Alpha-tocopheryloxyacetic acid (αTEA) induced immune activation synergizes with radiation therapy to treat murine mammary carcinoma

Joshua M Walker¹, Diego M Barragan², Melissa J Kasiewicz², Emmanuel T Akporiaye², & William L Redmond²
¹Oregon Health & Science University / Department of Radiation Medicine / Knight Cancer Institute, Portland, OR,
²Earle A. Chiles Research Institute / Providence Cancer Center, Portland, OR

Abstract

Immunotherapy has emerged as a promising treatment for metastatic cancer. However, immunotherapy for advanced stage breast carcinoma remains an unmet need. Here we demonstrate that the novel immunomodulator alpha-tocopheryloxyacetic acid (αTEA) synergizes with radiation therapy (RT) in a metastatic murine mammary carcinoma model to improve tumor control, and we propose a mechanism based on the stimulation of type I interferons by αTEA.

Materials/Methods

For in-vivo studies, BALB/c mice bearing 4T1 murine mammary carcinoma lesions were treated with dietary αTEA, ionizing radiotherapy, or the combination of αTEA/RT. Immune activation in animals treated with dietary αTEA was determined by analyzing the percentage of proliferating CD4 and CD8 T cells using a Ki-67 assay. Pulmonary metastatic burden was determined using a DCFDA assay and treatment with 30-60 μM αTEA.

Radiotherapy performed using an Xstrahl small animal radiation platform

Animals received 20 Gy x 2 or 12 Gy x 5 fractions (BED₁₀ of 120-132)

Treatment of 4T1 bearing mice with oral αTEA results in increased T cell activation and decreased pulmonary metastases

Conclusions

These preliminary results suggest that the combination of αTEA and ionizing radiation may be a viable therapy for the treatment of metastatic breast carcinoma. This therapeutic combination may provide more durable response to radiotherapy while simultaneously reducing further metastatic spread.

Acknowledgements

This work was generously supported by the Heath Foundation and the Providence Portland Medical Foundation