CLINICALLY PRACTICAL MAGNETIC RESONANCE PROTOCOL FOR IMPROVED SPECIFICITY IN BREAST CANCER DIAGNOSIS

Luminta A. Tudorica, Paul R. Fisher, and Wei Huang

Departments of 1Diagostic Radiology and 2Radiation Medicine, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
Department of 3Radiology, State University of New York, New York, NY
Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon

Introduction

- X-ray mammography
 - limited sensitivity (especially dense breast), high false positive rate (60-80%), resulting in unnecessary (benign) biopsies.
- Conventional Dynamic Contrast-Enhanced (DCE) T1-weighted MRI
 - Excellent sensitivity (88-100%)
 - Rather variable (37-97%) and limited specificity, leading to unnecessary (benign) biopsies as well
- MR techniques to improve specificity
 - T2*-weighted Perfusion MRI (Huang et al. 2004; Kvistad et al. 1999; Kuhl et al. 1997) -- increased tumor vascularity and perfusion, typical in malignancy
- In this study DCE MRI, 1H MRS, and perfusion MRI performed on patients with suspicious breast lesions prior to biopsy. MR results were correlated with pathology
- Goals: 1) determine if the combined MRI/MRS protocol improves specificity; 2) establish clinically practical breast cancer diagnostic MR protocol with high sensitivity and specificity.

Methods

- 124 patients with positive mammography findings scheduled for biopsies, consented under IRB-approved Protocol.
 - BIRADS (Breast Imaging Reporting AND Data System) scores 4 (suspicious abnormality) or 5 (high probability of malignancy)
- MRI/MRS protocol performed on a 1.5T Philips Intera and a 1.5T Marconi Edge scanners, both equipped with 4-channel phased array breast coils.
- Biopsy usually performed within a week following MR examination.
- DCE MRI
 - 3D sagittal acquisition (SPGR sequence, flip/TE/TR: 30°/3.8/9 ms, 5mm slice thickness, 24 cm FOV) covering one whole breast with positive mammographic findings.
 - 8 frames of 3D images, ~15 sec per frame
 - 0.1 mmol/kg Gd contrast agent, IV injection at 2 cc/sec at the beginning of 2nd frame acquisition
 - 1st frame of images subtracted from each following frames.
 - Subjective analysis of DCE MRI signal time-course
 - **Positive Findings:** fast enhancement, reaching plateau by 4th frame.
 - **Negative Findings:** no enhancement or continuous signal rising
- DCE MRI findings
 - **Positive** → Proton MRS and perfusion MRI
 - **Negative** → End of study
- Single-voxel 1H MRS
 - PRESS sequence
 - TE/TR: 135/2000 ms; 128 scan averages
 - MRS voxel encompassing enhanced lesion
 - **Positive Findings:** an apparent Cho peak at 3.23 ppm, S/N ≥ 2
 - **Negative Findings:** no apparent Cho peak at 3.23 ppm or S/N < 2
- Perfusion MRI
 - single slice (10 mm thickness) at lesion location
 - T2*-weighted FLASH sequence (flip/TE/TR 10°/35/54 ms), 24 cm FOV
 - 0.1 mmol/kg Gd contrast agent, IV injection at 4 cc/sec, 40 frames
 - Relative blood volume map reconstruction
 - **Positive Findings:** striking enhancement in lesion area compared with normal tissue area on relative blood volume map
 - **Negative Findings:** no obvious enhancement in lesion compared with normal tissue area on relative blood volume map

Results

Table: MRI/MRS and Pathology Findings of Patients with Suspicious Breast Lesions

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>DCE MRI</th>
<th>MRS</th>
<th>Perfusion MRI</th>
<th>Pathology</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>Malignant</td>
</tr>
<tr>
<td>44</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>benign</td>
</tr>
<tr>
<td>39</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>malignant</td>
</tr>
<tr>
<td>14</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>benign</td>
</tr>
<tr>
<td>7</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>benign</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>benign</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>benign</td>
</tr>
</tbody>
</table>

+ = positive findings; - = negative findings; * = MR scan discontinued due to negative DCE MRI findings or at patient’s request.

- **DCE MRI:**
 - 100% sensitivity, 61% specificity
- **DCE MRI + MRS:**
 - 100% sensitivity, 88% specificity
- **DCE MRI + MRS + perfusion MRI:**
 - 100% sensitivity, 100% specificity (excluding two patients without perfusion MRI data)

Discussions

- Addition of 1H MRS and perfusion MRI to DCE MRI protocol substantially improves specificity
- The improvement in the specificity of MR examination protocol may help to reduce unnecessary (benign) biopsies due to false positive conventional mammographic findings
- The MRI/MRS protocol is easy for implementation at any clinical imaging site, scan duration (45 min maximum) tolerable to most patients
- Qualitative data analysis, easy data interpretation for radiologists

Acknowledgment

- DOD Breast Cancer Research Program (W81XWH-04-1-0513)
- The Susan G. Komen Breast Cancer Foundation
- Supported, in part, by a gift from Deanne & Dick Rubinstein