose RIV (6-12 mg/d) when compared with placebo, $P < 0.05$ (LOCF analysis); no significant difference observed between low dose RIV (1-4 mg/d) and placebo, $P > 0.05^*$
- Scores on CIBIC improved in patients taking high dose RIV when compared to placebo, $P < 0.001$; no significant difference observed between low dose RIV and placebo, $P > 0.05^*$
- MMSE scores significantly more improved for high dose RIV compared to placebo ($P < 0.05$) but not for low dose RIV
ADVERSE EVENTS:

<table>
<thead>
<tr>
<th>Overall adverse effects reported:</th>
<th>rivastigmine 1-4 mg/d</th>
<th>rivastigmine 6-12 mg/d</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea</td>
<td>71%</td>
<td>91%</td>
<td>72%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>17%</td>
<td>50%</td>
<td>10%</td>
</tr>
<tr>
<td>Dizziness</td>
<td>8%</td>
<td>34%</td>
<td>6%</td>
</tr>
<tr>
<td>Headache</td>
<td>10%</td>
<td>20%</td>
<td>7%</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>7%</td>
<td>19%</td>
<td>8%</td>
</tr>
<tr>
<td>Anorexia</td>
<td>3%</td>
<td>14%</td>
<td>2%</td>
</tr>
<tr>
<td>Abdominal Pain</td>
<td>10%</td>
<td>17%</td>
<td>9%</td>
</tr>
<tr>
<td>Fatigue</td>
<td>5%</td>
<td>12%</td>
<td>3%</td>
</tr>
<tr>
<td>Malaise</td>
<td>2%</td>
<td>10%</td>
<td>3%</td>
</tr>
</tbody>
</table>

Significant differences in adverse events:

All adverse events occurred significantly more often for high dose RIV than placebo (P < 0.05); nausea occurred significantly more often for low dose RIV than placebo (P < 0.05)

ANALYSIS:

ITT: Yes

Post randomization exclusions: NR

ADEQUATE RANDOMIZATION:

Yes, computer generated

ADEQUATE ALLOCATION CONCEALMENT:

Yes

BLINDING OF OUTCOME ASSESSORS:

Yes, but method not described

ATTRITION (overall):

Overall loss to follow-up: 144 (20%)
Loss to follow-up differential high: Yes

<table>
<thead>
<tr>
<th>Withdrawals due to adverse events:</th>
<th>rivastigmine 1-4 mg/d</th>
<th>rivastigmine 6-12 mg/d</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14%</td>
<td>33%</td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td>7%</td>
<td>23%</td>
<td>7%</td>
</tr>
</tbody>
</table>

ATTRITION (treatment specific):

Loss to follow-up:

Withdrawals due to adverse events:

QUALITY RATING:

Fair

*primary outcome measures
Efficacy/Effectiveness

| **STUDY:** | Authors: Schneider et al.; Potkin et al.; Burns et al.
Year: 1998; 2002; 2004
Country: Multinational |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNDING:</td>
<td>Novartis Pharmaceutical</td>
</tr>
</tbody>
</table>
| **DESIGN:** | Study design: Meta-analysis
Number of patients: 2,126 |
<p>| AIMS OF REVIEW: | To assess the efficacy of RIV in patients with mild to moderately severe probable AD. |
| STUDIES INCLUDED IN META-ANALYSIS | Three RCTs (2 published Rosler 1998, Corey-Bloom 1998; 1 unpublished) |
| TIME PERIOD COVERED: | NR |
| CHARACTERISTICS OF INCLUDED STUDIES: | Randomized, controlled, double-blinded trials with 26 weeks study durations. Unpublished trial was fixed dose (3mg, 6mg, 9mg); published trials partially flexible (1-4mg, 6-12mg) |
| CHARACTERISTICS OF INCLUDED POPULATIONS: | Patients with mild to moderately severe probable AD (DSM-IV); at least 50 years of age (mean age = 73); MMSE scores between 10 and 26; responsible caregivers; patients with concomitant diseases were included unless the condition was unstable or severe; most medications allowed |
| Authors: Schneider et al; Potkin et al.; Burns et al. |
| Years: 1998; 2002; 2004 |
| CHARACTERISTICS OF INTERVENTIONS: | RIV 1-4 mg/d or 6-12 mg/d (published trials) or 3 mg/d, 6 mg/d, 12 mg/d (unpublished) for 26 weeks |
| MAIN RESULTS: | RIV-treated patients experienced statistically significant better results than placebo-treated patients in: |
| | Cognition: ADAS-Cog, placebo -2.65; 1-4mg – 1.81; 6-12mg 0.58; P < 0.005 (observed cases) |
| | Global function: CIBIC-plus, placebo 4.35; 1-4mg 4.17; 6-12mg 4.01; P < 0.005 |
| | Activity of daily living (PDS): Only RIV 6-12 mg showed a significant difference to placebo: PDS, placebo -3.47; 1-4mg – 3.86; 6-12mg -0.78; P < 0.005 |
| | Subgroup analysis stratifying by disease severity (GDS) found larger treatment differences (PDS) between RIV and placebo in patients with more severe disease, but these differences did not reach statistical significance. |
| | Subgroup analysis of the pooled population presented that nicotine use attenuates the dose-response curve of RIV and older patients experienced greater benefit from RIV |
| | Retrospective subgroup analysis of patients with moderately severe AD (n = 117; MMSE 10 – 12) revealed a significantly smaller decline of ADAS-cog (ITT-LOCF: 0 vs. -6.1 points; P < 0.001) and MMSE scores (ITT-LOCF: -0.8 vs. -2.5 points; P = 0.02) in RIV (6-12 mg) than in placebo-treated patients. The difference in ADL did not reach statistical significance (ITT-LOCF: -2.0 vs. -6.3; P = 0.065) |
| ADVERSE EVENTS: | NR |
| COMPREHENSIVE LITERATURE SEARCH STRATEGY: | Not reported; Only the 3 included studies had been conducted at time of meta-analysis. A fourth study was conducted but not analyzed; results of this study are included in electrocardiogram analysis by Morganroth. |
| STANDARD METHOD OF APPRAISAL OF STUDIES: | NR |
| QUALITY RATING: | Fair |</p>
<table>
<thead>
<tr>
<th>Efficacy/Effectiveness</th>
<th>Alzheimer Drugs</th>
</tr>
</thead>
</table>
| **STUDY:** | **Authors:** Seltzer et al.\(^{46}\)
 Year: 2004
 Country: US |
| **FUNDING:** | Eisai Inc. and Pfizer Inc. |
| **RESEARCH OBJECTIVE:** | To evaluate the efficiency of donepezil treatment in early stage Alzheimer’s Disease |
| **DESIGN:** | **Study design:** RCT
 Setting: Multi-center (17 sites)
 Sample size: 153 |
| **INTERVENTION:** | **donepezil**
 Dose: 5-10 mg/d
 Duration: 24 weeks
 Sample size: 96
 placebo
 Dose: N/A
 Duration: 24 weeks
 Sample size: 57 |
| **INCLUSION:** | Generally healthy ambulatory patients aged 50-92 years; diagnosis of probable AD within the past 12 months; modified Hachinski Ischemia Scale score of 4 or less; Global Dementia Rating score of 0.5 or 1.0; MMSE score of 21-26; mild impairment in activities of daily living |
| **EXCLUSION:** | If memory decline was possibly attributable to a psychiatric or neurologic disorder or to cognitive deficits following head trauma; previous treatment with cholinesterase inhibitors |
| **OTHER MEDICATIONS/INTERVENTIONS ALLOWED:** | NR |
Authors: Seltzer et al.
Year: 2004

POPULATION CHARACTERISTICS:

<table>
<thead>
<tr>
<th>Groups similar at baseline: Yes</th>
<th>Alzheimer classification: Mild</th>
</tr>
</thead>
<tbody>
<tr>
<td>donepezil</td>
<td>placebo</td>
</tr>
<tr>
<td>Mean age (years): 73.3</td>
<td>73.3</td>
</tr>
<tr>
<td>Sex (% female): 50</td>
<td>50</td>
</tr>
<tr>
<td>Ethnicity:</td>
<td>NR</td>
</tr>
<tr>
<td>Other germane population qualities:</td>
<td></td>
</tr>
<tr>
<td>• Onset cognitive symptoms (yrs)</td>
<td>2.9</td>
</tr>
<tr>
<td>• MMSE</td>
<td>24.1</td>
</tr>
</tbody>
</table>

OUTCOME ASSESSMENT:

Primary Outcome Measures: Change from baseline to end point on the modified ADAS-cog total score

Secondary Outcome Measures: Change from baseline on the MMSE; CDR-Sum of Boxes; CMBT; Apathy Scale

Timing of assessments: Screening, baseline, every 6 weeks

RESULTS:

Health Outcome Measures:

Significant improvement over placebo was observed in the donepezil group at endpoint on the modified ADAS-cog total score (difference 2.3 points); \(P = 0.001 \)

Intermediate Outcome Measures:

- Significant improvement over placebo was observed in the donepezil group (+1.8 points) at endpoint on MMSE scores (\(P = 0.002 \))
- Significant improvement over placebo was observed in the donepezil group at endpoint on the following CMBT tasks: name-face association delayed recall (\(P = 0.04 \)), facial recognition (\(P = 0.007 \)), first and last name total acquisition (\(P = 0.04 \); no significant differences were seen on the other CMBT scales)
- No significant differences were seen on the Apathy or CDR-Sum of Boxes
<table>
<thead>
<tr>
<th>ADVERSE EVENTS:</th>
<th>donepezil</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall adverse effects reported:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Diarrhea</td>
<td>70%</td>
<td>65%</td>
</tr>
<tr>
<td>• Nausea</td>
<td>20%</td>
<td>9%</td>
</tr>
<tr>
<td>• Asthenia</td>
<td>10%</td>
<td>4%</td>
</tr>
<tr>
<td>• Abnormal Dreams</td>
<td>9%</td>
<td>2%</td>
</tr>
<tr>
<td>• Dizziness</td>
<td>9%</td>
<td>0%</td>
</tr>
<tr>
<td>• Injury</td>
<td>8%</td>
<td>0%</td>
</tr>
<tr>
<td>• Insomnia</td>
<td>6%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Significant differences in adverse events: Significantly more donepezil patients experienced abnormal dreams (P = 0.03)

ANALYSIS: ITT: Yes
Post randomization exclusions: No

ADEQUATE RANDOMIZATION: Method not reported

ADEQUATE ALLOCATION CONCEALMENT: Method not reported

BLINDING OF OUTCOME ASSESSORS: Yes

ATTRITION (overall): Overall loss to follow-up: 24%
Loss to follow-up differential high: No

ATTRITION (treatment specific): donepezil
Loss to follow-up: 27%
Withdrawals due to adverse events: 16%
placebo
Loss to follow-up: 19%
Withdrawals due to adverse events: 9%

QUALITY RATING: Fair

*primary outcome measures
Efficacy/Effectiveness

Alzheimer Drugs

| STUDY: | Authors and Years: Tairot et al., 2000; Cummings et al., 2004; Galasko et al., 2004
Country: US |
| FUNDING: | Janssen Research Foundation |
| RESEARCH OBJECTIVE: | To investigate the efficacy and tolerability of GAL using slow dose escalating schedule of up to 8 weeks in 978 patients with mild to moderate AD |
| DESIGN: | Study design: RCT
Setting: Multi-center
Sample size: 978 |
| INTERVENTION: |
galantamine
Dose: 8; 16; 24 mg/d
Duration: 5 months
Sample size: 140; 279; 273
placebo
Dose: N/A
Duration: 5 months
Sample size: 286 |
INCLUSION:	History of cognitive decline gradual in onset and progressive over a period of at least 6 months; diagnosis of probable AD according to NINCDS/ADRDA; MMSE score 10 – 22; ADAS-Cog 11 score of >18
EXCLUSION:	Any other neurodegenerative disorders; cardiovascular disease; clinically significant psychiatric, hepatic, renal pulmonary, metabolic, or endocrine conditions, or urinary outflow obstruction; active peptide ulcer; history of epilepsy or significant drug or alcohol abuse; treated for AD with a cholinomemetic agent in preceding 60 days
OTHER MEDICATIONS/INTERVENTIONS ALLOWED:	Concomitant medications with the exception of sedative-hypnotics and sedating cough and cold remedies; drugs with anticholinergic or cholinomimetic effects were not allowed
Authors and Year:
Tairot et al. 2000; Cummings et al. 2004, Galasko et al. 2004

POPULATION CHARACTERISTICS:
- **Groups similar at baseline:** Yes
- **Alzheimer classification:** Mild-moderate

<table>
<thead>
<tr>
<th>Group</th>
<th>galantamine 8; 16; 24 mg/d</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (years)</td>
<td>76; 76.3; 77.7</td>
<td>77.1</td>
</tr>
<tr>
<td>Sex (% female)</td>
<td>64.2; 62.3; 67</td>
<td>62.2</td>
</tr>
<tr>
<td>Ethnicity (% white)</td>
<td>94; 93; 91</td>
<td>93</td>
</tr>
<tr>
<td>Other germane population qualities:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• MMSE</td>
<td>18; 17.8; 17.7</td>
<td>17.7</td>
</tr>
<tr>
<td>• ADAS-Cog</td>
<td>27.8; 29.4; 29</td>
<td>29.4</td>
</tr>
</tbody>
</table>

OUTCOME ASSESSMENT:
- **Primary Outcome Measures:** ADAS-Cog 11; CIBIC-plus
- **Secondary Outcome Measures:** ADAS-Cog 11 responders (improvement ≥ 4 points) and ADAS-Cog11 improvers (≥ 7 points); ADCS/ADL; NPI
- **Timing of assessments:** Baseline, weeks 4 and 13, and at 5 months

