Nursing Assessment in Pediatric Hematology/Oncology

Wendy Landier RN MSN CPNP CPON®
OBJECTIVES

• Recognize abnormal laboratory results and associated nursing implications.

• Discuss the special aspects of the role of the nurse in the care of the child or adolescent with cancer and their families.

• Implement practices designed to improve the quality of life for patients and families affected by childhood cancer.
Childhood Cancer: Symptom Onset

- May be rapid or insidious
- Diagnosis often delayed
- Symptoms often vague
Childhood Cancer: Common Chief Complaints

• Pallor, bleeding
• Fatigue
• Persistent fever
• Headache, visual changes
• Lymphadenopathy
• Bone pain, joint pain, limp
• Abdominal mass
• Cough, respiratory difficulties
The Diagnostic Workup: “Waiting and Not Knowing”

- Uncertainty regarding diagnosis and prognosis
- Worry and preoccupation with anticipated outcome
- Intensity/agony of this period often unrecognized
- Nurses can listen, debrief, and offer support

Clarke-Steffen, 1993
Clinical Manifestations of Cancer

- **Changes in blood cell production**, due to:
 - bone marrow infiltration by tumor
 - chronic disease
- **Mass**, resulting in:
 - compression of organs
 - compression of vital structures
- **Tumor byproducts**, causing alterations in:
 - electrolytes
 - hormones, metabolism
 - immunologic response
Findings Related to Alterations in Blood Cell Production

- **Pallor**
 - conjunctivae
 - oral mucosa
 - nailbeds
 - palmar creases

- **Petechiae**
 - nonblanching
 - pressure points
 - < 5mm

- **Purpura**
 - > 5mm
Findings Related to Alterations in Blood Cell Production

- Fever
- Infection
- Fatigue
The Mediastinum: What is It?

Space between:
- sternum and spine
- suprasternal notch and diaphragm
- parietal pleura
The Mediastinum: What's Inside?

- Thymus
- Thyroid
- Esophagus
- Lymph nodes
- Trachea & bronchi
- Heart & pericardium
- Great vessels
- Nerves
Causes of Mediastinal Mass

- Leukemia, lymphoma
- Neuroblastoma
- Other tumors
- Infections (e.g., TB)
Findings Related to Mediastinal Mass: Respiratory Compromise

- Cough
- Wheezing
- Tracheal/bronchial compression
- Respiratory distress/arrest
Mediastinal Mass

Never force a child with a mediastinal mass to lie down—this could result in respiratory arrest!

Never sedate a child with a mediastinal mass unless you are prepared to intubate!
Findings Related to Mediastinal Mass: Superior Vena Cava Syndrome

- Facial swelling and/or distended neck veins
- Compression of great vessels/vital structures
- May be misdiagnosed as an allergic reaction

© APON 2003
Findings Related to Masses: Lymphadenopathy

- Abnormal enlargement of lymph nodes
 - > 1 cm
 - often firm, matted
- Location of enlarged nodes
 - regional versus generalized
 - epitrochlear (elbow) & supraclavicular nodes usually pathologic
Findings Related to Abdominal Masses

• Abdominal masses can be:
 - tumor
 - enlarged liver and/or spleen
 - bladder/feces

• Common symptoms:
 - pain
 - GI symptoms
 - urinary symptoms
Findings Related to Musculoskeletal Masses

• **Constitutional symptoms**
 - fatigue
 - fever
 - weight loss

• **Pain (onset/timing/location)**

• **Gait problems**
Findings Related to CNS Tumors

- Morning headaches
- Vomiting
- Hemiparesis
- Cranial nerve palsies
- Diplopia, nystagmus, strabismus
- Ataxic gait
- Decreased coordination
- Seizures
Findings Related to CNS Tumors

- Irritability, lethargy
- Personality changes
- Head tilt
- Macrocephaly
- Bulging fontanelle
- Short stature
- Growth deceleration
- Precocious puberty
Assessing Lab Values
How to Read a CBC

