Geometric evaluation of intrafraction motion during frameless intracranial stereotactic radiosurgery (SRS)

Catherine M. Kato, James A. Tanyi, Charlotte D. Kubicky Carol M. Marquez, Martin Fuss

Purpose
To quantify intrafraction motion during frameless intracranial stereotactic radiosurgery (SRS) using the six-degree-of-freedom (6DOF) stereoscopic x-ray imaging system.

Methods
Patient immobilization was accomplished by either a custom-fitted three-piece bivalve-style thermoplastic mask (BrainLAB AG, Heimstetten, Germany) or a three-point fixation Orfit mask system (Orfit Industries, Wijnegem, Belgium). Frameless positioning was based on online 6DOF stereoscopic x-ray (ExacTrac) imaging followed by online volumetric image guidance (CBCT) for residual error assessment. At least one mid-treatment ExacTrac acquisition was performed for motion assessment. The difference between the patient’s position at the start and at the time of reassessment was determined and labeled intrafraction motion.

Results
A cohort of 180 sequential patients that were subjected to frameless cranial SRS formed the basis of the current analysis. In total, 350 intrafraction ExacTrac image sets were evaluated (mode 1; range 1-3). Intrafraction translational motion was 0.1 mm (SD=0.7; range: -2.5–2.0), 0.0 mm (SD=0.8; range: -2.5–2.1), and 0.1 mm (SD=0.8; range: -2.3–2.8), in the vertical, longitudinal and lateral directions, respectively. The 3D vector was 1.1 mm (SD=0.7; range: 0.0–3.5). Intrafraction rotational alignment errors was 0.0 degrees (SD=0.8; range: -2.8–2.7), 0.0 degrees (SD=0.4; range: -1.1, 1.4), and 0.1 degrees (SD=0.7; range: -2.2–2.7) in the yaw, roll and pitch directions, respectively. Frequency of absolute motion in any direction >1 mm, >1.5 mm and >2 in any direction was 33%, 15% and 5% respectively. Frequency of 3D vector motion >1 mm, >1.5 mm and >2 was 48%, 25% and 10% respectively.

Conclusions
Intrafraction motion during frameless SRS delivery is typically small, albeit non-negligible. While motion along one or more room axes and 3D motion vectors >2 mm were observed no more than 10% of times, this finding may provide a rationale for development of planning target volume margins. Frequent intra-treatment positioning assessment can significantly contribute to the precision of frameless intracranial SRS.