RESULTS:
- **Health Outcome Measures:**
 - Significantly less mean reduction in ADCS/ADL for 16 mg/d GAL (-0.7 vs. -3.8; P < 0.001) and 24 mg/d GAL (-1.5 vs. -3.8; P < 0.01) compared to placebo
 - Significantly less reduction in mean NPI change from baseline for GAL 16 mg/d (-0.1 vs. 2.0; P < 0.05) and 24 mg/d GAL (0.0 vs. 2.0; P < 0.05) compared to placebo
 - Changes in ADCS/ADL scores correlated significantly with change scores on the cognitive subscale of the AD Assessment Scale (r = -0.24).
 - Mean change in ADCS/ADL scores from baseline was significantly different from placebo treatment for both GAL treatment groups in the subgroup of patients with the greatest impairment on baseline ADAS-cog scores (ADAS-cog >30, P < 0.0001 for both doses).
- **Intermediate Outcome Measures:**
 - (ITT) ADAS-Cog improvement in GAL treated patients compared with placebo: 1.3 points (8 mg/d; P = not significant), 3.1 points (16 mg/d; P < 0.001), and 3.1 points (24 mg/d; P < 0.001)
 - (ITT) CIBIC-plus improvement greater than placebo for 16 mg/d GAL (66% vs. 49% improved; P < 0.001) and for 24 mg/d GAL (64% vs. 49% improved; P < 0.001)
 - Proportion of responders and significant improvers significantly better than placebo for GAL 16 mg/d and GAL 24 mg/d
<table>
<thead>
<tr>
<th>ADVERSE EVENTS:</th>
<th>galantamine</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall adverse effects reported:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Nausea</td>
<td>75.5%; 73.8%; 80.2%</td>
<td>72.0%</td>
</tr>
<tr>
<td>• Agitation</td>
<td>5.7%; 13.3%; 16.5%</td>
<td>4.5%</td>
</tr>
<tr>
<td>• Diarrhea</td>
<td>15%; 10%; 8.1%</td>
<td>9.4%</td>
</tr>
<tr>
<td></td>
<td>5%; 12%; 5.5%</td>
<td>5.9%</td>
</tr>
<tr>
<td>Significant differences in adverse events:</td>
<td>NR</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANALYSIS:</th>
<th>ITT: Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post randomization exclusions:</td>
<td>NR</td>
</tr>
</tbody>
</table>

| ADEQUATE RANDOMIZATION: | Yes |

| ADEQUATE ALLOCATION CONCEALMENT: | Yes |

| BLINDING OF OUTCOME ASSESSORS: | Yes |

<table>
<thead>
<tr>
<th>ATTRITION (overall):</th>
<th>Overall loss to follow-up: 20.7%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss to follow-up:</td>
<td>Loss to follow-up differential high: Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATTRITION (treatment specific):</th>
<th>galantamine</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss to follow-up:</td>
<td>22.8%, 21.5%, 22.3%</td>
<td>16%</td>
</tr>
<tr>
<td>Withdrawals due to adverse events:</td>
<td>6.4%, 6%, 9.8%</td>
<td>6.9%</td>
</tr>
</tbody>
</table>

| QUALITY RATING: | Fair |

*primary outcome measures
Efficacy/Effectiveness

| **STUDY:** | **Authors:** Tariot et al.\(^7\)
Year: 2001
Country: US |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNDING:</td>
<td>Eisai, Inc; Pfizer, Inc</td>
</tr>
<tr>
<td>RESEARCH OBJECTIVE:</td>
<td>To evaluate the safety and efficacy of DON in the management of patients with AD residing in nursing home facilities</td>
</tr>
</tbody>
</table>
| **DESIGN:** | **Study design:** RCT
Setting: Multi-center (27)
Sample size: 208 |
| **INTERVENTION:** | **Dose:** donepezil
5 mg/d; 10 mg/d
4 weeks; 20 weeks
103
placebo
N/A
24 weeks
105 |
| **INCLUSION:** | Diagnosis of possible or probable AD with CVD according to NINCDS/ADRDA; MMSE score between 5 and 26 inclusive; reported frequency of a symptom at least several times a week from NPI-NH; sufficient vision and hearing; resided in nursing home for at least 1 month before study |
| **EXCLUSION:** | Parkinson’s, VaD or other neurological diseases that could be responsible for the dementia; clinically significant obstructive pulmonary disease; asthma; vitamin B\(_{12}\) deficiency; recent hematological/oncological disorders, hemiparesis or aphasia due to cerebrovascular accident; unstable medical illnesses; undergone medical/surgical hospitalization within 3 months before study; dementia secondary to alcohol abuse; alcohol or drug dependence; know ChE hypersensitivity |
| **OTHER MEDICATIONS/INTERVENTIONS ALLOWED:** | Concomitant medications except those with anticholinergic effects and investigational drugs; patients treated with TAC must have discontinued use of the agent at least 30 days before screening visit |
| Authors: Tariot et al.
| Year: 2001 |
| Groups similar at baseline: Yes
| Alzheimer classification: Mild-moderate |

<table>
<thead>
<tr>
<th>POPULATION CHARACTERISTICS:</th>
<th>donepezil</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (years):</td>
<td>85.4</td>
<td>85.9</td>
</tr>
<tr>
<td>Sex (% female):</td>
<td>83</td>
<td>82</td>
</tr>
<tr>
<td>Ethnicity:</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Other germane population qualities:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• MMSE</td>
<td>14.4</td>
<td>14.4</td>
</tr>
<tr>
<td>• NPI-NH</td>
<td>21.0</td>
<td>20.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OUTCOME ASSESSMENT:</th>
<th>Primary Outcome Measures: NPI-NH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary Outcome Measures: MMSE; CDR-SB; PSMS</td>
<td></td>
</tr>
<tr>
<td>Timing of assessments: Screening, baseline, and 4 week intervals throughout study</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RESULTS:</th>
<th>Health Outcome Measures:</th>
</tr>
</thead>
<tbody>
<tr>
<td>No significant differences in PSMS change from baseline between DON and placebo</td>
<td></td>
</tr>
<tr>
<td>No statistical or clinically significant differences in mean NPI-NH total scores observed between DON and placebo at any time points*</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intermediate Outcome Measures:</th>
</tr>
</thead>
<tbody>
<tr>
<td>No statistically significant differences in mean MMSE change from baseline at endpoint</td>
</tr>
<tr>
<td>Significantly greater improvement in CDR-SB total score and cognitive subscale for DON compared to placebo (P < 0.05)</td>
</tr>
<tr>
<td>ADVERSE EVENTS:</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Overall adverse effects reported:</td>
</tr>
<tr>
<td>• Diarrhea</td>
</tr>
<tr>
<td>• Vomiting</td>
</tr>
<tr>
<td>• Nausea</td>
</tr>
<tr>
<td>• Anorexia</td>
</tr>
<tr>
<td>9%</td>
</tr>
</tbody>
</table>

| Significant differences in adverse events: | NR |

| ANALYSIS: | ITT: Yes |
| Post randomization exclusions: | NR |

| ADEQUATE RANDOMIZATION: | Yes |

| ADEQUATE ALLOCATION CONCEALMENT: | Yes |

| BLINDING OF OUTCOME ASSESSORS: | Yes |

| ATTRITION (overall): | Overall loss to follow-up: 46 (22.2%) |
| Loss to follow-up differential high: | No |

<p>| ATTRITION (treatment specific): | Loss to follow-up: |</p>
<table>
<thead>
<tr>
<th>Withdrawals due to adverse events:</th>
<th>donepezil</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>18%</td>
<td>26%</td>
<td></td>
</tr>
<tr>
<td>11%</td>
<td>18%</td>
<td></td>
</tr>
</tbody>
</table>

| QUALITY RATING: | Fair |

*primary outcome measures
Efficacy/Effectiveness

Alzheimer Drugs

| STUDY: | Authors: Tariot et al.⁶⁰
Year: 2004
Country: US |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNDING:</td>
<td>Forest Research Institute, a division of Forest Laboratories</td>
</tr>
<tr>
<td>RESEARCH OBJECTIVE:</td>
<td>To compare the efficacy and safety of MEM in patients with moderate to severe AD already receiving DON treatment</td>
</tr>
</tbody>
</table>
| DESIGN: | Study design: RCT
Setting: Multi-center (37 sites)
Sample size: 404 |
| INTERVENTION: | **memantine**
Dose: 20mg/d titrated in 5 mg/d doses
Duration: 24 weeks
Sample size: 203
placebo
Dose: N/A
Duration: 24 weeks
Sample size: 201 |
| INCLUSION: | Probable AD by NINCDS; MMSE score of 5 – 14; ≥ 50 yrs old; recent (within 12 months) MRI or CT scan consistent with probable AD; ongoing ChE inhibitor with DON for more than 6 months before entrance into trial and as stable dose (5-10 mg/d) for at least 3 months; reliable caregiver; ambulatory aided ability; residence in community; stable medical condition |
| EXCLUSION: | Significant B₁₂ or folate deficiency; active pulmonary, gastrointestinal, renal, hepatic, endocrine or cardiovascular disease; psychiatric or central nervous system disorders other than AD; dementia complicated by other organic disease; modified HIS score > 4 at screening |
| OTHER MEDICATIONS/INTERVENTIONS ALLOWED: | All concomitant medications were allowed; DON maintained at current dose throughout the study |
Authors: Tariot et al.
Year: 2004

POPULATION CHARACTERISTICS:

<table>
<thead>
<tr>
<th>Groups similar at baseline: Yes</th>
<th>Alzheimer classification: Moderate-severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>memantine</td>
<td>placebo</td>
</tr>
<tr>
<td>Mean age (years):</td>
<td></td>
</tr>
<tr>
<td>75.5</td>
<td>75.5</td>
</tr>
<tr>
<td>63</td>
<td>67</td>
</tr>
<tr>
<td>90.1</td>
<td>92.5</td>
</tr>
<tr>
<td>Sex (% female):</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>67</td>
</tr>
<tr>
<td>Ethnicity (% white):</td>
<td></td>
</tr>
<tr>
<td>90.1</td>
<td>92.5</td>
</tr>
<tr>
<td>Other germane population qualities:</td>
<td></td>
</tr>
<tr>
<td>Baseline MMSE</td>
<td></td>
</tr>
<tr>
<td>9.9</td>
<td>10.2</td>
</tr>
<tr>
<td>Duration of DON treatment</td>
<td></td>
</tr>
<tr>
<td>126 weeks</td>
<td>129 weeks</td>
</tr>
<tr>
<td>DON dose (mg)</td>
<td></td>
</tr>
<tr>
<td>9.25</td>
<td>9.49</td>
</tr>
</tbody>
</table>

OUTCOME ASSESSMENT:

Primary Outcome Measures: SIB; ADCS-ADL
Secondary Outcome Measures: CIBIC-plus; NPI; BGP
Timing of assessments: Baseline, and weeks 4, 8, 12, 18 and 24

RESULTS:

Health Outcome Measures:
- Statistically significant benefit of MEM compared to placebo on ADCS-ADL ($P = 0.03$), NPI ($P = 0.01$), and BGP ($P = 0.001$)

Intermediate Outcome Measures:
- Statistically significant benefit of MEM compared to placebo on SIB ($P < 0.001$), and CIBIC-plus (55% of MEM improved compared to 45% of placebo improved ($P = 0.03$))
ADVERSE EVENTS:

Overall adverse effects reported:
- Agitation

<table>
<thead>
<tr>
<th></th>
<th>memantine</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>78%</td>
<td>72%</td>
</tr>
<tr>
<td></td>
<td>9.4%</td>
<td>11.9%</td>
</tr>
</tbody>
</table>

Significant differences in adverse events:

Significant differences favoring placebo: confusion 7.9% vs. 2% (P = 0.01); headache 6.4% vs. 2.5% (P = 0.09); significant differences favoring MEM: diarrhea 4.5% vs. 8.5% (P = NR) and fecal incontinence 2% vs. 5% (P = NR)

ANALYSIS:

ITT: Yes
Post randomization exclusions: NR

ADEQUATE RANDOMIZATION:
Yes

ADEQUATE ALLOCATION CONCEALMENT:
Yes

BLINDING OF OUTCOME ASSESSORS:
NR

ATTRITION (overall):
Overall loss to follow-up: 20%
Loss to follow-up differential high: Yes

<table>
<thead>
<tr>
<th></th>
<th>memantine</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14.9%</td>
<td>25.4%</td>
</tr>
<tr>
<td></td>
<td>7.4%</td>
<td>12.4%</td>
</tr>
</tbody>
</table>

ATTRITION (treatment specific):
Loss to follow-up: Withdrawals due to adverse events:

