Introduction to Developmental Diagnosis

Brian Rogers MD
Professor of Pediatrics
Director of the Child Development and Rehabilitation Center

Goals of Presentation

• Develop an understanding of the goals for developmental monitoring.
• Have a better appreciation of the major developmental disabilities and their associated deficits.
• Have a better appreciation of the clinical presentation of developmental disabilities in early childhood.

Outline of Presentation

• Case Presentations
• Goals of Developmental Monitoring
• Introduction to Developmental Disabilities
• Streams of Development

Outline of Presentation

• Developmental History
• Physical Examination
• Defining “Developmental Delay”
• Approaches to Diagnosis
• Basic Management Strategies

Goals for Developmental Monitoring

• Identification of developmental delays should not be the primary goal
• Developmental monitoring, including accurate histories and observations, should be directed at identifying infants and children with or at high risk for developmental disabilities, or other static or progressive disorders affecting development.

Developmental Disabilities

• Communication Disorders:
 - Developmental Language Disorders
• Intellectual Disability
• Autism
• Learning Disabilities
• Cerebral Palsy
Approaches to Developmental Diagnosis

Four Major Streams of Development

- **Language**
 - Verbal: Expressive and Receptive
 - Pragmatics:
- **Cognition (visual learning)**
- **Motor**
 - Gross and Fine Motor
- **Adaptive or Functional Skills**

Principles of Early Neurodevelopment

- Development is generally orderly and sequential.
- Diagnosis is largely dependent on accurate developmental histories and observations.
- Developmental disabilities are present during infancy.

Developmental Diagnosis

- **History:**
 - Parent perceptions and concerns:
 - Risk factors: Family history, neonatal period, health history, behavior, school performance, social/environmental
 - “Developmental histories are notoriously inaccurate” Why?

Developmental Delay

- **Developmental Quotient:**
 \[
 \frac{\text{Developmental Age}}{\text{Chronological Age}} \times 100 = \text{DQ}
 \]
- **Developmental Delay:**
 DQ < 70 in any developmental stream

Nature of Developmental Delays

- Avoid reliance on determining developmental function at one point in time.
- A developmental history will confirm the following:
 1. Static Process
 2. Progressive Process
Developmental Dissociation

• Dissociation is manifested by a difference between the developmental rates of two streams of development, with one stream significantly more delayed.

Developmental Deviancy

• Manifested by nonsequential unevenness in the achievement of milestones within one or more streams of development.

• Examples:
 1. Child is reported to speaking short sentences and has a 30 word vocabulary.
 2. A child who pulls to stand before sitting.

Assessment Motor Development

Goals of Presentation

• Develop a better understanding of the risk factors for cerebral palsy
• Increase knowledge regarding normal motor milestones in the first 15 months of life.
• Appreciate the normal evolution of the neurological examination during the first year of life.
Goals of the Presentation

• Increase knowledge regarding the more common neurological findings found in young infants with motor disabilities including cerebral palsy and neuromuscular disorders.
• Develop effective strategies in identifying infants with motor disabilities.

Outline

I. Focus: first 9-12 months
II. History
 A. Risk Factors
 B. Static vs Progressive Presentation
 C. Motor Milestones
 D. Parents perceptions

III. Physical Examination
 A. Muscle tone and posture
 B. Primitive Reflexes
 C. Movement

Risk Factors for Cerebral Palsy

Although a number of well-recognized risk factors for cerebral palsy have been documented, most cases of cerebral palsy remain unexplainable.

Motor Delay

- Static
 1. Reduced rate of motor milestones
 2. Motor quotient less than 70

 \[
 MQ = \frac{Motor\ Age}{Chronologic\ Age} \times 100
 \]

- Progressive
 1. Loss of previously acquired motor milestones
Equilibrium in Prone
Table V. Mean Age of Gross Motor Attainment in Normal Children

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Age (months)</th>
<th>SD</th>
<th>% Recall (N = 183)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolls prone to supine</td>
<td>3.3</td>
<td>4.6</td>
<td>62</td>
</tr>
<tr>
<td>Rolls supine to prone</td>
<td>5.4</td>
<td>1.3</td>
<td>12</td>
</tr>
<tr>
<td>Sits supported</td>
<td>6.2</td>
<td>1.0</td>
<td>19</td>
</tr>
<tr>
<td>Sits alone</td>
<td>6.5</td>
<td>1.4</td>
<td>97</td>
</tr>
<tr>
<td>Creeps</td>
<td>7.4</td>
<td>1.7</td>
<td>95</td>
</tr>
<tr>
<td>Pulls to sit</td>
<td>7.6</td>
<td>1.7</td>
<td>67</td>
</tr>
<tr>
<td>Crawls</td>
<td>8.0</td>
<td>1.4</td>
<td>99</td>
</tr>
<tr>
<td>Pulls to stand</td>
<td>8.8</td>
<td>1.5</td>
<td>67</td>
</tr>
<tr>
<td>Cruise</td>
<td>11.6</td>
<td>2.3</td>
<td>98</td>
</tr>
<tr>
<td>Walks</td>
<td>14.5</td>
<td>2.5</td>
<td>92</td>
</tr>
<tr>
<td>Walks backward</td>
<td>14.8</td>
<td>2.5</td>
<td>98</td>
</tr>
<tr>
<td>Runs</td>
<td>14.8</td>
<td>2.5</td>
<td>83</td>
</tr>
</tbody>
</table>

Development of Prehension

<table>
<thead>
<tr>
<th>Findings Age (mos)</th>
<th>Palmer grasp</th>
<th>Hands open</th>
<th>Unilateral reach and transfer</th>
<th>Pick up (Ulnar to Radial pattern)</th>
<th>Palmar</th>
<th>Three fingers (1-3)</th>
<th>Immature pincer</th>
<th>Mature pincer</th>
<th>Release object</th>
<th>Supination</th>
<th>Displays handedness</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>12</th>
<th>15</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>
Passive Flexor Tone
- Resistance to passive extension of the extremity
- Appearance:
 1. Prenatal
 Caudal to Cephalic appearance
 2. Postnatal
 Cephalic to Caudal dissipation

Passive Extensor Tone
- Resistance to passive flexion of the extremity
- Consistent extensor tone is never normal
- Examination of elbows, knees and ankles
Normal Neuromotor Development
Cortical Superceding Subcortical Control
(Amiel-Tison)

- Passive muscle tone
 1. Relaxation of flexor tone is first observed in upper limbs and later in lower limbs. Physiologic hypotonia by 9 months.
 2. Extensor tone of extremities not observed.
Truncal tone

- Prone suspension
- Axillary suspension
- Pull to sit
Primitive Reflexes

Brain stem mediated reflexes, that are predominately manifested during the first six months of life. These are elicited by positions of the head and neck in space.

1. Moro Reflex
2. Asymmetric Tonic Neck
3. Tonic Labyrinthine
4. Positive Support
Spontaneous Movements

- Quantitative
 1. Normally, alert states accompanied by an abundance of extremity movements
 2. Red Flags
 Paucity of movements or asymmetries

- Qualitative
 1. Normally, trunk and extremity movements are variable
 2. Red Flags
 - Lack of independent extremity movements
 - Repetitive postures or movements
 - “Jerky” movements
 - Extensor postures
 - Persistent fisting at any age