Geometric Evaluation of Intrafraction Motion during Frameless Intracranial Stereotactic Radiosurgery (SRS)
February 21, 2013, 11:50 AM – 11:55 AM
Objective

To quantify intrafraction motion during frameless intracranial SRS using the six-degree-of-freedom stereoscopic x-ray imaging system.
Methods

• Patient immobilization
 – Orfit mask system
 • Orfit Industries, Wijnegem, Belgium
• Frameless positioning was based on online 6DOF stereoscopic x-ray (ExacTrac) imaging
• Subsequent online volumetric image guidance (CBCT)
 – Residual error assessment
• At least one mid-treatment ExacTrac acquisition was performed for motion assessment.
Methods

• Intrafraction motion definition
 – The difference between the patient’s position at the time of pre-treatment ExacTrac and at the time of re-assessment

 – Action level was 1 mm
Results

- A cohort of 180 sequential patients
- In total, 350 intrafraction ExacTrac image sets were evaluated
 - Mode 1
 - Range 1-3
Results

The box plot shows the distribution of displacement (mm) or rotation (°) across different directions:

- Vert (Vertical)
- Long (Longitudinal)
- Lat (Lateral)
- Vert/Yaw
- Long/Roll
- Lat/Pitch

The plot indicates variability in the data with outliers marked by asterisks (*) and the median represented by a horizontal line in the box.
Results (Summary)

• Frequency of absolute motion in any direction
 – >1 mm, 33%
 – >1.5 mm, 15%
 – >2 mm, 5%

• Frequency of 3D vector motion
 – >1 mm, 48%
 – >1.5 mm, 25%
 – >2 mm, 10%
Conclusion

- Intrafraction motion during frameless SRS delivery is typically small, albeit non-negligible.
Conclusion

- Intrafraction motion during frameless SRS delivery is typically small, albeit non-negligible.
- While motion along one or more room axes and 3D motion vectors >2 mm were observed no more than 10% of times, this finding may provide a rationale for development of planning target volume margins.
Conclusion

• Intrafraction motion during frameless SRS delivery is typically small, albeit non-negligible

• While motion along one or more room axes and 3D motion vectors >2 mm were observed no more than 10% of times, this finding may provide a rationale for development of planning target volume margins

• Frequent intra-treatment positioning assessment can significantly contribute to the precision of frameless intracranial SRS
Acknowledgement

- **Catherine M. Kato**
 Macalester College, St. Paul, Minnesota

- **Charlotte D. Kubicky, M.D., Ph.D.**
 Department of Radiation Medicine
 Oregon Health & Science University

- **Carol M. Marquez, M.D.**
 Department of Radiation Medicine
 Oregon Health & Science University

- **Martin Fuss, M.D., Ph.D.**
 Department of Radiation Medicine
 Oregon Health & Science University