QUALITY RATING:
Fair

*primary outcome measures
Efficacy/Effectiveness

| STUDY: | Authors: Whitehead et al. \(^{33}\)
 | Year: 2004 |
| FUNDING: | Medical Research Council |
| DESIGN: | **Study design:** Meta-analysis (individual patient data)
<pre><code> | **Number of patients:** 2,376 |
</code></pre>
<p>| AIMS OF REVIEW: | To evaluate the efficacy and tolerability of DON (5 and 10 mg/d) compared with placebo in alleviating manifestations of mild to moderate AD |
| STUDIES INCLUDED IN META-ANALYSIS | Published and unpublished data of 10 RCTs |
| TIME PERIOD COVERED: | Up to 1999 |
| CHARACTERISTICS OF INCLUDED STUDIES: | All randomized, double-blind, placebo-controlled, parallel-group studies from the DON clinical development program undertaken and completed as of 20 December 1999, in which DON was administered for more than one day at 5 and 10 mg/d |
| CHARACTERISTICS OF INCLUDED POPULATIONS: | Patients satisfied a diagnosis of probable AD as defined by the validated diagnostic criteria of the International Classification of Diseases (WHO), DSM and/or NINCDS/ADRDA; patients were required to have mild to moderate AD at screening as defined by MMSE with scores between 10 and 26 inclusive and CDR scores of 1 (mild) or 2 (moderate) |</p>
<table>
<thead>
<tr>
<th>Authors: Whitehead et al.</th>
<th>Year: 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHARACTERISTICS OF INTERVENTIONS:</td>
<td>10 trials comparing either 5 or 10 mg/d over 12 to 24 weeks in patients with mild to moderate AD; primary outcome measures included ADAS-Cog treatment difference; ADAS-Cog response (improvement of 4 or 7 points); CIBIC-plus; MMSE; CDR-SB</td>
</tr>
<tr>
<td>MAIN RESULTS:</td>
<td>ADAS-Cog score statistically significantly better for 5 or 10 mg/d DON at all time points compared with placebo (P < 0.001); odds of improvement in CIBIC-plus scores were twice as great with DON 5 or 10 mg/d as with placebo and statistically significant (P < 0.001)</td>
</tr>
<tr>
<td>ADVERSE EVENTS:</td>
<td>Adverse events occurred in 65% and 83% of patients treated with 5 or 10 mg/d DON respectively, compared with 62% of placebo treated patients; discontinuations due to adverse events were higher in DON 10 mg/d (13.9%) than in DON 5 mg/d (6.3%) or placebo (5.8%) group; significantly greater incidence of nausea, diarrhea, vomiting, headache and insomnia in DON 10 mg/d than DON 5 mg/d or placebo group</td>
</tr>
<tr>
<td>COMPREHENSIVE LITERATURE SEARCH STRATEGY:</td>
<td>No systematic search was reported; the trials were provided by the DON clinical Development Program</td>
</tr>
<tr>
<td>STANDARD METHOD OF APPRAISAL OF STUDIES:</td>
<td>Blindy accepted trials if they were randomized, double-blind, placebo-controlled, parallel group studies and if patients satisfied inclusion criteria; no other methods were discussed as to how trials were evaluated to be included in the meta-analysis</td>
</tr>
<tr>
<td>QUALITY RATING:</td>
<td>Fair</td>
</tr>
</tbody>
</table>
Efficacy/Effectiveness

Alzheimer Drugs

| STUDY: | Authors: Wilcock et al.
Year: 2000
Country: Multinational (Canada, Finland, France, Germany, Norway, Sweden, Netherlands, UK) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNDING:</td>
<td>Janssen Research Foundation</td>
</tr>
<tr>
<td>RESEARCH OBJECTIVE:</td>
<td>To evaluate the efficacy and safety of GAL in the treatment of AD</td>
</tr>
</tbody>
</table>
| DESIGN: | Study design: RCT
Setting: Multi-center (86)
Sample size: 653 randomized (525 completed) |
| INTERVENTION: | **galantamine**
Dose:
Duration:
Sample size: |
| | 24 mg/d
6 months
220 |
| | 32 mg/d
6 months
218 |
| | placebo
N/A
6 months
215 |
| INCLUSION: | Probable AD according to the NINCDS; MMSE score of 11-24; ADAS-Cog score ≥ 12; FAST ≤ 6 at baseline |
| EXCLUSION: | Had no responsible caregiver; neurogenerative disorder; multi-infarct dementia or clinically active CVD; cardiovascular disease thought to prevent study completion; clinically important cerebrovascular, psychiatric, hepatic, renal, pulmonary, metabolic, or endocrine conditions or urinary outflow obstruction; active peptic ulcer; any history of epilepsy or serious drug or alcohol misuse; history of treatment with ChE inhibitor |
| OTHER MEDICATIONS/INTERVENTIONS ALLOWED: | Most concomitant medications were allowed except for those with anticholinergic effects; sedative-hypnotic drugs and sedating cough and cold remedies must have been discontinued in 48 hours before cognitive evaluation |
Authors: Wilcock et al.
Year: 2000

POPULATION CHARACTERISTICS:
Mean age (years):
Sex (% female):
Other germane population qualities:
 • MMSE score

Groups similar at baseline: Yes
Alzheimer classification: Mild-Moderate

<table>
<thead>
<tr>
<th>Treatment</th>
<th>MMSE</th>
<th>Sex</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>galantamine 24 mg</td>
<td>71.9</td>
<td>63.2</td>
<td>19.5</td>
</tr>
<tr>
<td>galantamine 32 mg</td>
<td>72.1</td>
<td>63.3</td>
<td>19.0</td>
</tr>
<tr>
<td>placebo</td>
<td>72.7</td>
<td>61.4</td>
<td>19.3</td>
</tr>
</tbody>
</table>

OUTCOME ASSESSMENT:
Primary Outcome Measures: ADAS-Cog; CIBIC-plus
Secondary Outcome Measures: Proportion of patients with improvements from baseline on the ADAS-Cog of ≥ 0 and ≥ 4; DAD
Timing of assessments: Baseline and weeks 3 (ADAS-Cog only), 12 and 24

RESULTS:
Health Outcome Measures:
 • ITT analysis of DAD at 6 months revealed significant benefit of GAL only at 32 mg/d; mean difference = 3.4; 95% CI: 0.1 – 6.7; P < 0.05; 24 mg/d mean difference = 2.8; P value not significant

Intermediate Outcome Measures:
 • ITT analysis of ADAS-Cog scores at 6 months revealed significant benefit of GAL over placebo (24 mg/d mean difference = 2.9; 95% CI: 1.6 – 4.1; P < 0.001); (32 mg/d mean difference = 3.1; 95% CI 1.9 – 4.4; P < 0.001)*
 • ITT analysis of CIBIC-plus at 6 months revealed significant benefit of GAL over placebo (P < 0.05); more patients in the GAL groups (weighted % = 63.6) improved or remained stable than in the placebo group (49.5%)*
 • ITT analysis of ADAS-Cog improvement (≥0 and ≥4 points) showed significant benefit for GAL 24 mg/d and 32 mg/d (P < 0.001 for all comparisons with placebo)
Authors: Wilcock et al.
Year: 2000

ADVERSE EVENTS

Overall adverse effects reported:

- Nausea
- Vomiting
- Diarrhea
- Dizziness
- Headache
- Anorexia

<table>
<thead>
<tr>
<th></th>
<th>galantamine 24mg</th>
<th>galantamine 32mg</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea</td>
<td>83%</td>
<td>89%</td>
<td>77%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>37%</td>
<td>40%</td>
<td>12%</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>20%</td>
<td>17%</td>
<td>4%</td>
</tr>
<tr>
<td>Dizziness</td>
<td>7%</td>
<td>13%</td>
<td>7%</td>
</tr>
<tr>
<td>Headache</td>
<td>11%</td>
<td>12%</td>
<td>5%</td>
</tr>
<tr>
<td>Anorexia</td>
<td>10%</td>
<td>11%</td>
<td>3%</td>
</tr>
</tbody>
</table>

Significant differences in adverse events:

Nausea (P = NR); vomiting (P = NR); dizziness (P = NR); headache (P = NR); anorexia (P < 0.001)

ANALYSIS:

- **ITT:** Yes
- **Post randomization exclusions:** Yes

ADEQUATE RANDOMIZATION:

Yes

ADEQUATE ALLOCATION CONCEALMENT:

Yes

BLINDING OF OUTCOME ASSESSORS:

Yes

ATTRITION (overall):

- **Overall loss to follow-up:** 19.6%
- **Loss to follow-up differential high:** No (< 15 percentage points difference)

ATTRITION (treatment specific):

<table>
<thead>
<tr>
<th></th>
<th>galantamine 24mg</th>
<th>galantamine 32mg</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss to follow-up:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Withdrawals due to adverse events:</td>
<td>20%</td>
<td>25.2%</td>
<td>13.5%</td>
</tr>
</tbody>
</table>

QUALITY RATING:

Good

*primary outcome measures
Efficacy/Effectiveness

Authors: Wilcock et al. 27
Year: 2003
Country: UK

Funding:
Janssen-Cilag UK, Janssen Pharmaceutica Products L.P., Shire Pharmaceuticals Ltd.

Research Objective:
To compare the long-term efficacy and safety of GAL 24 mg/d and DON 10 mg/d in patients with AD

Design:
Study design: Randomized, rater-blinded trial
Setting: Multi-center (18)
Sample size: 182

Intervention:

<table>
<thead>
<tr>
<th>Dose</th>
<th>Duration</th>
<th>Sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAL 24 mg/d</td>
<td>52 weeks</td>
<td>94</td>
</tr>
<tr>
<td>DON 10 mg/d</td>
<td>52 weeks</td>
<td>88</td>
</tr>
</tbody>
</table>

Inclusion:
- Diagnosis of probable AD (NINCDS/ADRDA)
- MMSE score 9 – 18 at screening
- History of cognitive decline gradual onset over last 12 months
- Caregiver who lived with subject or visited at least 5 days/week and could assist with medication, attend assessments and provide information about the subject
- MRI/high resolution CAT scan after diagnosis and consistent with AD

Exclusion:
- Use of AChE inhibitor within 30 days prior to study entry (other dementia Rx can be discontinued at enrollment)
- Previous GAL or DON use
- Neurodegenerative disorders other than AD
- Multi-infarct dementia or clinically active CVD
- Other conditions possibly resulting in cognitive impairment, such as post-traumatic brain injury, hypoxic cerebral damage, or neoplasia
- Coexisting medical conditions that would compromise patient’s ability to complete the trial

Other Medications/Interventions Allowed:
Yes
Authors: Wilcock et al.
Year: 2003

Groups similar at baseline:
No; significantly more females randomized to DON

Alzheimer classification:
Mild-moderate-severe

<table>
<thead>
<tr>
<th></th>
<th>galantamine</th>
<th>donepezil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (years):</td>
<td>74.1</td>
<td>72.8</td>
</tr>
<tr>
<td>Sex (% female):</td>
<td>56.4</td>
<td>68.2</td>
</tr>
<tr>
<td>Ethnicity (% white):</td>
<td>100</td>
<td>98.9</td>
</tr>
<tr>
<td>Other germane population qualities:</td>
<td>15.1</td>
<td>14.8</td>
</tr>
</tbody>
</table>
- Mean screening MMSE

POPULATION CHARACTERISTICS:

OUTCOME ASSESSMENT:

Primary Outcome Measures:
BADLS

Secondary Outcome Measures:
MMSE; ADAS-Cog 11; NPI; SCGB

Timing of assessments:
Baseline and weeks 13, 26 and 52

RESULTS:

Health Outcome Measures:
- BADLS scores showed no significant difference between treatment groups in mean change from baseline to week 52
- Changes from baseline in NPI similar for both treatments
- At endpoint, a higher percentage of GAL than DON patients reported maintenance or improvement of objective and subjective caregiver burden (SCGB); 67.1% and 68.3% respectively for GAL, and 51.3% and 49.4% respectively for DON; significance NR

Intermediate Outcome Measures:
- GAL patients showed no significant improvement in MMSE scores ($P > 0.05$), whereas DON patients scores were significantly lower at week 52 compared to baseline ($P < 0.0005$); total between group differences in MMSE not significant
- ADAS-Cog 11 analysis between-group differences for total population not significant, although both groups demonstrated significant decline from baseline; $P < 0.05$ for GAL and $P < 0.0005$ for DON
ADVERSE EVENTS:
Overall adverse effects reported:
- Severe adverse events
- Nausea
- Agitation
- Vomiting
- Headache
- Falls

<table>
<thead>
<tr>
<th></th>
<th>galantamine</th>
<th>donepezil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>90.7%</td>
<td>93.4%</td>
</tr>
<tr>
<td></td>
<td>18.6%</td>
<td>19.8%</td>
</tr>
<tr>
<td></td>
<td>19.6%</td>
<td>17.6%</td>
</tr>
<tr>
<td></td>
<td>18.6%</td>
<td>12.1%</td>
</tr>
<tr>
<td></td>
<td>17.5%</td>
<td>14.3%</td>
</tr>
<tr>
<td></td>
<td>16.5%</td>
<td>12.1%</td>
</tr>
<tr>
<td></td>
<td>16.5%</td>
<td>8.8%</td>
</tr>
</tbody>
</table>

Significant differences in adverse events: None

ANALYSIS: ITT: Yes
Post randomization exclusions: No

ADEQUATE RANDOMIZATION: Yes

ADEQUATE ALLOCATION CONCEALMENT: No; different treatment regimens precluded allocation concealment

BLINDING OF OUTCOME ASSESSORS: Method NR

ATTRITION (overall): Overall loss to follow-up: 21%
Loss to follow-up differential high: No

<table>
<thead>
<tr>
<th></th>
<th>galantamine</th>
<th>donepezil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>19.6%</td>
<td>22%</td>
</tr>
<tr>
<td></td>
<td>13.4%</td>
<td>13.2%</td>
</tr>
</tbody>
</table>

ATTRITION (treatment specific):
Loss to follow-up:
Withdrawals due to adverse events:

QUALITY RATING: N/A

*primary outcome measures
STUDY:

Authors: Wilkinson et al.\(^{54}\)

Year: 2001

Country: UK

FUNDING:

Shire Pharmaceuticals

RESEARCH OBJECTIVE:

To investigate whether GAL significantly improves the core symptoms of AD

DESIGN:

Study design: RCT

Setting: Multi-center

Sample size: 285

INTERVENTION:

<table>
<thead>
<tr>
<th></th>
<th>galantamine</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose</td>
<td>18; 24; 36 mg/d</td>
<td>N/A</td>
</tr>
<tr>
<td>Duration</td>
<td>3 months</td>
<td>3 months</td>
</tr>
<tr>
<td>Sample size</td>
<td>88; 56; 54</td>
<td>87</td>
</tr>
</tbody>
</table>

INCLUSION:

Male and female outpatients with mild to moderate AD as defined by NINCDS/ADRDA and MMSE (score 13-24) aged >45 years who were attending memory clinics; required to have appropriate caregiver

EXCLUSION:

Dementia secondary to causes other than AD or any condition considered likely to interfere with the trial in the opinion of the investigator