<table>
<thead>
<tr>
<th>Description</th>
<th>Result</th>
<th>Normal Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBC/PLT/DIFF</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>WBC</td>
<td>6.3 K/uL</td>
<td>4.0 - 11.0</td>
</tr>
<tr>
<td>RBC</td>
<td>4.54 M/uL</td>
<td>3.80 - 5.20</td>
</tr>
<tr>
<td>HGB</td>
<td>13.6 G/dL</td>
<td>11.5 - 15.5</td>
</tr>
<tr>
<td>HCT</td>
<td>39.6 %</td>
<td>35.0 - 47.0</td>
</tr>
<tr>
<td>MCV</td>
<td>87.3 fL</td>
<td>81.0 - 100.0</td>
</tr>
<tr>
<td>MCH</td>
<td>30.0 pG</td>
<td>26.0 - 34.0</td>
</tr>
<tr>
<td>MCHC</td>
<td>34.4 %</td>
<td>31.0 - 36.5</td>
</tr>
<tr>
<td>RDW</td>
<td>13.3</td>
<td>11.5 - 14.5</td>
</tr>
<tr>
<td>PLT</td>
<td>256 K/uL</td>
<td>150 - 350</td>
</tr>
<tr>
<td>SEG %</td>
<td>56.8 %</td>
<td>44 - 64</td>
</tr>
<tr>
<td>LYM %</td>
<td>36.8 %</td>
<td>23 - 53</td>
</tr>
<tr>
<td>MONO %</td>
<td>4.4 %</td>
<td>0 - 10</td>
</tr>
<tr>
<td>EOS %</td>
<td>1.5 %</td>
<td>0 - 6</td>
</tr>
<tr>
<td>BASO %</td>
<td>0.5 %</td>
<td>0.0 - 2.0</td>
</tr>
</tbody>
</table>
How to Read a CBC

• **Measure of formed elements:**
 - red blood cells
 - white blood cells
 - platelets

• **Additional information:**
 - hemoglobin
 - hematocrit
 - RBC size/shape
 - WBC differential

• **Always check norms for age!!**
Red Blood Cell Assessment

- **RBC count**
 - total # of RBCs in each ml of blood

- **Hemoglobin**
 - iron-rich protein found inside RBCs, measured in gm/dl
 - indicator of O_2-carrying capacity

- **Hematocrit**
 - % of RBC's by volume
Red Blood Cell Assessment: RBC, Hgb, Hct

- Normal
- Low (anemia)
- High (polycythemia)

<table>
<thead>
<tr>
<th>Description</th>
<th>Result</th>
<th>Normal Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBC/PLT/DIFF</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>WBC</td>
<td>6.3 K/uL</td>
<td>4.0 - 11.0</td>
</tr>
<tr>
<td>RBC</td>
<td>4.54 M/uL</td>
<td>3.80 - 5.20</td>
</tr>
<tr>
<td>HGB</td>
<td>13.6 G/dL</td>
<td>11.5 - 15.5</td>
</tr>
<tr>
<td>HCT</td>
<td>39.6 %</td>
<td>35.0 - 47.0</td>
</tr>
<tr>
<td>MCV</td>
<td>87.3 fL</td>
<td>81.0 - 100.0</td>
</tr>
<tr>
<td>MCH</td>
<td>30.0 pG</td>
<td>26.0 - 34.0</td>
</tr>
<tr>
<td>MCHC</td>
<td>34.4 %</td>
<td>31.0 - 36.5</td>
</tr>
<tr>
<td>RDW</td>
<td>13.3</td>
<td>11.5 - 14.5</td>
</tr>
<tr>
<td>PLT</td>
<td>256 K/uL</td>
<td>150 - 350</td>
</tr>
<tr>
<td>SEG %</td>
<td>56.8 %</td>
<td>44 - 64</td>
</tr>
<tr>
<td>LYM %</td>
<td>36.8 %</td>
<td>23 - 53</td>
</tr>
<tr>
<td>MONO %</td>
<td>4.4 %</td>
<td>0 - 10</td>
</tr>
<tr>
<td>EOS %</td>
<td>1.5 %</td>
<td>0 - 6</td>
</tr>
<tr>
<td>BASO %</td>
<td>0.5 %</td>
<td>0.0 - 2.0</td>
</tr>
</tbody>
</table>
Red Blood Cell Assessment: Size & Color

- **MCV** (mean cell volume)
 - RBC size

- **MCH** (mean cell hemoglobin)
 MCHC (mean cell hemoglobin concentration)
 - RBC hemoglobin content (color)

- **RDW** (red cell distribution width)
 - variation in RBC size
Red Blood Cell Assessment: Size & Color

- **MCV (RBC size):**
 - normal (normocytic)
 - low (microcytic)
 - high (macrocytic)

- **MCH, MCHC (RBC color):**
 - normal (normochromic)
 - low (hypochromic)

