OHSU

MS in Biostatistics

Please visit our MS/MBST Admissions Page for detailed application instructions.

MS IN BIOSTATISTICS PROGRAM SUMMARY

The Master of Science in Biostatistics degree program at OHSU is designed to provide graduate level training in the application and theory of biostatistics. The program is primarily aimed at those wishing to pursue careers as intermediate level biostatisticians or apply for doctoral programs in Biostatistics. The program is also appropriate for individuals who have earned a Graduate Certificate in Biostatistics and wish to pursue further training.

Target audiences for this program include individuals who desire careers as collaborative biostatisticians in the basic, clinical, translational or population sciences. The program will also be appropriate for some clinical and translational researchers (e.g. K awardees or postdoctoral trainees), students in other Oregon graduate programs, as well as working professionals throughout the state and region (e.g. public health practitioners, laboratory scientists, data managers, database programmers, other research professionals). 

All faculty members in the Department's Division of Biostatistics are actively involved with externally funded projects.  Students will have opportunities to work with real world applications under the supervision of faculty.  To learn more about our faculty and their research, please visit the Biostatistics Division's web page.

PROGRAM GOALS

Graduates of our program will be able to:

  • Apply intermediate to advanced biostatistical theory and techniques to design, plan, and manage data collection to conduct analysis for own research projects or support collaborative research teams.
  • Translate broad research goals into specifications and procedures for statistical analysis and interpretation of results in basic, clinical, translational and public health research studies.
  • Select and use appropriate statistical analysis software for assessment, decision-making and information-sharing (e.g., Stata, SAS, R or other special programs).
  • Communicate statistical methods and findings clearly and unambiguously to specialists and non-specialist audiences.

PROGRAM REQUIREMENTS (48 credits total)

Forty eight (48) credits will be required to earn the M.S. degree. The programs will include formal didactic sessions and hands-on statistical computing training.

.

Required courses (30 credits non-thesis or 33 credits with thesis):

BSTA 503 Master Thesis  - 3 credits OR Comprehensive Exam

BSTA 510 Biostatistics Lab  – 3 credits

BSTA 511 Estimation and Hypothesis Testing for Applied Biostatistics  – 4 credits

BSTA 512 Linear Models – 4 credits

BSTA 513 Categorical Data Analysis – 4 credits

BSTA 514 Survival Analysis – 3 credits -OR- BSTA 519 Applied Longitudinal Data Analysis – 3 credits

BSTA 517 Statistical Methods in Clinical Trials – 3 credits

BSTA 550 Introduction to Probability - 3 credits

BSTA 551 Mathematical Statistics I- 3 credits

BSTA 552 Mathematical Statistics II - 3 credits

 

Electives (18  credits if not completing a thesis or 15 credits with thesis):

BSTA 500 Reading and Research in Biostatistics - 1-2 credits

BSTA 504 Topics in Biostatistics - 3 credits

BSTA 515 Data Management and Analysis in SAS – 3 credits

BSTA 516 Design and Analysis of Surveys – 3 credits

BSTA 518 Spatial Data Analysis with Geographic Information Systems (GIS) – 3 credits

BSTA 521 Bayesian Methods for Data Analysis – 3 credits

BSTA 531 Lean & Six Sigma I - 3 credits

BSTA 532 Lean & Six Sigma II - 3 credits

 

Electives from other programs:

PHPM 512 Epidemiology I – 4 credits

PHPM 513 Epidemiology II (Methods) – 4 credits

BMI 550 Computational Biology I – 4 credits

BMI 551 Computational Biology II – 4 credits

PSU: Applied Probability 1 – 3 credits

PSU: Applied Probability 2 – 3 credits

PSU: Modern Nonparametric Statistics – 3 credits

TEST