OTHER MEDICATIONS/INTERVENTIONS ALLOWED:

Antidepressants; antipsychotic drugs; antiparkinsonian drugs; insulin; anticonvulsants; sedatives; antihypertensive agents (except ACE inhibitors and diuretics); other cholinergic or anticholinergic agents (except inhaled drugs for asthma)
POPULATION CHARACTERISTICS:

Groups similar at baseline: Yes
Alzheimer classification: Mild-moderate

<table>
<thead>
<tr>
<th>galantamine 18; 24; 36 mg/d</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>72.7; 72.9; 75.4</td>
<td>74.2</td>
</tr>
<tr>
<td>56; 59; 57</td>
<td>59</td>
</tr>
<tr>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>18.8, 18.2, 18.8</td>
<td>18.7</td>
</tr>
<tr>
<td>26.0, 26.7, 25.7</td>
<td>26.9</td>
</tr>
</tbody>
</table>

OUTCOME ASSESSMENT:

Primary Outcome Measures: ADAS-Cog

Secondary Outcome Measures: CGIC; PDS-1 (quality of life measure)

Timing of assessments: Baseline and weeks 6 and 12

RESULTS:

Health Outcome Measures:
- No significant differences in PDS-1 score for any dose of GAL compared to placebo (ITT)

Intermediate Outcome Measures:
- GAL 24 mg/d produced greater improvement in ADAS-Cog change compared to placebo (P = 0.01); mean change from baseline for GAL 18 mg/d and GAL 32 mg/d not statistically different from placebo
- No significant differences in CGIC for any dose of GAL compared to placebo (ITT)
ADVERSE EVENTS:

Overall adverse effects reported:
- Vomiting
- Nausea
- Headache

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Overall adverse effects reported</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galantamine 18; 24; 36 mg/d</td>
<td>55.7%; 58.9%; 70.4%; 17%; 7.1%; 16.7%; 17%; 17.9%; 37%; 5.7%; 10.7%; 14.8%</td>
<td>43.7%; 4.6%; 3.4%; 4.6%</td>
</tr>
<tr>
<td>Placebo</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Significant differences in adverse events:

<table>
<thead>
<tr>
<th></th>
<th>NR</th>
</tr>
</thead>
</table>

ANALYSIS:

ITT: Yes
Post randomization exclusions: Yes

ADEQUATE RANDOMIZATION:

Yes

ADEQUATE ALLOCATION CONCEALMENT:

Yes

BLINDING OF OUTCOME ASSESSORS:

Yes

ATTRITION (overall):

Overall loss to follow-up: 27.7%
Loss to follow-up differential high: Yes; highest between high dose GAL and placebo

ATTRITION (treatment specific):

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Galantamine 18; 24; 36 mg/d</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss to follow-up:</td>
<td>28%; 25%; 48%; 21.6%; 17.9%; 44.4%</td>
<td>16%; 9.2%</td>
</tr>
<tr>
<td>Withdrawals due to adverse events:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QUALITY RATING:

Fair

*primary outcome measures
Efficacy/Effectiveness

Alzheimer Drugs

| STUDY: | Authors: Wilkinson et al.\(^{29}\)
Year: 2002
Country: Multinational (UK, South Africa, Switzerland) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNDING:</td>
<td>Eisai, Inc. and Pfizer, Inc.</td>
</tr>
<tr>
<td>RESEARCH OBJECTIVE:</td>
<td>To compare the tolerability and cognitive effects of DON vs. RIV in patients with mild to moderate AD</td>
</tr>
</tbody>
</table>
| DESIGN: | Study design: RCT (open label)
Setting: Multi-center (19)
Sample size: 111 |
| INTERVENTION: | **donepezil**
Dose: 5-10 mg/d (flexible)
Duration: 12 weeks
Sample size: 56
rivastigmine
Dose: 6-12 mg/d (flexible)
Duration: 12 weeks
Sample size: 55 |
<p>| INCLUSION: | Patients ≥ 50 yrs; probable or possible AD according to DSM-IV and NINCDS; MMSE score of 10-26; CT or MRI scan within past 12 months consistent with diagnosis of AD; available caregiver |
| EXCLUSION: | History of DON or RIV use; concomitant use of anticholinergics |
| OTHER MEDICATIONS/INTERVENTIONS ALLOWED: | SSRIs; small daily doses of neuroleptics and short-acting benzodiazepines provided they were given in stable doses for at least one month prior to study entry |</p>
<table>
<thead>
<tr>
<th>POPULATION CHARACTERISTICS:</th>
<th>Groups similar at baseline: Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alzheimer classification:</td>
<td>Mild-moderate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean age (years):</th>
<th>Sex (% female):</th>
<th>Other germane population qualities:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean baseline MMSE score</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean baseline ADAS-Cog</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Taking ≥ 1 concomitant med</td>
</tr>
<tr>
<td>74.0</td>
<td>54</td>
<td>21.5</td>
</tr>
<tr>
<td>20.4</td>
<td>48%</td>
<td>20.7</td>
</tr>
<tr>
<td>74.9</td>
<td>64</td>
<td>20.8</td>
</tr>
<tr>
<td>50%</td>
<td></td>
<td>50%</td>
</tr>
</tbody>
</table>

OUTCOME ASSESSMENT:

Primary Outcome Measures: ADAS-Cog (blinded rater); MMSE (un-blinded clinician)

Secondary Outcome Measures: Satisfaction/ease of use as measured by questionnaire developed by Pfizer and Eisai (clinician and caregiver satisfaction/ease of use)

Timing of assessments: Baseline and weeks 4 and 12

RESULTS:

Health Outcome Measures:
- Physicians reported better mean total satisfaction/ease of use with DON than with RIV at 12 weeks (P < 0.0001)
- Caregivers reported better mean total satisfaction/ease of use with DON than with RIV at 12 weeks (P < 0.05)

Intermediate Outcome Measures:
- No statistically significant differences between DON and RIV as measured by ADAS-Cog (blinded rater) and MMSE (un-blinded clinician)*
<table>
<thead>
<tr>
<th>ADVERSE EVENTS:</th>
<th>donepezil</th>
<th>rivastigmine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall adverse effects reported:</td>
<td>42.9%</td>
<td>58.2%</td>
</tr>
<tr>
<td>• Nausea</td>
<td>10.7%</td>
<td>41.8%</td>
</tr>
<tr>
<td>• Vomiting</td>
<td>7.1%</td>
<td>23.6%</td>
</tr>
<tr>
<td>• Headache</td>
<td>7.1%</td>
<td>18.2%</td>
</tr>
</tbody>
</table>

Significant differences in adverse events: Percentage of patients experiencing at least one adverse event was lower in DON than in RIV (42.9% vs. 58.2%; P = NR); nausea, vomiting, and headache were more frequent in RIV than DON patients, although significance NR

ANALYSIS: ITT: No; authors note ITT was conducted but not reported because of high differential loss to follow-up

Post randomization exclusions: Yes

Adequate randomization: Method not reported

Adequate allocation concealment: N/A (open-label)

Blinding of outcome assessors: Yes (ADAS-Cog); No (MMSE)

Attrition (overall): Overall loss to follow-up: 20.7%
Loss to follow-up differential high: Yes (20% differential)

Attrition (treatment specific):
- Loss to follow-up:
 - donepezil: 10.7%
 - rivastigmine: 30.9%
- Withdrawals due to adverse events:
 - donepezil: 10.7%
 - rivastigmine: 21.8%

Quality rating: N/A

*primary outcome measures
Efficacy/Effectiveness

<table>
<thead>
<tr>
<th>STUDY: Author: Winblad et al.</th>
<th>48 Year: 2001 Country: Multinational (Northern European countries)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNDING:</td>
<td>Pfizer Pharmaceuticals Group, Pfizer, Inc.</td>
</tr>
<tr>
<td>RESEARCH OBJECTIVE:</td>
<td>To evaluate the long-term clinical efficacy and safety of DON versus placebo over 1 year in patients with mild to moderate AD</td>
</tr>
</tbody>
</table>
| DESIGN: Study design: RCT
Setting: Multi-center (52 sites in 5 countries: Denmark, Finland, Norway, Sweden, The Netherlands)
Sample size: 286 |
| INTERVENTION: Dose:
Duration: Sample size: | donepezil
10 mg/d (8.5% on 5mg/d)
52 week
142 | placebo
N/A (2.8% did not escalate dose)
52 week
144 |
| INCLUSION: Diagnosis of AD consistent with NINCDS/ADRDA and DSM-IV; age 40 to 90 years; mild to moderate AD confirmed by MMSE score of 10 – 26; CT or MRI scans were obtained at screenings if not performed in last 12 months; healthy and ambulatory or ambulatory aided, with vision and hearing sufficient for compliance with testing procedures; laboratory test values had to be within normal limits or considered to be clinically insignificant by the investigator; reliable care giver |
| EXCLUSION: Clinically significant and unstable, active gastrointestinal, renal, hepatic, endocrine, or cardiovascular system disease; primary neurologic or psychiatric disease other than AD; newly treated hypothyroidism; drug abuse or alcoholism; neoplasm, insulin-dependent diabetes or diabetes not stabilized by diet or oral hypoglycemic agents; obstructive pulmonary disease or asthma; recent hematologic/oncologic disorders; pernicious anemia; vitamin B12 or folate deficiency as evidenced by blood concentrations below the lower normal limit; known hypersensitivity to ChE inhibitors; cholinomimetic treatment within 30 days |
| OTHER MEDICATIONS/INTERVENTIONS ALLOWED: Serotonin reuptake inhibitors, low dose neuroleptics, and benzodiazepines permitted if started within 2 months; anticholinergics, high dose neuroleptics, tricyclic antidepressants, medications for Parkinson’s were not permitted |
Author: Winblad et al.
Year: 2001

Groups similar at baseline: Yes, although 10 percentage point difference in sex
Alzheimer classification: Mild-moderate

<table>
<thead>
<tr>
<th>POPULATION CHARACTERISTICS:</th>
<th>Mean baseline MMSE</th>
<th>Mean baseline GBS</th>
<th>Mean baseline GDS</th>
<th>Mean baseline NPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>donepezil</td>
<td>19.37</td>
<td>29.51</td>
<td>4.15</td>
<td>13.05</td>
</tr>
<tr>
<td>placebo</td>
<td>19.26</td>
<td>29.77</td>
<td>4.16</td>
<td>11.78</td>
</tr>
</tbody>
</table>

OUTCOME ASSESSMENT:
Primary Outcome Measures: GBS total score plus the 4 domains: GBS-I (intellectual), GBS-ADL (activities of daily living), GBS-E (reasoning), GBS-S (behavior)
Secondary Outcome Measures: MMSE; ADL; PDS; NPI; GDS
Timing of assessments: Weeks 4, 12, 36 and 52

RESULTS:
Health Outcome Measures:
- No significant differences in GBS-ADL, GBS-E, or GBS-S subtotals at endpoint
- Treatment response to DON was not predicted by APOE genotype or sex
- Significantly slower decline in PDS total score for DON-treated patients (P < 0.05); specific differences noted on telephone use (P < 0.01), memory (P < 0.01), and self care (P < 0.05)
- No significant differences in NPI at endpoint

Outcome Measures:
- Significantly slower decline in MMSE for DON-treated patients (P < 0.001)
- Significantly slower decline in GBS total score at weeks 24, 36, and 52 for observed cases of DON-treated patients (P < 0.05) but no statistically significant difference in ITT analysis (P = 0.054)
- Significantly slower decline in GBS-I for DON-treated patients compared to placebo (P = 0.004)
- Significantly greater improvement for DON-treated patients on GDS (P < 0.05)
ADVERSE EVENTS:

<table>
<thead>
<tr>
<th>Overall adverse effects reported:</th>
<th>donepezil</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea</td>
<td>81.7%</td>
<td>75.7%</td>
</tr>
<tr>
<td>Depression</td>
<td>11.3%</td>
<td>9.0%</td>
</tr>
<tr>
<td>Anxiety</td>
<td>10.6%</td>
<td>5.6%</td>
</tr>
</tbody>
</table>

Significant differences in adverse events: NR

ANALYSIS:

ITT: Yes
Post randomization exclusions: NR

ADEQUATE RANDOMIZATION:

Yes

ADEQUATE ALLOCATION CONCEALMENT:

NR

BLINDING OF OUTCOME ASSESSORS:

NR

ATTRITION (overall):

Overall loss to follow-up: 32.9%
Loss to follow-up differential high: No

ATTRITION (treatment specific):

<table>
<thead>
<tr>
<th>donepezil</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss to follow-up:</td>
<td>33.1%</td>
</tr>
<tr>
<td>Withdrawals due to adverse events:</td>
<td>7%</td>
</tr>
</tbody>
</table>

QUALITY RATING:

Fair

*primary outcome measures
<table>
<thead>
<tr>
<th>Adverse Events</th>
<th>Alzheimer Drugs</th>
</tr>
</thead>
</table>
| **STUDY:** | Authors: Cutler et al.\(^\text{81}\)
Year: 1998 |
| **FUNDING:** | NR |
| **DESIGN:** | Study design: Pooled data analysis
Number of patients: 3,350 |
| **AIMS OF REVIEW:** | To determine the incidence rates of adverse events for TAC, DON, and RIV |
| **STUDIES INCLUDED IN REVIEW** | NR |
| **TIME PERIOD COVERED:** | NR |
| **CHARACTERISTICS OF INCLUDED STUDIES:** | RCTs |
| **CHARACTERISTICS OF INCLUDED POPULATIONS:** | NR |
| Authors: Cutler et al.
<table>
<thead>
<tr>
<th>Year: 1998</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHARACTERISTICS OF INTERVENTIONS:</td>
</tr>
<tr>
<td>Placebo-controlled trials of TAC, DON, and RIV</td>
</tr>
<tr>
<td>MAIN RESULTS:</td>
</tr>
<tr>
<td>Discontinuation</td>
</tr>
<tr>
<td>55%</td>
</tr>
<tr>
<td>8%</td>
</tr>
<tr>
<td>18%</td>
</tr>
<tr>
<td>COMPREHENSIVE LITERATURE SEARCH STRATEGY:</td>
</tr>
<tr>
<td>STANDARD METHOD OF APPRAISAL OF STUDIES:</td>
</tr>
<tr>
<td>QUALITY RATING:</td>
</tr>
</tbody>
</table>
Adverse Events