- **RDW (RBC size variation):**
 - normal
 - high (wide variation in RBC size)
Platelet Count

• Platelets
 - plug holes in damaged blood vessels
 - prevent bleeding
Platelet Count Assessment

- Normal
- Low (thrombocytopenia)
- High (thrombocytosis)

<table>
<thead>
<tr>
<th>Description</th>
<th>Result</th>
<th>Normal Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBC/PLT/DIFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WBC</td>
<td>6.3 K/μL</td>
<td>4.0 - 11.0</td>
</tr>
<tr>
<td>RBC</td>
<td>4.54 M/μL</td>
<td>3.80 - 5.20</td>
</tr>
<tr>
<td>HGB</td>
<td>13.6 G/dL</td>
<td>11.5 - 15.5</td>
</tr>
<tr>
<td>HCT</td>
<td>39.6 %</td>
<td>35.0 - 47.0</td>
</tr>
<tr>
<td>MCV</td>
<td>87.3 fL</td>
<td>81.0 - 100.0</td>
</tr>
<tr>
<td>MCH</td>
<td>30.0 pg</td>
<td>26.0 - 34.0</td>
</tr>
<tr>
<td>MCHC</td>
<td>34.4 %</td>
<td>31.0 - 36.5</td>
</tr>
<tr>
<td>RDW</td>
<td>13.3</td>
<td>11.5 - 14.5</td>
</tr>
<tr>
<td>PLT</td>
<td>256 K/μL</td>
<td>150 - 350</td>
</tr>
<tr>
<td>SEG %</td>
<td>56.8 %</td>
<td>44 - 64</td>
</tr>
<tr>
<td>LYM %</td>
<td>36.8 %</td>
<td>23 - 53</td>
</tr>
<tr>
<td>MONO %</td>
<td>4.4 %</td>
<td>0 - 10</td>
</tr>
<tr>
<td>EOS %</td>
<td>1.5 %</td>
<td>0 - 6</td>
</tr>
<tr>
<td>BASO %</td>
<td>0.5 %</td>
<td>0.0 - 2.0</td>
</tr>
</tbody>
</table>

© APON 2003
White Blood Count

- White blood cells:
 - fight infection
 - make antibodies
 - several subtypes of WBCs make up the “differential count”
White Blood Count Assessment

- Normal
- Low (*leukopenia*)
- High (*leukocytosis*)

<table>
<thead>
<tr>
<th>Description</th>
<th>Result</th>
<th>Normal Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBC/PLT/DIFF</td>
<td>WBC 6.3 K/uL</td>
<td>4.0 - 11.0</td>
</tr>
<tr>
<td>RBC</td>
<td>4.54 M/uL</td>
<td>3.80 - 5.20</td>
</tr>
<tr>
<td>HGB</td>
<td>13.6 G/dL</td>
<td>11.5 - 15.5</td>
</tr>
<tr>
<td>HCT</td>
<td>39.6 %</td>
<td>35.0 - 47.0</td>
</tr>
<tr>
<td>MCV</td>
<td>87.3 fL</td>
<td>81.0 - 100.0</td>
</tr>
<tr>
<td>MCH</td>
<td>30.0 pG</td>
<td>26.0 - 34.0</td>
</tr>
<tr>
<td>MCHC</td>
<td>34.4 %</td>
<td>31.0 - 36.5</td>
</tr>
<tr>
<td>RDW</td>
<td>13.3 %</td>
<td>11.5 - 14.5</td>
</tr>
<tr>
<td>PLT</td>
<td>256 K/uL</td>
<td>150 - 350</td>
</tr>
<tr>
<td>SEG %</td>
<td>56.8 %</td>
<td>44 - 64</td>
</tr>
<tr>
<td>LYM %</td>
<td>36.8 %</td>
<td>23 - 53</td>
</tr>
<tr>
<td>MONO %</td>
<td>4.4 %</td>
<td>0 - 10</td>
</tr>
<tr>
<td>EOS %</td>
<td>1.5 %</td>
<td>0 - 6</td>
</tr>
<tr>
<td>BASO %</td>
<td>0.5 %</td>
<td>0.0 - 2.0</td>
</tr>
</tbody>
</table>

© APON 2003
WBC Differential

• Assesses percentage of each different subtype of WBC in blood
• Reported as % of total cells counted
• % of all types reported should add up to 100
WBC Differential: Types of Cells

• Neutrophils (infection-fighters)
 - segs or polys (mature)
 - bands or stabs (young)
• Lymphocytes (immunity)
• Monocytes (phagocytosis)
• Eosinophils (allergy, parasites)
• Basophils (hypersensitivity)
• Blasts (very immature)
 (Blasts should ALWAYS be considered ABNORMAL unless proven otherwise)
Evaluating the Neutrophil Count

• Neutrophil count **increases** with:
 - bacterial infections
 • increased % of neutrophils
 • increased % of immature neutrophils (bands/stabs)
 • “shift to the left”
 - glucocorticoid therapy, stress, epinephrine

• Neutrophil count **decreases** with:
 - viral infections, certain drugs
 - diseases involving the bone marrow
 - congenital and acquired neutropenias
 - hypersplenism
Evaluating the Neutrophil Count

• Patients with low neutrophil counts are at high risk of developing bacterial infections.

• The lower the neutrophil count, and the longer it stays low, the higher the risk of infection.

• Patients with very low neutrophil counts may not be able to mount a response (show an increase in WBC) in the presence of infection.
Calculating the Absolute Neutrophil Count (ANC)

\[\text{ANC} = \% \text{ segs (polys)} + \% \text{ bands (stabs)} \times \text{ total WBC (in 1000s)} \]

\[
33 \, (\% \text{ segs}) + 1 \, (\% \text{ bands}) \times 34\% \\
\times 3,600 \, (\text{WBC in 1000s})
\]

\[= 1224 \, (\text{ANC}) \]

© APON 2003
Absolute Neutrophil Count (ANC)

- $>1500 = \text{normal}$
- $<1000 = \text{impaired ability to fight infection}$
- $<500 = \text{at risk for serious infection}$
Evaluating Blood Coagulation

Check for abnormalities of:

- PT
- PTT
- FDP
- D-Dimer
- Fibrinogen
Evaluating Kidney Function

Check for abnormalities of:

- U/A
- BUN
- serum creatinine
- creatinine clearance
- GFR
Evaluating Liver Function

Check for abnormalities of:

- bilirubin
- ALT
- AST
- alkaline phosphatase
- prothrombin time
Evaluating Cultures

- Check culture reports on all of your patients
- Report positive cultures IMMEDIATELY
- Patient therapy may change based on results
Evaluating Vital Signs

• Know norms for age

• Measure precisely using correct technique

• Always evaluate every set of vital signs on each patient (whether or not you take them yourself)!!!
Evaluating Vital Signs: Temperature

- No rectal temps for oncology patients!
- Fever is an emergency:
 - in neutropenic patients
 - in patients with central lines or other implanted apparatus (e.g., shunts)
 - in immunodeficient or asplenic patients (e.g., Wiskott-Aldrich, sickle cell)
Evaluating Vital Signs: Fever

- **Shaking chills**
 - may occur before onset of fever
 - also considered an emergency

- **Check capillary refill**
 - normal = brisk (immediate)
 - report if delayed (> 2 seconds)

- **Notify MD/NP/PA immediately**
 - urgent evaluation/intervention required
Evaluating Vital Signs: Tachycardia

Potential causes:

- Anxiety
- Anemia
- Hypovolemic

- Shock
- Fever
- Pain
Evaluating Vital Signs: Tachypnea

• Evaluate:
 - retractions
 - nasal flaring
 - color (dusky, cyanotic)
 - breath sounds

• Potential causes
 - anxiety
 - hypoxia
 - fever
 - pain
 - respiratory compromise
Evaluating Vital Signs: Hypotension

- Hypotension is an emergency - report immediately!
- Potential causes:
 - septic shock (can be rapidly fatal!!)
 - hypovolemia (dehydration, bleeding)
Evaluating Vital Signs: Hypertension

- Requires prompt assessment and intervention
- Potential etiology:
 - steroids
 - renal
 - increased intracranial pressure - report!

may require prn or routine medication
Evaluating Vital Signs: Pain

• Assess pain with all vital signs
• Use age-appropriate assessment tool
• Potential causes:
 - disease
 - treatment (e.g., mucositis, surgery)
 - infection
• Pain requires intervention!
Nursing Assessment

• Thorough physical assessment

• Special attention to:
 - mouth
 - skin
 - perianal area
Evaluating Neutropenic Patients

• Usual signs of infection may be absent:
 - erythema
 - warmth
 - pus/drainage
 - rales

• Pain/tachypnea/fever may be only signs of infection

• Fever or shaking chills require immediate intervention!

BIBLIOGRAPHY