STUDY:
- **Authors:** Dunn et al. 84
- **Year:** 2000
- **Country:** UK

FUNDING:
- Drug and Safety Research Unit

RESEARCH OBJECTIVE:
- To report the incidence of adverse events associated with DON

DESIGN:
- **Study design:** Observational cohort pharmacovigilance study (prescription event monitoring)
- **Setting:** Questionnaires to general practitioners in the UK
- **Sample size:** 3,356 questionnaires sent; 1,762 returned

INTERVENTION:
- **Dose:** donepezil
- **Duration:** N/A
- **Sample size:** 1,762

INCLUSION:
- Patients who received DON within the first few months of its launch

EXCLUSION:
- NR

OTHER MEDICATIONS/INTERVENTIONS ALLOWED:
- NR
<table>
<thead>
<tr>
<th>POPULATION CHARACTERISTICS:</th>
<th>Groups similar at baseline: N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (years):</td>
<td>donepezil</td>
</tr>
<tr>
<td>Sex (% female):</td>
<td>72.9</td>
</tr>
<tr>
<td>Ethnicity:</td>
<td>58</td>
</tr>
<tr>
<td>Other germane population qualities:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OUTCOME ASSESSMENT:</th>
<th>Primary Outcome Measures: Adverse events noted during 6 months after first prescription for DON</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Secondary Outcome Measures: NR</td>
</tr>
<tr>
<td>Timing of assessments:</td>
<td>6 months after first prescription for the drug</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RESULTS:</th>
<th>Health Outcome Measures:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• See adverse events (incidence > 5% reported)</td>
</tr>
<tr>
<td></td>
<td>Intermediate Outcome Measures:</td>
</tr>
<tr>
<td></td>
<td>• NR</td>
</tr>
</tbody>
</table>
ADVERSE EVENTS:

Overall adverse effects reported:
- Nausea/Vomiting
- Diarrhea
- Malaise/lassitude
- Respiratory tract infection
- Dizziness
- Insomnia
- Micturition disorder

<table>
<thead>
<tr>
<th>Adverse Effect</th>
<th>donepezil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea/Vomiting</td>
<td>16.1</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>15.5</td>
</tr>
<tr>
<td>Malaise/lassitude</td>
<td>7.4</td>
</tr>
<tr>
<td>Respiratory tract infection</td>
<td>5.6</td>
</tr>
<tr>
<td>Dizziness</td>
<td>5.0</td>
</tr>
<tr>
<td>Insomnia</td>
<td>5.0</td>
</tr>
<tr>
<td>Micturition disorder</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Significant differences in adverse events:

- N/A

ANALYSIS:

- ITT: N/A
- Post randomization exclusions: N/A

ADEQUATE RANDOMIZATION:

- N/A

ADEQUATE ALLOCATION CONCEALMENT:

- N/A

BLINDING OF OUTCOME ASSESSORS:

- N/A

ATTRITION (overall):

- Overall loss to follow-up: N/A
- Loss to follow-up differential high: N/A

ATTRITION (treatment specific):

- Withdrawals due to adverse events:
 - donepezil
 - N/A
 - N/A

QUALITY RATING:

- N/A

*primary outcome measures
<table>
<thead>
<tr>
<th>Adverse Events</th>
<th>Alzheimer Drugs</th>
</tr>
</thead>
</table>
| **STUDY:** | Authors: Evans et al.\(^9\)
 | Year: 2004 |
| **FUNDING:** | NR |
| **DESIGN:** | Study design: Pooled data analysis
 | Number of patients: NR |
| **AIMS OF REVIEW:** | To determine the incidence rates of adverse events for DON, GAL, and RIV |
| **STUDIES INCLUDED IN REVIEW** | 29 RCTs |
| **TIME PERIOD COVERED:** | NR |
| **CHARACTERISTICS OF INCLUDED STUDIES:** | RCTs |
| **CHARACTERISTICS OF INCLUDED POPULATIONS:** | NR |
Authors: Evans et al.
Year: 2004

CHARACTERISTICS OF INTERVENTIONS:
Placebo-controlled and head-to-head trials of DON, GAL and RIV

MAIN RESULTS:

<table>
<thead>
<tr>
<th></th>
<th>Weight loss</th>
<th>Vomiting</th>
<th>Diarrhea</th>
<th>Nausea</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAL 8-50mg/d</td>
<td>10%</td>
<td>16%</td>
<td>8%</td>
<td>29%</td>
</tr>
<tr>
<td>DON 1-10mg/d</td>
<td>12%</td>
<td>12%</td>
<td>16%</td>
<td>17%</td>
</tr>
<tr>
<td>RIV 1-12mg/d</td>
<td>NR</td>
<td>31%</td>
<td>19%</td>
<td>47%</td>
</tr>
</tbody>
</table>

COMPREHENSIVE LITERATURE SEARCH STRATEGY:
No

STANDARD METHOD OF APPRAISAL OF STUDIES:
No

QUALITY RATING:
N/A
Adverse Events

Alzheimer Drugs

| STUDY: | Authors: Gauthier⁹²
| | Year: 2001 |
| FUNDING: | Canadian Institute for Health Research |
| DESIGN: | Study design: Retrospective data review of published RCTs
	Number of patients: NR
AIMS OF REVIEW:	To determine the incidence rates of adverse events for DON, GAL, and RIV
STUDIES INCLUDED IN REVIEW	9 RCTs
TIME PERIOD COVERED:	NR
CHARACTERISTICS OF INCLUDED STUDIES:	RCTs
CHARACTERISTICS OF INCLUDED POPULATIONS:	NR
Authors: Gauthier
Year: 2001

CHARACTERISTICS OF INTERVENTIONS: Placebo-controlled trials of DON, GAL, and RIV

<table>
<thead>
<tr>
<th></th>
<th>Don 5mg/d</th>
<th>Don 10mg/d</th>
<th>Gal 16mg/d</th>
<th>Gal 24mg/d</th>
<th>Gal 32mg/d</th>
<th>Riv 6-12mg/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discontinuation</td>
<td>7%</td>
<td>15%</td>
<td>7%</td>
<td>16%</td>
<td>27%</td>
<td>26%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>3-10%</td>
<td>6-16%</td>
<td>6%</td>
<td>17-26%</td>
<td>17-26%</td>
<td>27-34%</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>6-10%</td>
<td>13-17%</td>
<td>12%</td>
<td>13-19%</td>
<td>17%</td>
<td>40-44%</td>
</tr>
<tr>
<td>Nausea</td>
<td>4-10%</td>
<td>17-22%</td>
<td>13%</td>
<td>13%</td>
<td>48-50%</td>
<td></td>
</tr>
</tbody>
</table>

COMPREHENSIVE LITERATURE SEARCH STRATEGY: No

STANDARD METHOD OF APPRAISAL OF STUDIES: No

QUALITY RATING: N/A
Alzheimer Drugs

<table>
<thead>
<tr>
<th>Adverse Events</th>
<th>Alzheimer Drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>STUDY:</td>
<td>Authors: Knapp et al., 1994; Farlow et al., 1995; Knopman et al., 1996; Farlow et al., 1998
Country: US</td>
</tr>
<tr>
<td>FUNDING:</td>
<td>Warner Lambert</td>
</tr>
<tr>
<td>RESEARCH OBJECTIVE:</td>
<td>To evaluate the efficacy and safety of high dose TAC over 30 weeks in patients with probable AD</td>
</tr>
<tr>
<td>DESIGN:</td>
<td>Study design: RCT
Setting: Outpatients at 33 centers
Sample size: 653</td>
</tr>
<tr>
<td>INTERVENTION:</td>
<td>tacrine
Dose (mg/d):
40-80; 40-60-120; 40-80-120-160
Duration (weeks):
6-24; 6-6-18; 6-6-6-12
Sample size: 472</td>
</tr>
<tr>
<td>INCLUSION:</td>
<td>Men and women ≥ 50 yrs old with mild to moderate AD and otherwise in good health; met NINCDS criteria for AD with symptoms of AD for 1 year</td>
</tr>
<tr>
<td>EXCLUSION:</td>
<td>Patients with prior exposure to TAC or other analogues; unhealthy patients</td>
</tr>
<tr>
<td>OTHER MEDICATIONS/INTERVENTIONS ALLOWED:</td>
<td>Medications known to effect the central nervous system and likely to interfere with assessment of efficacy and medications likely to mask the cholinergic side effects of TAC were prohibited; those taking cimetidine or theophylline were excluded</td>
</tr>
</tbody>
</table>
Authors: Knapp et al.
Year: 1994

POPULATION CHARACTERISTICS:

<table>
<thead>
<tr>
<th>Groups similar at baseline: Yes</th>
<th>Alzheimer classification: Mild-moderate</th>
</tr>
</thead>
<tbody>
<tr>
<td>tacrine</td>
<td>placebo</td>
</tr>
<tr>
<td>40- 80; 40-60-120; 40-80-120-160 mg/d</td>
<td>72.7</td>
</tr>
<tr>
<td>73; 73; 72.8</td>
<td>53</td>
</tr>
<tr>
<td>48; 55; 51</td>
<td></td>
</tr>
</tbody>
</table>

Mean age (years):
Sex (% female):
Ethnicity: NR
Other germane population qualities:
- MMSE 17.1; 18.7; 18.8
- ADAS-Cog 30.9; 28.5; 28

OUTCOME ASSESSMENT:

Primary Outcome Measures: CIBI; ADAS-Cog; FCCA

Secondary Outcome Measures: ADAS-Noncog; ADAS-Total score; MMSE; GDS

Timing of assessments: Baseline and every 6 weeks

RESULTS:

Health Outcome Measures:
- At week 30 significantly more patients in the placebo group were placed in a nursing home or had died than in the TAC 160 mg/d group (7% vs. 4%; OR 2.8; 95% CI: 1.0 – 7.8; P = 0.046); no significant differences between placebo and TAC 80 mg/d group (7% vs. 7%)

Intermediate Outcome Measures:
- Significant differences in favor of 160 mg/d TAC vs. placebo for CIBI (P = 0.002) and ADAS-Cog (P < 0.001)
- A subgroup analysis revealed that patients with higher MMSE scores (18-26) did not benefit more from treatment than patients with lower scores (10-17)
- No interaction between gender and TAC treatment on the ADAS-Cog score could be detected
- Patients with an APOE-[epsilon]4 genotype had less response to treatment than patients with an APOE-[epsilon]2-3 genotype
Authors: Knapp et al.
Year: 1994

ADVERSE EVENTS:
- 54% of TAC treated patients had elevated ALT levels
- 29% of TAC treated patients had three times the upper limit of normal (120 U/L)
- 90% of elevations occurred within the first 12 weeks

Significant differences in adverse events:
- Significantly higher rate of ALT elevations in TAC group

ANALYSIS:
- **ITT:** Yes
- **Post randomization exclusions:**

ADEQUATE RANDOMIZATION:
- Yes

ADEQUATE ALLOCATION CONCEALMENT:
- NR

BLINDING OF OUTCOME ASSESSORS:
- Yes

ATTRITION (overall):
- Overall loss to follow-up: 58%
- Loss to follow-up differential high:

<table>
<thead>
<tr>
<th></th>
<th>tacrine</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss to follow-up</td>
<td>55%</td>
<td>11%</td>
</tr>
<tr>
<td>Primary reason: ALT elevations; also gastrointestinal symptoms (16%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ATTRITION (treatment specific):
- Loss to follow-up:
- Withdrawals due to adverse events:

QUALITY RATING:
- Poor

primary outcome measures
Alzheimers Drugs

<table>
<thead>
<tr>
<th>Adverse Events</th>
<th>Alzheimer Drugs</th>
</tr>
</thead>
</table>
| **STUDY:** | **Authors:** Morganroth et al.\(^5\)
Year: 2002
Country: US |
| **FUNDING:** | eResearch Technology, Philadelphia, PA and Novartis Pharmaceuticals Corporation, East Hanover, NJ |
| **DESIGN:** | **Study design:** Pooled data-analysis
Number of patients: 2,791 |
<p>| AIMS OF REVIEW: | To determine if RIV has adverse cardiac effects by analysis of recorded ECGs |
| STUDIES INCLUDED IN META-ANALYSIS | Four phase III clinical trials in AD patients reported in: Corey-Bloom et al. 1998; Rosler et al. 1999; Schneider et al. 1998 |
| TIME PERIOD COVERED: | 1998 |
| CHARACTERISTICS OF INCLUDED STUDIES: | Four placebo-controlled trials of RIV (26 weeks) at outpatient research centers in 10 countries; doses of 1-12 mg/day titrated over 7 to 12 weeks |
| CHARACTERISTICS OF INCLUDED POPULATIONS: | ≥ 50 years old; not of childbearing potential; met DSM-IV and NINCDS/ADRDA criteria for AD; had responsible caregiver; admitted with coexisting disease unless condition was severe; patients excluded if abnormality identified by physical exam, ECG, lab test, or abnormal vital signs |</p>
<table>
<thead>
<tr>
<th>Authors: Morganroth et al.</th>
<th>Year: 2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHARACTERISTICS OF INTERVENTIONS:</td>
<td>Patients randomly assigned to either placebo or RIV for 26 weeks; dosage could be fixed, partially flexible, or fully flexible; standard 12-lead ECG performed at screening, baseline, and weeks 2, 4, 8, 12, 16, 18, 22 and 26, or early termination; ECG abnormalities characterized as “new or worsened”, “no change”, or “improved”; ECG variables included heart rate, PQ or PR interval, QRS interval, and corrected and uncorrected QT intervals</td>
</tr>
<tr>
<td>MAIN RESULTS:</td>
<td>No clinically meaningful differences were apparent between RIV and placebo-treated patients with regard to mean change from baseline in heart rate, PQ or PR interval, QRS interval, QT interval uncorrected, or QT interval corrected</td>
</tr>
<tr>
<td>ADVERSE EVENTS:</td>
<td>No clinically meaningful differences in treatment-emergent ECG abnormalities, bradycardia, or tachycardia were observed between groups</td>
</tr>
<tr>
<td>COMPREHENSIVE LITERATURE SEARCH STRATEGY:</td>
<td>No; review focused on four specific studies</td>
</tr>
<tr>
<td>STANDARD METHOD OF APPRAISAL OF STUDIES:</td>
<td>NR</td>
</tr>
<tr>
<td>QUALITY RATING:</td>
<td>Fair</td>
</tr>
</tbody>
</table>
Alzheimer Drugs

<table>
<thead>
<tr>
<th>Study</th>
<th>Funding</th>
<th>Design</th>
<th>Aims of Review</th>
<th>Studies Included in Meta-Analysis</th>
<th>Time Period Covered</th>
<th>Characteristics of Included Studies</th>
<th>Characteristics of Included Populations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors: Watkins et al. 2014
Year: 1994
Country: US</td>
<td>Alzheimer’s Association Inc., Chicago, IL; National Institute on Aging, Washington, DC; Parke-Davis/Warner-Lambert Co, Ann Arbor, MI; Advanced Nutritional Technologies, Elizabeth, NJ</td>
<td>Study design: Retrospective data-analysis of RCTs
Number of patients: 2,446</td>
<td>To analyze the hepatic effects of TAC treatment in patients with AD</td>
<td>Three published trials: Davis et al. 1992; Farlow et al. 1992; Knapp et al 1994
Data from two unpublished trials by coauthor Knapp also included</td>
<td>1992-1994</td>
<td>Placebo-controlled trials of TAC in the US, France, and Canada of at least 6 weeks; in one study patients were also administered lecithin as 9 g of phosphatidylcholene</td>
<td>2,468 patients ≥ 50 yrs old; met NINCDS/ADRDA criteria for AD of mild to moderate severity for at least 1 year; good health without significant hepatic, cardiovascular or renal disease; required to have serum ALT, AST, total bilirubin, and creatinine levels within normal limits at entry</td>
</tr>
</tbody>
</table>
| **Authors:** Watkins et al.
Year: 1994 |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CHARACTERISTICS OF INTERVENTIONS:</td>
</tr>
</tbody>
</table>
| **MAIN RESULTS:** | - ALT levels elevated above normal limit at least once in 49% of patients taking TAC
- ALT levels elevated by more than three times normal limit observed in 25% of patients
- ALT levels greater than twenty times normal limit observed in 2% of patients
- Serum AST changes generally mirrored ALT elevations
- Elevations appeared to occur abruptly (i.e., within 50 days) and discontinuation of TAC completely reversed elevations in ALT |
| **ADVERSE EVENTS:** | Elevated ALT levels were associated with increased eosinophilia, fever, and rash |
| **COMPREHENSIVE LITERATURE SEARCH STRATEGY:** | No; review focused on five specific studies |
| **STANDARD METHOD OF APPRAISAL OF STUDIES:** | NR |
| **QUALITY RATING:** | N/A |
Alzheimer Drugs

Adverse Events

| Study | Authors: Wong et al.⁶⁷
Year: 1999
Country: Taiwan |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Funding:</td>
</tr>
<tr>
<td>Research Objective:</td>
</tr>
</tbody>
</table>
| Design: | Study design: RCT
Setting: NR
Sample size: 100 |
| Intervention: | tacrine
Dose: 120 mg/d titrated at 30 mg/d
Duration: 30 weeks
Sample size: 75
Placebo
N/A
30 weeks
25 |
| Inclusion: | ≥ 50 yrs old; met NINCDS criteria for probable AD with the presence of symptoms for at least 1 year; dementia was mild to moderate as determined by CDR; baseline MMSE score of 10 - 26 |
| Exclusion: | Cardiac disease; stroke; diabetes; hepatic or renal insufficiency; any malignancy; prior exposure to TAC; probable VaD with HIS > 4; CT or MRI of a focal brain lesion; evidence of vitamin B₁₂ deficiency; hypothyroidism; neurosyphilis |
| Other Medications/Interventions Allowed: | Concomitant medications except nootropics, anti-depressants, antipsychotics, and sedative-hypnotics; patients taking concomitant medications had to discontinue use for at least 10 days before the study |
Authors: Wong et al.
Year: 1999

POPULATION CHARACTERISTICS:

<table>
<thead>
<tr>
<th></th>
<th>Tacrine</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (years)</td>
<td>73.6</td>
<td>74.0</td>
</tr>
<tr>
<td>Sex (% female)</td>
<td>48.6</td>
<td>58.3</td>
</tr>
<tr>
<td>Ethnicity (% Chinese)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Other germane population qualities:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline HIS</td>
<td>0.66</td>
<td>0.71</td>
</tr>
<tr>
<td>Baseline MMSE</td>
<td>15.8</td>
<td>17.3</td>
</tr>
</tbody>
</table>

Alzheimer classification:

- Mild-to-moderate

POPULATION

Groups similar at baseline:

- Yes

RESULTS:

Health Outcome Measures:

- NR

Intermediate Outcome Measures:

- Significantly more improvement on the CASI for TAC compared to placebo (P = 0.05)*
- No significant differences in patient or caregiver rated CGIC (P > 0.5)*
- No significant differences in IQCODE between TAC and placebo (P > 0.5)*
- Marginally significant improvement in MMSE for TAC-treated patients compared to placebo (P = 0.057)
- No significant differences in ADS between TAC and placebo (P > 0.5)
| Authors: Wong et al. |
| Year: 1999 |
| ADVERSE EVENTS: |
| Overall adverse effects reported: |
| - Elevated ALT |
| - Anorexia |
| - Nausea/Vomiting |
| tacrine |
| NR |
| 51% |
| 30% |
| 14% |
| placebo |
| NR |
| 12.5% |
| 8% |
| 0% |
| Significant differences in adverse events: |
| Yes, but significance not reported |
| ANALYSIS: |
| ITT: Yes |
| Post randomization exclusions: Yes (6) |
| ADEQUATE RANDOMIZATION: |
| NR |
| ADEQUATE ALLOCATION CONCEALMENT: |
| NR |
| BLINDING OF OUTCOME ASSESSORS: |
| NR |
| ATTRITION (overall): |
| Overall loss to follow-up: 44% |
| Loss to follow-up differential high: Yes |
| tacrine |
| 52% |
| 52% |
| placebo |
| 20% |
| 20% |
| ATTRITION (treatment specific): |
| Loss to follow-up: |
| Withdrawals due to adverse events: |
| tacrine |
| NR |
| placebo |
| NR |
| QUALITY RATING: |
| Poor |

*primary outcome measures
Adverse Events

<table>
<thead>
<tr>
<th>STUDY:</th>
</tr>
</thead>
</table>
| **Authors:** Wood et al. 69
Year: 1994
Country: UK |

<table>
<thead>
<tr>
<th>FUNDING:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shire Pharmaceuticals and Parke-Davis Research Laboratories</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RESEARCH OBJECTIVE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>To determine whether oral TAC improves the symptoms of patients with mild to moderate AD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DESIGN:</th>
</tr>
</thead>
</table>
| **Study design:** RCT
Setting: Multi-center (memory and psychogeriatric clinics)
Sample size: 154 |

<table>
<thead>
<tr>
<th>INTERVENTION:</th>
</tr>
</thead>
</table>
| **Dose:**
Duration:
Sample size: |
| **tacrine**
80 mg/d
12 weeks
78 | **placebo**
N/A
12 weeks
76 |

<table>
<thead>
<tr>
<th>INCLUSION:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD diagnosed by NINCDS/ADRDA; MMSE ≥ 10; CDRS of 1 or 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EXCLUSION:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidence of concurrent illness (cerebral infarction, including evidence on CT scan, hepatic disease, clinical depression or other psychiatric diagnoses); lacked a reliable caregiver</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OTHER MEDICATIONS/INTERVENTIONS ALLOWED:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other medications allowed if they were not likely to interfere with or confuse the interpretation of the expected actions of TAC</td>
</tr>
</tbody>
</table>
Authors: Wood et al.
Year: 1994

POPULATION CHARACTERISTICS:

<table>
<thead>
<tr>
<th>Mean age (years):</th>
<th>Sex (% female):</th>
<th>Ethnicity:</th>
<th>Other germane population qualities:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>• MMSE</td>
</tr>
</tbody>
</table>

Groups similar at baseline:

Yes

Alzheimer classification:

Mild-moderate

<table>
<thead>
<tr>
<th>Tacrine</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>73</td>
</tr>
<tr>
<td>66</td>
<td>62</td>
</tr>
<tr>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>16.8</td>
<td>17.7</td>
</tr>
</tbody>
</table>

OUTCOME ASSESSMENT:

Primary Outcome Measures: MMSE; CGRS

Secondary Outcome Measures: RGRS; GBS; ADAS-Noncog

Timing of assessments: Baseline and weeks 4, 8 and 12

RESULTS:

Health Outcome Measures:

• NR

Intermediate Outcome Measures:

• No significant differences in MMSE scores between groups (P = 0.55)
• CGRS and RGRS scores significantly better in TAC compared to placebo (P = 0.012 and P = 0.013)
<table>
<thead>
<tr>
<th>Authors: Wood et al.</th>
<th>Year: 1994</th>
</tr>
</thead>
</table>

ADVERSE EVENTS:

<table>
<thead>
<tr>
<th>Overall adverse effects reported:</th>
<th>tacrine</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Raised LFTs</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>• Nausea/Vomiting</td>
<td>44%</td>
<td>4%</td>
</tr>
<tr>
<td>• Dizziness</td>
<td>33%</td>
<td>7%</td>
</tr>
<tr>
<td>• Dizziness</td>
<td>10%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Significant differences in adverse events: NR

ANALYSIS:

ITT: No
Post randomization exclusions: NR

ADEQUATE RANDOMIZATION: NR

ADEQUATE ALLOCATION CONCEALMENT: NR

BLINDING OF OUTCOME ASSESSORS: Yes

ATTRITION (overall):
Overall loss to follow-up: 20.1%
Loss to follow-up differential high: Yes

ATTRITION (treatment specific):
Loss to follow-up:
Withdrawals due to adverse events:

<table>
<thead>
<tr>
<th></th>
<th>tacrine</th>
<th>placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss to follow-up</td>
<td>29.5%</td>
<td>10.5%</td>
</tr>
<tr>
<td>Withdrawals due to adverse events</td>
<td>23%</td>
<td>6.5%</td>
</tr>
</tbody>
</table>

QUALITY RATING: Poor

primary outcome measures
Alzheimer Drugs

Subgroups

| STUDY: | Authors: Areosa et al. \(^7\)
Year: 2005
Country: Multinational (Germany, France, Belgium, Sweden, UK, USA, Latvia). |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNDING:</td>
<td>Funding for review NR; all included studies were funded by Merz Pharma KGaA, Frankfurt, Germany</td>
</tr>
</tbody>
</table>
| DESIGN: | Study design: Systematic review of MEM trials
Number of patients: Ranged from 60 – 579 |
| AIMS OF REVIEW: | To determine the clinical efficacy and safety of MEM for people with AD, or vascular or mixed dementia |
| STUDIES INCLUDED IN META-ANALYSIS | 7 placebo-controlled RCT studies were included: Ditzler 1991; Gortelmeyer 1992; MMM300 (Orgogozo) 2000; MMM500 (Wilcock) 2000; Pantev 1993; Reisberg 2000; Winblad 1999 |
| TIME PERIOD COVERED: | Trials completed before April 2003 that were included in the Trial-based Specialized Register of the Cochrane Dementia and Cognitive Improvement Group |
| CHARACTERISTICS OF INCLUDED STUDIES: | Diagnosis of dementia established using DSM-III-R, DSM-III, and DSM-IV; 2 studies involved only people with VaD (MMM300, MMM500); one study was restricted to people with AD; 3 studies included both types of dementia |
| CHARACTERISTICS OF INCLUDED POPULATIONS: | Sample size ranges: 60 (Pantev 1993) to 579 (MMM 500); range of mean ages: 71.5-77.0 yrs. |
CHARACTERISTICS OF INTERVENTIONS:

The trials studied different dosages of MEM with placebo. The doses ranged from 10 to 30 mg/day but the most common was 20mg/day. Most of the trials started with low doses progressively increased to target levels. Outcome measures included ADAS-Cog, Syndrom-Kurz test, SIB, CIBIC-plus, CGIC, SCAG, NOSIE, ADCS-ADL, ADL, BGP, NOSGER.

MAIN RESULTS:

Note: This study stratifies results by the randomized population (i.e., AD, VaD, or AD+VaD)

- **Cognition:**
 - Moderate-Severe AD: Significant improvement in SIB at 28 weeks (1 trial; *MD = 6.1; 95% CI: 2.99 – 9.21; P = 0.0001)
 - Mild-moderate VaD: Significant improvement in ADAS-Cog at 28 weeks (2 trials; **WMD = -2.19; 95% CI: -3.16 – -1.21; P < 0.0001)
 - Mixed AD + VaD: Effect size NR at 12 weeks (1 trial)

- **Activities of Daily Living:**
 - Moderate-Severe AD: Significant improvement in activities of daily living at 28 weeks (1 trial; WMD=0.32; 95% CI: 0.07 – 0.73; P = 0.01)
 - Mild-moderate VaD: No significant differences in activities of daily living (NOSGER) (1 trial; MD = 0.21; 95% CI: -4.65 – 5.07)
 - Mixed AD + VaD: No significant differences at 12 weeks using BGP care dependence sub score (1 trial; effect size NR)

- **Behavior:**
 - Moderate-Severe AD: No significant differences in NPI at 28 weeks (1 trial; WMD = -3.30; 95% CI: -7.33 – 0.73, P = 0.11)
 - Mild-moderate VaD: NR
 - Mixed AD + VaD: NR (1 trial; effect size not reported)

- **Global scales:**
 - Moderate-Severe AD: Significant difference in CIBIC-plus score at 28 weeks (1 trial; MD = -0.30; 95% CI: -0.058 – -0.02, P = 0.04)
 - Mild-moderate VaD: No significant differences in GBS scores at 28 weeks (2 trials; WMD = -1.81; 95% CI: -4.21 – 0.58, P = 0.14); no differences in NOSGER at 28 weeks (2 trials; WMD = -0.92; 95% CI: -2.90 – 1.05; P = 0.4)
 - Mixed AD + VaD: Significant improvement in numbers at 12 weeks (1 trial; 60/82 compared with 38/84, OR 3.30; 95% CI 1.72 – 6.33; P = 0.0003)
| Authors: Areosa et al.
Year: 2004 | |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVERSE EVENTS:</td>
<td>Not stratified by population</td>
</tr>
<tr>
<td>COMPREHENSIVE LITERATURE SEARCH STRATEGY:</td>
<td>Yes: trials selected from the Trial-based Specialized Register of the Cochrane Dementia and Cognitive Improvement Group, containing records from a number of published and unpublished electronic databases (e.g., MEDLINE, CCTR/Central, EMBASE)</td>
</tr>
<tr>
<td>STANDARD METHOD OF APPRAISAL OF STUDIES:</td>
<td>Cochrane Collaboration guidelines (Mulrow 1997)</td>
</tr>
<tr>
<td>QUALITY RATING:</td>
<td>Good</td>
</tr>
</tbody>
</table>

*Mean difference (MD)
**Weighted mean difference (WMD)
Alzheimer Drugs

<table>
<thead>
<tr>
<th>Subgroups</th>
<th></th>
</tr>
</thead>
</table>
| **STUDY:** | Authors: Erkinjuntti et al. 2002
Year: 2002
Country: Multinational (10 countries) |
| **FUNDING:** | Janssen Research Foundation |
| **RESEARCH OBJECTIVE:** | To determine the effect of GAL on patients with probable VaD or AD combined with CVD |
| **DESIGN:** | Study design: RCT
Setting: Multi-center (number of centers NR)
Sample size: 592 |
| **INTERVENTION:** | galantamine
Dose: 24 mg/d
Duration: 6 months
Sample size: 396
placebo
Dose: N/A
Duration: 6 months
Sample size: 196 |
<p>| INCLUSION: | Met clinical criteria for probable VaD based on NINDS-AIREN guidelines or AD based on NINCDS/ADRDA; significant radiological evidence of CVD; MMSE score of 10-25: ADAS-Cog score > 12; have a reliable caregiver; evidence of relevant focal neurological signs consistent with previous stroke or CVD |
| EXCLUSION: | Evidence of neurodegenerative disorders other than AD; cognitive impairment resulting from cerebral trauma; hypoxic cerebral damage; vitamin deficiency; other clinically significant disease; patients who received investigational medication within 30 days of trial |
| OTHER MEDICATIONS/ INTERVENTIONS ALLOWED: | Other antidementia medications not allowed; others NR |</p>
<table>
<thead>
<tr>
<th>POPULATION CHARACTERISTICS:</th>
<th>Groups similar at baseline: Yes</th>
<th>Alzheimer classification: NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (years):</td>
<td>galantamine</td>
<td>placebo</td>
</tr>
<tr>
<td>Sex (% female):</td>
<td>75.0</td>
<td>75.2</td>
</tr>
<tr>
<td>Ethnicity:</td>
<td>48</td>
<td>46</td>
</tr>
<tr>
<td>• Black</td>
<td>0.5%</td>
<td>0%</td>
</tr>
<tr>
<td>• White</td>
<td>99.5%</td>
<td>99.8%</td>
</tr>
<tr>
<td>• Asian</td>
<td>0%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Other germane population qualities:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• ADAS-Cog score</td>
<td>22.3</td>
<td>24.1</td>
</tr>
<tr>
<td>• MMSE</td>
<td>20.7</td>
<td>20.2</td>
</tr>
</tbody>
</table>

OUTCOME ASSESSMENT:

Primary Outcome Measures: ADAS-Cog 11; CIBIC-plus (only primary outcome measures reported in the subgroup analysis of patients with AD & CVD)

Secondary Outcome Measures: ADAS-Cog 13; NPI; DAD

Timing of assessments: ADAS-Cog 11 performed at screening, baseline, 6 weeks, and months 3 and 6; CIBIC-plus, NPI, and DAD performed at baseline, and months 3 and 6

RESULTS:

Subgroup analysis for AD-patients with CVD (ADAS-Cog & CIBIC-plus only):

Health Outcome Measures: N/A

Intermediate Outcome Measures:
- At 6 months patients taking GAL had a significantly greater improvement in ADAS-Cog scores compared with patients on placebo (treatment difference 2.7 points; $P < 0.0005$)*
- At 6 months a greater proportion of GAL-treated patients improved on the CIBIC-plus compared to placebo (32% vs. 19%; $P = 0.019$)
- These outcome measures were not significant for the subgroup of patients with VaD
Alzheimer's Drugs

Authors:

Erkinjuntti et al.

Year:

2002

ADVERSE EVENTS:

Overall adverse effects reported:
- Nausea for AD subgroup

Adverse Effects Comparison:

<table>
<thead>
<tr>
<th></th>
<th>Galantamine (NR for subgroup)</th>
<th>Placebo (NR for subgroup)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea</td>
<td>19.7%</td>
<td>10.3%</td>
</tr>
</tbody>
</table>

Significant differences in adverse events:

NR

ANALYSIS:

- ITT: Yes
- Post randomization exclusions: Yes

ADEQUATE RANDOMIZATION:

Yes

ADEQUATE ALLOCATION CONCEALMENT:

Yes

BLINDING OF OUTCOME ASSESSORS:

Yes

ATTRITION (overall):

- Overall loss to follow-up: 135 (23%)
- Loss to follow-up differential high: No

ATTRITION (treatment specific):

- Loss to follow-up:
 - Galantamine: 26%
 - Placebo: 17%
- Withdrawals due to adverse events:
 - Galantamine: 20%
 - Placebo: 8%

QUALITY RATING:

Fair

primary outcome measures
<table>
<thead>
<tr>
<th>Subgroups</th>
<th>Alzheimer Drugs</th>
</tr>
</thead>
</table>
| **STUDY:** | **Authors:** Grossberg *et al.*⁹²
Year: 2000
Country: NR (authors from Switzerland and the US; trials not reported in detail) |
| **FUNDING:** | Novartis |
| **RESEARCH OBJECTIVE:** | To conduct a pharmacodynamic analysis of potential drug interactions between RIV and other medications commonly prescribed in the elderly AD population |
| **DESIGN:** | **Study design:** Post-hoc analysis of data from 4 RCTs
Setting: NR
Sample size: 2,459 |
| **INTERVENTION:** | **Dose:** rivastigmine
1 to 12 mg/d
6 months
Sample size: 1,696
placebo
N/A
6 months
Sample size: 763 |
| **INCLUSION:** | Patients randomized in placebo-controlled trials of RIV |
| **EXCLUSION:** | NR |
| **OTHER MEDICATIONS/ INTERVENTIONS ALLOWED:** | Yes |
Authors: Grossberg et al.
Year: 2000

POPULATION CHARACTERISTICS:
- **Mean age (years):**
- **Sex (% female):**
- **Ethnicity: (% white):**
 - Other germane population qualities:
 - MMSE

Groups similar at baseline:
- No substantive differences between the groups

Alzheimer classification:
- NR

OUTCOME ASSESSMENT:

| p | 73.1 |
| 58 |
| 94 |
| 19.5 |

Primary Outcome Measures:
- Breslow-Day test assessing the homogeneity of ORs for the incidence of AE in RIV/placebo receiving and not receiving a concomitant medication

Secondary Outcome Measures:
- NR

Timing of assessments:
- NR

RESULTS:

<table>
<thead>
<tr>
<th>Health Outcome Measures:</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intermediate Outcome Measures:</th>
</tr>
</thead>
<tbody>
<tr>
<td>No clinically significant pattern of increased incidence of AEs associated with RIV and concomitant medication use compared with placebo; 31 statistically significant ORs were not homogenous; 21 of these differences exhibited a higher incidence in the placebo group; in cases where higher incidence was observed for RIV (salicylates and diuretics) significant differences were attributed to placebo group differences</td>
</tr>
</tbody>
</table>
| Authors: Grossberg et al
Year: 2000 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVERSE EVENTS: Overall adverse effects reported:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rivastigmine</td>
<td>placebo</td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Significant differences in adverse events:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant differences in the odds ratios (AEs RIV/AEs placebo) were noted across concomitant use of anticholinergics, diabetic drugs, cardiac drugs, diuretics, estrogens, salicylic acid, psycholeptics, and aldehydes and derivatives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANALYSIS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITT: NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post randomization exclusions: NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADEQUATE RANDOMIZATION:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADEQUATE ALLOCATION CONCEALMENT:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLINDING OF OUTCOME ASSESSORS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTRITION (overall):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall loss to follow-up: NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss to follow-up differential high: NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTRITION (treatment specific):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss to follow-up:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Withdrawals due to adverse events:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rivastigmine</td>
<td>placebo</td>
<td></td>
</tr>
<tr>
<td>NR</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>NR</td>
<td>NR</td>
<td></td>
</tr>
<tr>
<td>QUALITY RATING:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*primary outcome measures
Subgroups Alzheimer Drugs

| STUDY: | Authors: Kumar et al. \(^9\) (Subgroup analysis of Corey-Bloom et al.)
Year: 2000
Country: US |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNDING:</td>
<td>Novartis</td>
</tr>
<tr>
<td>RESEARCH OBJECTIVE:</td>
<td>Evaluate the efficacy and safety of the centrally acting ChE inhibitor RIV tartrate for patients with mild to moderately severe AD with or without concurrent VRF</td>
</tr>
</tbody>
</table>
| DESIGN: | Study design: RCT
Setting: Multi-center (22)
Sample size: 699 |
| INTERVENTION: |
Dose:
Duration:
Sample size: |
| rivastigmine | 1-4 mg/d
26 weeks
233 |
| rivastigmine | 6-12 mg/d
26 weeks
231 |
| placebo | N/A
26 weeks
235 |
| INCLUSION: | Age between 45 and 89 years; non-childbearing potential for females; criteria for AD according to DSM-IV; probable AD according to NINCDS/ADRDA criteria; mild-to-moderate impairment based on MMSE score between 10 and 26; head CT or MRI consistent with AD within 12 months of inclusion; responsible caregiver provided written consent [Note: see Corey-Bloom et al., 1998] |
| EXCLUSION: | Severe and unstable medical illnesses; use of anticholinergics AChE precursor health food supplements, memory enhancers, insulin, and psychotic drugs [Note: see Corey-Bloom et al., 1998]; patients with MHIS \(\geq \) 5 were excluded from this analysis |
| OTHER MEDICATIONS/INTERVENTIONS ALLOWED: | Occasional use of chloral hydrate for agitation or insomnia [Note: authors refer to previous study design description in Corey-Bloom et al., 1998] |
Authors: Kumar et al.
Year: 2000

POPULATION CHARACTERISTICS:

<table>
<thead>
<tr>
<th></th>
<th>placebo</th>
<th>rivastigmine (1-4 mg/d)</th>
<th>rivastigmine (6-12 mg/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (years):</td>
<td>74.8</td>
<td>74.9</td>
<td>73.8</td>
</tr>
<tr>
<td>Sex (% female):</td>
<td>58</td>
<td>57</td>
<td>68</td>
</tr>
<tr>
<td>Ethnicity:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>94%</td>
<td>95%</td>
<td>97%</td>
</tr>
<tr>
<td>Black</td>
<td>4%</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>Other</td>
<td>2%</td>
<td>1%</td>
<td>0%</td>
</tr>
<tr>
<td>Other germane population qualities:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean MMSE score</td>
<td>20</td>
<td>19.5</td>
<td>19.62</td>
</tr>
<tr>
<td>% with MHIS > 0 (VRF)</td>
<td>44%</td>
<td>47%</td>
<td>47%</td>
</tr>
</tbody>
</table>

Alzheimer classification: Mild-moderate

Groups similar at baseline: No (more females in high dose RIV group)

OUTCOME ASSESSMENT:

Primary Outcome Measures: ADAS-Cog; CIBIC-plus; PDS (all stratified by baseline MHIS score category; MHIS > 0 means VRF are present)

Secondary Outcome Measures: MMSE; GDS (all stratified by baseline MHIS score category)

Timing of assessments: Baseline, and weeks 12, 18 and 26 or early termination

RESULTS:

Health Outcome Measures:
- Treatment differences in PDS scores between high dose RIV and placebo were greater in the MHIS > 0 group than the MHIS = 0 group (5.9 vs 3.5)

Intermediate Outcome Measures:
- Treatment differences in ADAS-Cog scores between RIV 6-12 mg/d and placebo greater in the MHIS > 0 group than the MHIS = 0 group (6.15 vs 4.03); significant difference also observed in the MHIS > 0 for RIV 1-4 mg/day (difference = 2.3 points, P = 0.02)
- Both RIV treatment groups had higher percentages of responders on CIBIC-plus compared with the placebo treatment groups in the MHIS = 0 category (P < 0.05) but not the MHIS > 0 group
- In both MHIS categories the MMSE mean change from baseline scores were higher indicating less deterioration in the 6-12 mg/day group compared with the placebo group (MHIS = 0, P = 0.086; MHIS > 0, P = 0.005); the treatment difference was larger in the MHIS > 0 category
- At week 26 the mean change from baseline GDS score for patients receiving RIV 6-12 mg/day indicated less disease worsening in the MHIS > 0 category (P = 0.032)
Authors: Kumar et al.
Year: 2000

<table>
<thead>
<tr>
<th>ADVERSE EVENTS:</th>
<th>rivastigmine MHIS = 0</th>
<th>rivastigmine MHIS > 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall adverse effects reported:</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>• All gastrointestinal</td>
<td>67%</td>
<td>54%</td>
</tr>
<tr>
<td>• Nausea</td>
<td>41%</td>
<td>25%</td>
</tr>
<tr>
<td>• Vomiting</td>
<td>16%</td>
<td>16%</td>
</tr>
<tr>
<td>• Diarrhea</td>
<td>23%</td>
<td>17%</td>
</tr>
<tr>
<td>• Anorexia</td>
<td>15%</td>
<td>12%</td>
</tr>
</tbody>
</table>

Significant differences in adverse events: Treatment with RIV not associated with any increase in mortality, serious adverse events, effects on laboratory measures, ECGs or cardiovascular vital signs in either MHIS category

ANALYSIS:
ITT: No; observed cases used for this analysis
Post randomization exclusions: Yes (2 patients with no MHIS score were excluded)

ADEQUATE RANDOMIZATION: Yes (independent firm cited, along with voice responses system for randomization code assignment)

ADEQUATE ALLOCATION CONCEALMENT: Yes

BLINDING OF OUTCOME ASSESSORS: Yes

ATTRITION (overall): Overall loss to follow-up: 22%
Loss to follow-up differential high: No (between treatment groups, stratified by MHIS status)

ATTRITION (MHIS score-specific):

<table>
<thead>
<tr>
<th>Loss to follow-up:</th>
<th>MHIS = 0</th>
<th>MHIS > 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>22%</td>
<td>21%</td>
</tr>
<tr>
<td>RIV (low)</td>
<td>16%</td>
<td>17%</td>
</tr>
<tr>
<td>RIV (high)</td>
<td>14%</td>
<td>15%</td>
</tr>
<tr>
<td>Withdrawals due to adverse events:</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

QUALITY RATING: Fair

*primary outcome measures
Drug Class Review on Alzheimer’s Drugs

Final Report Update 1
June 2006

APPENDICES
APPENDIX A. Search Strategy

#2 Search "Alzheimer Disease"[MeSH] 32571

#12 Search "donepezil hydrochloride" OR aricept OR "rivastigmine tartrate" OR exelon OR reminyl OR cognex OR namenda 2242

#13 Search #11 OR #12 30378

#14 Search #2 AND #13 1720

#15 Search #2 AND #13 Field: All Fields, Limits: Randomized Controlled Trial 210

#16 Search #2 AND #13 Field: All Fields, Limits: Review 508

#19 Search #14 AND #18 603

#20 Search #15 OR #16 OR #19 988

#21 Search #15 OR #16 OR #19 Field: All Fields, Limits: English, Human 843
Cochrane Search Strategy
(Alzheimer OR Alzheimers) AND (Acetylcholinesterase OR Donezepil OR Rivastigmine OR Galantamine OR Tacrine OR Memantine) = 39

EMBASE Search Strategy
(Alzheimer OR Alzheimers) AND (Acetylcholinesterase OR Donezepil OR Rivastigmine OR Galantamine OR Tacrine OR Memantine) = 466

International Pharmaceutical Abstracts Search Strategy
(Alzheimer OR Alzheimers) AND (Acetylcholinesterase OR Donezepil OR Rivastigmine OR Galantamine OR Tacrine OR Memantine) = 50

After removing letters, editorials, notices, foreign languages, etc, and editing for duplicates, final numbers are:

MEDLINE = 843
Cochrane = 15
EMBASE = 355
IPA = 40

And total database (with duplicates marked) = 979.
APPENDIX B. Clinical Assessment Scales Commonly Used in AD Therapeutic Trials

<table>
<thead>
<tr>
<th>Domain / Scale</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognition</td>
<td></td>
</tr>
<tr>
<td>Memory, orientation, language, praxis, etc.</td>
<td></td>
</tr>
<tr>
<td>Mini-Mental State Exam (MMSE)</td>
<td>30-pt. scale (higher scores better)</td>
</tr>
<tr>
<td></td>
<td>Clinician administered patient evaluation</td>
</tr>
<tr>
<td></td>
<td>Mostly used for eligibility screening and dementia staging</td>
</tr>
<tr>
<td>Alzheimer’s Disease Assessment Scale-cognitive subscale (ADAS-cog)</td>
<td>70-pt. scale (higher scores worse)</td>
</tr>
<tr>
<td></td>
<td>Clinician administered patient evaluation</td>
</tr>
<tr>
<td></td>
<td>Standard cognitive outcome measure in mild-moderate AD</td>
</tr>
<tr>
<td>Severe Impairment Battery (SIB)</td>
<td>100-pt. scale (higher scores better)</td>
</tr>
<tr>
<td></td>
<td>Clinician administered patient evaluation</td>
</tr>
<tr>
<td></td>
<td>Cognitive outcome measure used in moderate-severe AD</td>
</tr>
<tr>
<td>Global Change</td>
<td></td>
</tr>
<tr>
<td>Summary outcome assessment from baseline to endpoint</td>
<td></td>
</tr>
<tr>
<td>Clinical Global Impression of Change (CGI-C)</td>
<td>7-pt. scale (1 = very much improved, 4 = no change, 7 = very much worse)</td>
</tr>
<tr>
<td></td>
<td>Clinician rated, based on patient +/- informant interview</td>
</tr>
<tr>
<td>Clinician’s Interview-Based Impression of Change Plus Caregiver Input (CIBIC-Plus)</td>
<td>7-pt. scale (1 = very much improved, 4 = no change, 7 = very much worse)</td>
</tr>
<tr>
<td></td>
<td>Clinician rated (with caregiver input), based on semi-structured interview covering cognition, behavior, function</td>
</tr>
<tr>
<td>Global Deterioration Scale (GDS)</td>
<td>7-pt. scale (1 = no decline, 7 = very severe decline)</td>
</tr>
<tr>
<td></td>
<td>Clinician rated based on cognitive change only</td>
</tr>
<tr>
<td>Domain / Scale</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Function</td>
<td>Activities of daily living (basic and instrumental)</td>
</tr>
<tr>
<td>Alzheimer’s Disease Cooperative Study Activities of Daily Living (ADCS-ADL)</td>
<td>54-pt. scale (higher scores better) Informant rated interview of 27 basic and instrumental ADL’s used in mild – moderate AD; a subgroup of 19 validated items has been used in moderate-severe AD</td>
</tr>
<tr>
<td>Disability Assessment for Dementia (DAD)</td>
<td>100-pt. scale (higher scores better) Informant rated interview of 17 basic and 23 instrumental ADL’s; initiation, organization, and planning distinguished</td>
</tr>
<tr>
<td>Bristol Activities of Daily Living Scale (Bristol ADL)</td>
<td>60-pt. scale (higher scores worse) Informant rated interview of 20 items (10 ADL’s, 10 IADL’s) each rated on a 0-3 pt. scale</td>
</tr>
<tr>
<td>Behavior</td>
<td>Mood, behavior, personality alterations, etc.</td>
</tr>
<tr>
<td>Neuropsychiatric Inventory (NPI)</td>
<td>144-pt. scale (higher scores worse) Informant interview of 12 symptom domains rated on a 12-pt. scale based on Frequency (0-4) x Severity (0-3)</td>
</tr>
<tr>
<td>Behavioral symptoms in Alzheimer’s disease (BEHAVE-AD)</td>
<td>75-pt. scale (higher scores worse) Informant interview of 25 behavioral symptoms rated on a 0-3 pt. scale</td>
</tr>
</tbody>
</table>
APPENDIX C. Quality Criteria

Assessment of Internal Validity
To assess the internal validity of individual studies, the EPC adopted criteria for assessing the internal validity of individual studies from the US Preventive Services Task Force and the NHS Centre for Reviews and Dissemination.

For Controlled Trials:

Assessment of Internal Validity

1. Was the assignment to the treatment groups really random?
 Adequate approaches to sequence generation:
 - Computer-generated random numbers
 - Random numbers tables
 Inferior approaches to sequence generation:
 - Use of alteration, case record numbers, birth dates or week days
 - Not reported

2. Was the treatment allocation concealed?
 Adequate approaches to concealment of randomization:
 - Centralized or pharmacy-controlled randomization
 - Serially-numbered identical containers
 - On-site computer based system with a randomization sequence that is not readable until allocation
 - Other approaches sequence to clinicians and patients
 Inferior approaches to concealment of randomization:
 - Use of alteration, case record numbers, birth dates or week days
 - Open random numbers lists
 - Serially numbered envelopes (even sealed opaque envelopes can be subject to manipulation)
 - Not reported

3. Were the groups similar at baseline in terms of prognostic factors?

4. Were the eligibility criteria specified?

5. Were outcome assessors blinded to the treatment allocation?

6. Was the care provider blinded?

7. Was the patient kept unaware of the treatment received?

8. Did the article include an intention-to-treat analysis or provide the data needed to calculate it (i.e., number assigned to each group, number of subjects who finished in each group, and their results)?

9. Did the study maintain comparable groups?

10. Did the article report attrition, crossovers, adherence, and contamination?
11. Is there important differential loss to follow-up or overall high loss to follow-up? (Give numbers in each group.)

Assessment of External Validity (Generalizability)

1. How similar is the population to the population to whom the intervention would be applied?

2. How many patients were recruited?

3. What were the exclusion criteria for recruitment? (Give numbers excluded at each step.)

4. What was the funding source and role of funder in the study?

5. Did the control group receive the standard of care?

6. What was the length of follow-up? (Give numbers at each stage of attrition.)
APPENDIX D. Characteristics of Excluded Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Sample size</th>
<th>Intervention</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anand et al., 1996(^95)</td>
<td>pooled data analysis</td>
<td>566</td>
<td>RIV vs. placebo</td>
<td>no systematic literature search</td>
</tr>
<tr>
<td>Farlow et al., 2003(^96)</td>
<td>pooled analysis of 3 placebo-controlled trials</td>
<td>3550</td>
<td>RIV vs. placebo</td>
<td>selection bias</td>
</tr>
<tr>
<td>Forette et al., 1999(^77)</td>
<td>RCT</td>
<td>114</td>
<td>RIV vs. placebo</td>
<td>high differential loss to follow up; no ITT analysis</td>
</tr>
<tr>
<td>Geldmacher et al., 2003(^98)</td>
<td>pooled data analysis</td>
<td>1115</td>
<td>DON vs. placebo</td>
<td>selection bias</td>
</tr>
<tr>
<td>*Gillette-Guyonnet et al., 2005(^83)</td>
<td>Cohort study</td>
<td>486</td>
<td>AChEI vs no AChEI</td>
<td>insufficient drug exposure data</td>
</tr>
<tr>
<td>*Knapp et al., 1994(^88-88)</td>
<td>randomized, double-blind, placebo-controlled, parallel group trial</td>
<td>663</td>
<td>TAC vs. placebo</td>
<td>high loss to follow up</td>
</tr>
<tr>
<td>Pratt et al., 2002(^99)</td>
<td>pooled data analysis</td>
<td>1920</td>
<td>DON vs. placebo</td>
<td>no systematic literature search</td>
</tr>
<tr>
<td>Sano et al., 2003(^100)</td>
<td>pooled data analysis</td>
<td>825</td>
<td>GAL vs. placebo</td>
<td>pooled data, trials not identical; no systematic literature search</td>
</tr>
<tr>
<td>Stahl et al., 2004(^101)</td>
<td>pooled data analysis</td>
<td>1698</td>
<td>GAL vs. placebo</td>
<td>no systematic literature search</td>
</tr>
<tr>
<td>*Wong et al., 1999(^87)</td>
<td>RCT</td>
<td>100</td>
<td>TAC vs. placebo</td>
<td>high loss to follow up</td>
</tr>
<tr>
<td>*Wood et al., 1994(^99)</td>
<td>RCT</td>
<td>154</td>
<td>TAC vs. placebo</td>
<td>high loss to follow up</td>
</tr>
</tbody>
</table>

*Poor quality rating for efficacy but included for adverse events
APPENDIX E. Abstract-only Studies (not included)

30. Tiseo PJ, Rogers SL, Friedhoff LT. The pharmacokinetics and pharmacodynamics of (R)- and (S)-Warfarin are unaffected by co-administration of donepezil. 10th European College of Neuropsychopharmacology Congress. Vienna, Austria. 13th-17th September 1997. 1997.

APPENDIX F. Acknowledgements

Acknowledgements

Reviewers

We gratefully acknowledge the following individuals who reviewed the initial draft of this report and provided us with valuable and constructive feedback.

Malaz Boustani, MD
Assistant Professor
Director of Medicine
Indiana University-Purdue University School of Medicine
Indiana University Center for Aging Research
Research Scientist
Regenstrief Institute, Inc.

Serge Gauthier, MD, FRCPC
Director
Alzheimer and Cognitive Disorders Clinic
McGill University Centre for Studies in Aging

Michael Hill, MD
Professor of Medicine
Dept of Psychiatry
University of North Carolina-Chapel Hill

Philip D. Sloane, MD, MPH
Elizabeth and Oscar Goodwin Distinguished Professor and Associate Chair
Department of Family Medicine
Co-Director, Program on Aging, Disability and Long-Term Care
Cecil G. Sheps Center for Health Services Research
University of North Carolina-Chapel Hill